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Quantum phase diagram of spin-1 J1- J2 Heisenberg model on the square lattice: An infinite
projected entangled-pair state and density matrix renormalization group study
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We study the spin-1 Heisenberg model on the square lattice with the antiferromagnetic nearest-neighbor J1 and
the next-nearest-neighbor J2 couplings by using the infinite projected entangled-pair state (iPEPS) ansatz and
the density matrix renormalization group (DMRG) calculation. The iPEPS simulation, which studies the model
directly in the thermodynamic limit, finds a crossing of the ground state from the Néel magnetic state to the stripe
magnetic state at J2/J1 � 0.549, showing a direct phase transition. In the finite-size DMRG calculation on the
cylinder geometry up to the cylinder width Ly = 10, we find that around the same critical point the Néel and
the stripe orders are strongly suppressed, which implies the absence of an intermediate phase. Both calculations
identify that the stripe order comes with a first-order transition at J2/J1 � 0.549. Our results indicate that unlike
the spin-1/2 J1-J2 square model, quantum fluctuations in the spin-1 model may not be strong enough to stabilize
an intermediate nonmagnetic phase.
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I. INTRODUCTION

Frustrated magnetic systems play a key role in under-
standing the exotic phases of matter [1,2]. As we know,
frustration can enhance quantum fluctuations by imposing
incompatibility on the local interaction energy to be simul-
taneously satisfied, which may destroy magnetic long-range
order and lead the systems into novel quantum phases, such
as valence-bond solid (VBS) [3–5] and quantum spin liquid
[6–8]. In addition, quantum phase transitions between such
phases may defy the Ginzburg-Landau theory—referred to
as the deconfined quantum criticality [9]—which makes the
physics of frustrated quantum magnetism a fascinating sub-
ject in both theoretical and experimental senses. Among the
various frustrated antiferromagnets, the spin-S J1-J2 square
Heisenberg models [10–13] are well-known examples and
have stimulated extensive theoretical studies over the past
two decades. The competing interactions in such systems
may stabilize a nonmagnetic intermediate phase if quantum
fluctuations are not strongly suppressed [10–13]. One of the
successful examples is the spin-1/2 J1-J2 model, in which a
nonmagnetic intermediate phase has been identified by using
different methods although the nature of the phase is still
controversial [14–20].

Meanwhile, the frustrated spin-1 square Heisenberg models
(SHMs) are also typical for studying frustrated magnetism.
Recently, studies on the magnetism of iron-based supercon-
ductors have drawn extensive interest in investigating novel
quantum phases, particularly the nonmagnetic phase with lat-
tice nematic order, in different spin-1 SHMs [21–33]. Among
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the various models, the spin-1 J1-J2 SHM is probably the most
fundamental model, which is defined as

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj ,

where 〈i,j 〉 and 〈〈i,j 〉〉 denote the nearest-neighbor and the
next-nearest-neighbor pairs, and J1 and J2 are both antifer-
romagnetic (AFM) couplings. We set J1 = 1 as the energy
scale. Classically, this model in the large-S limit has a Néel
and a stripe AFM phase separated at J2 = 0.5. After con-
sidering quantum fluctuations, the early studies based on the
modified spin-wave theory [12,34] and the Schwinger-Boson
mean-field theory [35] predicted that quantum fluctuations
for the systems with spin magnitude S > 0.7 are not strong
enough to stabilize a nonmagnetic intermediate phase. Thus,
mean-field results suggested a direct phase transition from
the Néel to the stripe AFM phase for the spin-1 model. This
result was later confirmed by the coupled cluster method,
which found a first-order transition between the Néel and the
stripe phase at J2 � 0.55 [36]. Interestingly, the recent density
matrix renormalization group (DMRG) study [37] challenged
this result: it predicted a nonmagnetic phase in the small
intermediate region for 0.525 � J2 � 0.555 and suggested that
this nonmagnetic phase might be continuously connected to the
limit of the decoupled Haldane spin chains [38] by tuning the
spacial anisotropic couplings J1x and J1y . Such a nonmagnetic
phase in a spin-1 model is quite interesting not only because it
goes beyond the physics in the mean-field description but also
because it might be related to the nematic nonmagnetic phase
in the iron-based superconductor material FeSe [26].

In this article, our main goal is to reexamine the phase
diagram of the spin-1 J1-J2 SHM based on the variational
tensor-network ansatz and the DMRG simulation [39]. In
previous studies, while the mean-field calculation may not
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fully consider quantum fluctuations [12,34,35], use of the
DMRG simulation may result in difficulty in pinning down
the intermediate region as a nonmagnetic phase due to the
finite-size effects [37]. To this end, we use state-of-the-art nu-
merical methods to systematically study the model. We use the
U(1)-symmetric infinite projected entangled-pair state (iPEPS)
ansatz [40,41] and the SU(2)-symmetric finite-size DMRG to
study the system from different limits: the iPEPS is directly
applied in the thermodynamic limit, significantly diminishing
possible finite-size effects; SU(2)-symmetric DMRG obtains
accurate results in a finite-size system. In the iPEPS ansatz,
the only control parameter is the so-called bond dimension D

which controls entanglement in the system. To simulate highly
entangled states (larger bond dimensions), we implement U(1)
symmetry into the iPEPS ansatz [42]. We expect that a close
comparison of these different approaches could substantially
improve our understanding of the intermediate regime.

In our iPEPS simulation, we use a hysteresis effect to
accurately determine the quantum phase transition and its
nature [43]. We initialize the iPEPS ansatz with different types
of wave functions to find the lowest variational ground-state
energy. It is found that either the Néel or the stripe state
provides the lowest iPEPS energy throughout the coupling
parameter range. The energies of the Néel and the stripe states
cross each other at the critical point J2 � 0.549, where the
magnetic order parameters (defined later) remain nonzero in
the D → ∞ limit, suggesting a first-order phase transition
between the two magnetic order phases. We also observe that
the correlation length is unlikely to show a divergent behavior
around the transition point, further supporting a first-order
transition. In our DMRG calculation with the improved system
size for size-scaling analysis, we find that the Néel order could
persist to J2 � 0.545 and the stripe order increases sharply at
J2 � 0.55, showing a very narrow nonmagnetic regime, which
is quite smaller than the previous DMRG result of ∼0.03 [37].
The fast-shrinking intermediate regime, which is observed in
the finite-size scaling with increased system size in the DMRG
results, may suggest the vanishing nonmagnetic phase. The
nonmagnetic phase with a strong lattice nematicity in spin-1
models, which has been proposed for the nematic paramagnetic
phase of FeSe [26], might be stabilized by considering other
competing and/or frustrating interactions.

The paper is organized as follows. We briefly discuss the
numerical methods and define the order parameters used in
this paper in Sec. II. Our main numerical results are presented
in Sec. III. In Sec. III A, we compare the variational ground-
state energy obtained by the numerical methods and discuss the
iPEPS results by studying the variational energy of competitive
ordered states and the behavior of the spin correlation length.
In Sec. III B, we provide a systematic study of the nematic and
magnetic order parameters and also discuss the behavior of the
gap by using DMRG. Finally, we summarize our findings in
Sec. IV.

II. METHODS

A. iPEPS anstaz

The iPEPS ansatz provides an efficient variational method
to approximate the ground-state wave functions of the two-

(a) (b)

FIG. 1. Tensor-network representation of a U(1)-symmetric
iPEPS |ψ〉. (a) The iPEPS |ψ〉 is made of the U(1)-invariant tensors
{a,b,c,d} periodically repeated through the infinite square lattice.
(b) The scalar product 〈ψ |ψ〉 is calculated by using the so-called
environment tensors {E1, . . . ,E12} obtained by the corner transfer
matrix renormalization group approach. The bond dimensions D and
χ control the accuracy of the iPEPS anstaz.

dimensional spin systems in the thermodynamic limit [44].
The iPEPS is made of some building-block tensors which
are periodically repeated through the infinite two-dimensional
(2D) lattice. The tensors are connected to each other by the so-
called virtual bonds to construct a geometrical pattern (usually)
similar to the 2D lattice. The main idea is to variationally
minimize the expectation value of energy with respect to
the tensors (variational parameters) to eventually obtain an
approximation of the ground state. The bond dimension of
the virtual bonds denoted by D determines the number of
variational parameters, hence controlling the accuracy of the
iPEPS ansatz. It also represents the amount of entanglement,
so that by increasing it even “highly entangled states” can be
accurately approximated [45].

In this paper, as shown in Fig. 1(a), we use (up to) a
2 × 2 unit cell iPEPS constructed from five-rank independent
tensors {a,b,c,d}. We exploit U(1) symmetry, making all
tensors {a,b,c,d} be U(1) invariant, to reach the larger bond
dimensions up to D ∼ 9 [46]. We perform the optimization
procedure by using imaginary-time evolution in the class of
the iPEPS [47]

|ψi+1〉 = e−τH |ψi〉,
where |ψi+1〉 at each step i is represented by an iPEPS—τ

stands for imaginary time. A first-order Trotter-Suzuki de-
composition [48] is used to efficiently represent the imaginary
time-evolution operator e−τH . We also use the so-called full-
update scheme [20,49] to truncate the bond dimension: at each
step, an imaginary time-evolution operator increases the bond
dimension of virtual bonds, so a truncation procedure is needed
to prevent the exponential growth of the parameters. In the case
of the spin-1 J1-J2 SHM, we find that the computationally
cheaper scheme, i.e., the simple update [50–52], does not give
us accurate results, but its output could be used as a good initial
state for the full-update scheme.

A corner transfer matrix renormalization group (CTMRG)
approach [53–55] is used to evaluate the expectation values
of observables and also to obtain the so-called environment
tensors (needed within the optimization procedure). The accu-
racy of the CTMRG approach is controlled by the “bound-
ary” bond dimension of the environment tensors denoted
by χ [see Fig. 1(b)]. We always take χ large enough to
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diminish the error due to the environment approximation:
for the largest bond dimension D = 9, it approximately re-
quires χ ∼ 100 to make the relative error of the ground-state
energy negligible.

In order to recognize magnetically ordered phases, we
calculate the magnetic order parameter defined by

m = 1
4 (|〈Sa〉| + |〈Sb〉| + |〈Sc〉| + |〈Sd〉|),

where operator Sa is acting on tensor a (analogous for other
operators). Since the magnetically ordered states break the
SU(2) symmetry, so we expect to obtain a nonzero value of
m in the D → ∞ limit.

In addition, we use the texture of the local bond J1 energy to
detect the lattice symmetry breaking, as defined by �Tx(y) =
max(Ex(y)) − min(Ex(y)) and �Tx−y = max(Ey) − min(Ex).
The order of taking the maximum and the minimum is chosen to
enlarge the order parameters; although it does not significantly
affect the results. The symbols Ex and Ey stand for the local
bond energy in the unit cell for the horizontal and vertical
directions—note that for each virtual bond we might obtain
a different value of Ex,y . The order parameters �Tx−y and
�Tx respectively detect rotational and translational lattice
symmetry breaking. Similarly, a finite value of �Tx−y,x in
the D → ∞ limit implies a lattice symmetry breaking. By
using the order parameters {m,�Tx−y,x}, we could distinguish
between different types of ordered states, such as Néel, stripe,
VBS, and Haldane.

In order to estimate the variational energy and the order
parameters, we use a polynomial and a linear fit with bond
dimension 1/D, respectively. Our intuition to using such
extrapolations is that it provides an accurate estimation of
these quantities at point J2 = 0. The results could be compared
to those of a quantum Monte Carlo method [56], as at this
point there is no sign problem. For example, the relative error
of our estimation of the magnetic order parameter is of the
order �m = mD→∞−mMC

mMC
< 10−2 (see also Ref. [32] for similar

results).
Finally, we utilize the spin-spin correlation function Cs(r)

and the corresponding correlation length ξ s to distinguish a
quantum critical point (phase) from the ordered phases. They
are defined by

Cs(r) = 〈S(x,y) · S(x+r,y)〉 − 〈S(x,y)〉2,

log[Cs(r)] =
(−1

ξ s

)
r + const r � 1.

Usually, a finite bond dimension D (usually) induces a finite
correlation length [57,58], thus, to determine the true nature
of the phases, we need to study the correlation length in the
large-D limit. For a quantum critical point, by increasing D,
one expects the correlation length to grow rapidly. On the other
hand, for the ordered phases such as the Néel phase, it tends
to a finite value in the large-D limit.

B. DMRG method

We implement the DMRG method [59] for studying a
finite-size system. A rectangular cylinder (RC) geometry is
used in our calculation, which has the periodic boundary
conditions in the y direction and the open boundary conditions

in the x direction. We denote the cylinder as RCLy-Lx , where
Ly and Lx are the numbers of sites along the y direction
and the x direction, respectively. In order to obtain accurate
results on a wide cylinder with Ly up to 10, we use an
SU(2)-symmetric DMRG [60] by keeping as many as about
20 000 U(1)-equivalent states (6000 SU(2) optimal states). The
truncation error is less than 1 × 10−5.

In order to detect the magnetic orders, we calculate the
magnetic order parameter m2(q) = 1

N2
s

∑
i,j 〈Si · Sj 〉eiq·(ri−rj ),

where Ns is the summed total site number. For the Néel and
the stripe AFM order, the order parameter m2(q) shows the
peaks at q = (π,π ) and q = (0,π )/(π,0), which are denoted
as m2(π,π ) and m2(0,π )/(π,0). For the stripe order, since our
cylinder geometry breaks the lattice symmetry, the DMRG
calculation selects the momentum at q = (0,π ). To obtain
the order parameters with reduced boundary effects, we use
the spin correlation functions of the middle Ly × Ly sites on
the RCLy-2Ly cylinder.

We also define the bond nematic order σ1 as the difference
between the horizontal and vertical J1 bond energy, namely,
σ1 = 〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉 (i could be any lattice site in the
bulk of the cylinder like the translational symmetry shown
below; x̂ and ŷ are the unit vectors along the x and y directions,
respectively), to study the possible lattice rotational symmetry
breaking.

III. NUMERICAL RESULTS

A. iPEPS results

We start by comparing the ground-state energy obtained
by the iPEPS and finite-size DMRG calculations as shown
in Figs. 2(a) and 2(b). The benchmark results agree quite
well at the highly frustrated point J2 = 0.5: the extrapo-
lated values from a polynomial fit reveal that ED→∞

iPEPS �
−1.507 and E

Ly→∞
DMRG � −1.506. We find that the best-fitting

curves for the DMRG and the iPEPS energy are obtained
by the function f (x) = a + b

x2 + c
X4 , where x = 1

D
and 1

Ly
.

With growing J2, we observe that the energy monotonically
increases to J2 ∼ 0.55 through a sharp peak and then it
starts to decrease, which may suggest a first-order quantum
phase transition.

In Figs. 2(c) and 2(d), we present the iPEPS results of the
order parameters {m,�Tx,�Tx−y} to identify the nature of the
ground state at J2 = 0.5 and 0.6—since �Ty behaves similar
to �Tx in our results, we only show the latter. For J2 = 0.5, we
obtain a finite value of m ∼ 0.48 in the large-D limit, and its
configuration is compatible with an AFM Néel state (see the
inset, the graphical figure). The order parameters �Tx,�Tx−y

are strongly suppressed by increasing D, which agrees with a
Néel state. The Néel state is strongly established at this point:
even if we initialize the iPEPS with a random state or a stripe
state, the outcome of the iPEPS simulation always gives a Néel
state. Similarly, a stripe AFM state is established at J2 = 0.6
as observed by the pattern of the local magnetic order [see the
inset in Fig. 2(d)], the nonzero �Tx−y � 0.2, and the vanished
�Tx . Therefore, we establish the Néel phase and the stripe
phase on the small and large J2 sides, respectively.

Next, we focus on the intermediate regime for J2 ∼ 0.5-0.6.
We use the hysteresis analysis [61] (see Ref. [43]) to study
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(a) (b)

(c) (d)

FIG. 2. Comparing the ground-state energy obtained by iPEPS
and DMRG calculations. (a) The ground-state energy as a function
of 1/D (1/Ly) at J2 = 0.5 for iPEPS (DMRG). The DMRG data are
for Ly = 4, 6, and 8. The dashed lines represent polynomial fits up
to the fourth order. (b) The ground-state energy as a function of J2.
The sharp peak aroundJ2 ∼ 0.55 suggests a first-order quantum phase
transition. The order parameters {m,�Tx,�Tx−y} as a function of 1/D

for (c) J2 = 0.5 and (d) J2 = 0.6. They are respectively compatible
with a Néel order and a stripe AFM order. The insets (graphical
figures) show the pattern of the magnetization.

phase transitions in this regime. The main idea is to initialize
the iPEPS with different possible states and find whether the
energies cross each other. The crossing of energy is considered
as evidence of a quantum phase transition. Particularly, if in the
vicinity of this crossing the order parameters (strongly) remain
nonzero, this indicates a first-order phase transition. In addition
to the Néel and stripe states, we also use the columnar VBS
state and the Haldane state—both of them could be competitive
candidates for a paramagnetic intermediate phase [20,62]. The
Haldane state can be obtained by simply setting J2 = 0 and
J1y = 0 (the nearest-neighbor coupling along the y direction),
which results in a set of decoupled 1D Haldane chains. The
nonmagnetic intermediate phase found in the previous DMRG
calculation was proposed to be continuously connected to
the Haldane phase [37]. The columnar VBS state consists of
staggered singlet bonds (connecting all two adjacent spins)
along either the x direction or the y direction.

In Figs. 3(a)–3(c), we have plotted the iPEPS ground-state
energy initialized with different states at J2 = 0.545,0.548,
and 0.55. For J2 = 0.545, the Néel state gives the lowest
energy. By increasing J2, the energies get closer, and at J2 =
0.548, it is found that the Néel and stripe states have almost the
same energy—the Néel state still has slightly lower energy in
the large-D limit. Finally, at J2 = 0.55, the energy of the stripe
state obviously becomes the lowest one. Our iPEPS results

(a) (b)

(c) (d)

FIG. 3. A hysteresis analysis. Panels (a)–(c) are the iPEPS
ground-state energy initialized using the different states of Néel,
stripe, VBS, and Haldane at J2 = 0.545, 0.548, and 0.55. (d) The
magnetic order parameter m for J2 = 0.545 and 0.55. A nonzero
magnetic order parameter in the large-D limit implies a first-order
quantum phase transition. In the stripe (Néel) phase, due to the
hysteresis effect, the order parameter m with a Néel (stripe) pattern
remains metastable.

show that the energies of the Néel and stripe states cross each
other at J2 ∼ 0.549. In this region, the energy of the Haldane
state is always lower than the columnar VBS in the large-D
limit; however, the columnar VBS state and the Haldane state
never have energy lower than that of the magnetically ordered
states.

We study the magnetic order parameter m to investigate
the type of the quantum phase transition where the energies
cross. As shown in Fig. 3(d), m shows the linear decreasing
as a function of 1/D: we obtain quite large values of the
magnetization in the region J2 ∼ 0.545-0.55. For both J2 =
0.545 and 0.55, the Néel and the stripe orders show m = 0.39
and 0.43 in the D → ∞ limit. The nonzero magnetization
through the quantum phase transition implies a first-order
transition. Note that, due to the hysteresis effect, in the vicinity
of a first-order quantum phase transition, the order parameter
m with a Néel (stripe) pattern remains nonzero even in the
stripe (Néel) phase [61].

Furthermore, we study the correlation function as another
probe to investigate the quantum phase transition. In Fig. 4(a),
we demonstrate the log-log plot of the spin-spin correlation
function C(r) at J2 = 0.548 for different values of bond
dimension D. It seems that C(r) would have an exponential
falloff, as it weakly depends on the bond dimension D. To
get more insight, we compare the behavior of the correlation
length at J2 = 0.549, very close to the transition point, with the
one deep inside the Néel phase (at the point J2 = 0.50). For a
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FIG. 4. Spin correlation function close to the quantum phase
transition point. (a) Log-log plot of the spin-spin correlation function
versus the site distance r . (b) The correlation lengths as a function of
the bond dimension D for J2 = 0.5 and 0.548. The dashed lines are
power-law fits ξ s ∼ Dα .

continuous quantum phase transition, one expects ξ s to sharply
grow as the system gets close to the critical point. We plot ξ s

as a function of the bond dimension D for J2 = 0.50 and 0.549
in Fig. 4(b). The correlation length illustrates almost the same
behavior: it similarly grows as ξ s ∼ D0.35, which seems not
to support a divergent correlation length at the transition point
but could be consistent with a first-order transition.

B. DMRG results

Next, we demonstrate our DMRG results on the finite-Ly

cylinder system. First of all, we show the magnetic order
parameters m2(π,π ) and m2(0,π ) with Ly from 4 to 10 in
Figs. 5(a) and 5(b). Through appropriate finite-size scaling, we
find that the Néel order m2(π,π ) could persist to J2 � 0.545.
For J2 > 0.55, the stripe order m2(0,π ) develops very fast with
growing J2, as shown by J2 = 0.552 in Fig. 5(b). Compared
with the previous DMRG results based on the size scaling
up to the Ly = 8 torus [37], our analysis up to the Ly = 10
cylinder suggests a much smaller regime, 0.545 < J2 < 0.55,
for a possible intermediate phase. The log-log plots of m2

versus Ly in Figs. 5(c) and 5(d) also agree with the transition
between different orders at J2 � 0.55, where the two magnetic
orders change their behaviors dramatically. At J2 = 0.55, both
magnetic order parameters seem to follow a critical behavior.
Such a critical-like behavior of order parameters could be
consistent with a continuous phase transition at J2 � 0.55.
Here, we remark that the system size in our DMRG calculation
is too small for such a critical analysis. And previous studies
[36] and our results have already shown that the transition at
J2 � 0.55 is a first-order transition.

Since the different orders may break different lattice sym-
metries, here we study the lattice order by calculating the
nearest-neighbor bond energy 〈Si · Sj 〉. In Fig. 6(a), we show
the nearest-neighbor J1 bond energy for J2 = 0.548 on the
RC8-16 cylinder, which is in the possible intermediate regime.
We can see that although the open boundaries of the cylinder
break lattice translational symmetry along the x direction,
the bond energy in the bulk of the cylinder is quite uniform.
We also find that the bond energy difference on the open
edges decays quite fast to the uniform bulk value (not shown
here), indicating a very small boundary effect. Thus, the

FIG. 5. Finite-size scaling of magnetic order parameters on the
RCLy-2Ly cylinders with Ly = 4, 6, 8, and 10. Panels (a) and (b)
show the Néel and the stripe order parameters m2(π,π ) and m2(0,π )
versus 1/Ly , respectively. The dashed lines are the polynomial fits up
to the fourth order. Panels (c) and (d) show the corresponding log-log
plots versus Ly , where the dashed lines are guides to the eye.

lattice translational symmetry is preserved in the intermediate
regime, which is different from the DMRG results of the spin-1
J1-J2 honeycomb model, in which the system shows a strong
tendency to form a plaquette VBS in the intermediate phase
[63].

Although the bond energy for J2 = 0.548 in Fig. 6(a)
preserves the translational symmetry, it shows a strong bond
nematicity. To investigate the possibility of the lattice rotational
symmetry breaking, we study the bond nematic order σ1, which
is defined as σ1 = 〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉. For the Néel phase
with q = (π,π ), σ1 should be vanished; on the other hand, it
should be finite in the stripe phase with q = (0,π )/(π,0). In
Fig. 6(b), we show the finite-size scaling of σ1 versus 1/Ly .
We should emphasize that although the cylinder geometry has
already broken the lattice C4 rotational symmetry, the size
scaling has been shown, in different phases, to be an effective
way to determine whether the nematic order would be finite
or not in the large-size limit [30,31]. In the inset, we present
the nematic order σ1 versus different lengths Lx with fixed
Ly . We find that σ1 is almost invariant with growing Lx ,
which indicates small finite-size effects along the x direction.
Although the results shown in the inset are only for J2 = 0.548,
it holds for general J2. For J2 � 0.545, σ1 decays fast and tends
to vanish in the thermodynamic limit, which is consistent with
the Néel phase. For J2 � 0.55, σ1 goes to a finite value with
increasing Ly , which agrees with the stripe-order breaking
lattice C4 symmetry. In a small intermediate regime such
as J2 = 0.548, σ1 decreases with growing cylinder width;
however, because of the system size limit, our DMRG results
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FIG. 6. Lattice orders in the intermediate regime. (a) Nearest-
neighbor J1 bond energy for J2 = 0.548 on the RC8-16 cylinder.
Here we show the middle 8 × 8 sites. The numbers denote the J1

bond energy 〈Si · Sj 〉. (b) Finite-size scaling of the lattice nematic
order parameter σ1 for different J2 couplings. The inset shows the
weak dependence of σ1 on the cylinder length Lx .

cannot determine the nematic order in the thermodynamic
limit.

We also calculate the spin triplet gap of the system. The
triplet gap is defined as �E = E1 − E0, where E1 is the
lowest-energy state in the total spin S = 1 sector and E0 is
the ground-state energy in the S = 0 sector. We calculate
the gap by first obtaining the ground state on the RCLy-2Ly

cylinder and then sweeping the middle Ly × Ly sites in the
total spin S = 1 sector, avoiding the open-edge excitations
[64]. In Fig. 7(a), we demonstrate the triplet gap with growing
J2 on the RC4 and RC6 cylinders. The gap grows sharply
near J2 � 0.55 on the finite-size systems, which seems to
suggest a finite gap. Note that as the convergence challenge for
targeting the S = 1 sector, we calculate the gap on the Ly = 8
cylinder for only a few J2 points. In Fig. 7(b), we show the
finite-size scaling of the gap for different J2. For J2 = 0.2 and
0.6, the quickly decreasing gap is consistent with the magnetic

FIG. 7. Spin triplet gap on the finite-size systems. (a) The triplet
gap versus J2 on the Ly = 4 and 6 cylinders. (b) Finite-size scaling
of the triplet gap versus 1/Ly in the different phases. The spin gap is
obtained by sweeping the middle Ly × Ly sites in the spin-1 sector
based on the ground state of the RCLy-2Ly cylinder. For the data at
J2 = 0.55, the gap is fitted by using 1/Ly up to the second order.

orders spontaneously breaking the spin rotational symmetry.
For J2 = 0.55, the gap drops fast and seems to be consistent
with vanishing in the large-size limit. In our DMRG calculation
with the improved system size, the possible intermediate
regime shrinks rapidly compared with the previous DMRG
result [37], which suggests strong finite-size effects and may
imply a direct phase transition between the two magnetic order
phases that could be consistent with the vanished spin triplet
gap.

IV. SUMMARY AND DISCUSSION

We have used the combined numerical methods of the
iPEPS ansatz and the SU(2) DMRG to study the ground-
state phase diagram of the spin-1 J1-J2 Heisenberg model on
the square lattice. While the iPEPS ansatz probes the nature
of the quantum phase directly in the thermodynamic limit,
the DMRG calculation obtains accurate results on a cylinder
system with finite Ly . The final data of the iPEPS and DMRG
calculations are respectively obtained by using the finite-D and
finite-Ly scaling.

In our iPEPS simulation, we find that the lowest-energy
state transits from the Néel state to the stripe state directly
at J2 � 0.549. Even if the iPEPS ansatz is biased toward the
competitive paramagnetic states (Haldane and VBS), it could
not provide energy lower than that of the magnetically ordered
states. The correlation length near the transition appears to be
finite in the large-D limit, supporting a first-order transition
between the two magnetic order phases. In the finite-size
DMRG calculation, our finite-size scaling analysis up to Ly =
10 finds that the previously proposed intermediate regime [37]
shrinks rapidly with increasing Ly ; as such a dramatic change
implies the vanished intermediate phase. In our DMRG results,
the stripe order grows up sharply at J2 � 0.55, also supporting
a first-order transition consistent with the iPEPS result.

Our study opens up the door to reexamine the phase diagram
of the spin-1J1x-J1y-J2 Heisenberg model on the square lattice,
where J1x and J1y are the spacial anisotropic nearest-neighbor
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interactions. While the Schwinger-Boson mean-field theory
predicted a fluctuation-induced first-order transition between
the Néel phase and the stripe phase, which only terminates at a
tricritical point for a large anisotropy (J1y − J1x)/J1y , previous
DMRG results suggested a nonmagnetic phase emerging near
the transition line [37]. Our results have shown that the
nonmagnetic phase in the isotropic case (J1x = J1y) is unlikely,
thus it would be interesting to study whether the anisotropy
could enhance quantum fluctuations and open a paramagnetic
phase in the intermediate regime.
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