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Quadrupolar quantum criticality on a fractal
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We study the ground state ordering of quadrupolar ordered S = 1 magnets as a function of spin dilution
probability p on the triangular lattice. In sharp contrast to the ordering of S = 1/2 dipolar Néel magnets on
percolating clusters, we find that the quadrupolar magnets are quantum disordered at the percolation threshold,
p = p∗. Further we find that long-range quadrupolar order is present for all p < p∗ and vanishes first exactly at
p∗. Strong evidence for scaling behavior close to p∗ points to an unusual quantum criticality without fine tuning
that arises from an interplay of quantum fluctuations and randomness.
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I. INTRODUCTION

Quantum spin models with random vacancies provide a
rich playground for the study of the combined effects of
strong interactions and quenched disorder that are relevant to
experimental measurements on a number of doped magnetic
alloys [1]. Magnetic order in higher dimensions is generally
stable to a small concentration of vacancies. On the other hand,
if its moments are diluted beyond the percolation threshold,
the system breaks up into zero-dimensional clusters and hence
magnetic order must be lost. What is the nature of the magnetic
quantum phase transition as the dilution is varied?

The answer to this question is most thoroughly understood
for the randomly diluted transverse field Ising model [2]. The
expected ground state phase diagram [3], as a function of the
transverse field g and site dilution probability p, has three kinds
of quantum phase transitions, Fig. 1. For g > gC the transition
takes place at a value ofp smaller than the percolation threshold
p∗; the critical point is then described by the random transverse
field Ising model which possesses an infinite randomness fixed
point [4,5]; the physics of percolation however plays no role
(“R” in Fig. 1). For g < gC on the other hand percolating
clusters are magnetically ordered and the singularities at the
transition are determined by those of classical percolation (“P”
in Fig. 1) [6,7]. Finally exactly at g = gC a critical point is
obtained: Crucial to our discussion, quantum criticality at the
percolation threshold (“C” in Fig. 1) requires fine tuning of
the quantum fluctuations and hence “C” is not the generic
transition for Ising magnets on dilution.

Another family of quantum spin models where this ques-
tion has been addressed in detail are bipartite Néel ordered
Heisenberg models. For random depletion of the square lattice
it was found that percolating clusters have long range order
[7–9]; the destruction is thus akin to Fig. 1 “P.” The surprising
stability of the Néel order has been traced back to the effect
of uncompensated Berry phases which result in “orphan”
moments [10,11]. In the bilayer geometry, with bond dilution
that circumvents random Berry phases, a phase diagram similar
to Fig. 1 was found [12,13], with quantum phase transitions
corresponding to “P” [14] in some regions and corresponding
to “R” in others; in contrast to the Ising case the critical
phenomena here is controlled by a finite disorder fixed point

with conventional scaling [15]. The critical point “C” which
requires fine tuning has also been studied [16]. A variety of
phase diagrams and critical phenomena can be accessed by
dilution of Néel magnets in geometries different from the single
and bilayer [16,17].

The two examples of dipolar ordered magnets (Ising and
Heisenberg) make it clear that the details such as symmetry
of the order parameter and Berry phases play a crucial role in
determining how quantum magnetism is destroyed by random
dilution. In this work we address the dilution transition in a
different kind of system: quadrupolar ordered (also referred
to as spin nematic) magnets in their most common S =
1 realization [18]. The study of the quadrupolar phase of
S = 1 magnets has become increasingly popular motivated
by their possible sighting in some triangular lattice Ni based
magnets (see, e.g., Refs. [19–24]). Experimental studies of Zn
replacement of Ni in NiGa2S4 provide a direct experimental
motivation for the site diluted S = 1 magnets we study here
[25]. As we shall describe below, in contrast to what has been
observed for Néel order in S = 1/2 magnets and transverse
field Ising models, we find here that quadrupolar order vanishes
exactly at the percolation threshold without any fine tuning,
resulting in quantum critical behavior.

II. MODEL

Just as the bilinear Heisenberg model is the archetype for
realizing Néel order, the biquadratic Heisenberg interaction
is the archetypical model system that realizes quadrupolar
order in S = 1 magnets. We shall consider the following
Hamiltonian,

H = −
∑
〈ij〉

Jij (�Si · �Sj )2, (1)

where 〈ij 〉 denote nearest neighbors in the triangular lattice,
and �Si are the S = 1 Pauli matrices on the ith site. The model
possesses an explicit physical SO(3) internal spin symmetry.
We use standard uncorrelated random site and bond dilution:
For site dilution Jij = |J |rirj where ri = 0 with probability p

and ri = 1 with probability 1 − p. For bond dilution Jij =
|J |χij where χij = 0 with probability p and χij = 1 with
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FIG. 1. Cartoon T = 0 phase diagram for transverse field Ising
model in the dilution probability p and transverse field g plane.
For the largest cluster on a two-dimensional lattice occupied with
probability p, the transition from magnetic to nonmagnetic phases
can be of three types as illustrated for the Ising order parameter O vs
p: “R” the magnetic transition occurs before the percolation threshold
and is hence expected to be identical to the random transverse field
Ising model. “P” the percolation quantum transition where the magnet
remains ordered at the percolation threshold. “C” at which the order
parameter vanishes continuously at p∗ achieved by fine tuning g to a
special value gC. For the S = 1 quadrupolar magnets discussed here,
we present detailed evidence that the order vanishes like “C” but with
no fine tuning, leading to an unusual quantum criticality on a fractal
cluster.

probability 1 − p. While site dilution is closer to experimental
realizations such as Zn doped NiGa2S4, bond dilution provides
an alternate access to the percolation threshold.

Our numerical results were obtained using stochastic series
expansion [26] with an efficient sign-problem free algorithm
that has been described and tested previously [27]. We calculate
averages on finite size clusters at finite temperature T . To study
the quadrupolar order in the magnet we define the quadrupolar
order parameter through the equal time two point correlation
function of the quadrupolar order parameter.

O2
Q =

〈
1

N2
c

∑
a,i,j

〈
Q̂aa

i Q̂aa
j

〉〉
p

, (2)

where the quadrupolar order parameter is defined in terms of
the local S = 1 Pauli matrices as Q̂ab = Ŝa Ŝb+ŜbŜa

2 − 2
3δab, Nc

is the size of the cluster, 〈. . . 〉 is the quantum mechanical
average over the thermal density matrix, and 〈. . . 〉p is a
disorder average over realization of the ensemble of clusters.

III. NUMERICAL RESULTS

It is now well established that the model Eq. (1) without any
depletion (p = 0) has quadrupolar order with ferromagneti-
cally aligned directors [22,27,28] [i.e., O2

Q in Eq. (2) is finite
in the ground state in the thermodynamic limit]. We begin
our numerical study by asking the following question: As p

is increased does the quadrupolar order parameter eventually
vanish like “R,” “C,” or “P” (referring to Fig. 1). As we have
discussed in the introduction, generic expectations would be
either “R” or “P.”

*

*

FIG. 2. Thermodynamic extrapolation of the T = 0 quadrupolar
order parameter O2

Q at the percolation threshold. We present results
of simulations of the model Eq. (1) using both site diluted and bond
diluted triangular lattices at their respective p∗. For each case we have
carried out the averages for finite-size scaling in two ways: using an
ensemble with a fixed cluster of size Nc or an ensemble of the largest
max cluster on an L × L lattice. In all four cases, we findO2

Q vanishes
in the thermodynamic limit at p∗. The inset shows the same data on
a log-log scale.

In Fig. 2 we show extrapolations of the quadrupolar or-
der parameter to the thermodynamic limit at the percolation
threshold. We define two different ensembles for finite-size
scaling which allow us to approach the thermodynamic limit
in two different ways, with fixed cluster size Nc (on an infinite
underlying lattice) and the largest cluster on a finite L × L

lattices, following Ref. [8]. We have also studied both bond
and site dilution at the percolation threshold. Consistently
across all finite-size scaling schemes we find that the order
parameter vanishes at the percolation threshold. For a similar
scaling analysis for the Néel order, see Fig. 10 in Ref. [8] which
clearly shows the ordering of S = 1/2 Heisenberg model on
the percolating cluster in two dimensions. In contrast here
we find the quadrupolar order vanishes in the thermodynamic
limit. This data clearly eliminates the “P” possibility since this
requires the percolating clusters to be magnetically ordered.
We have taken great care to make sure our data is equilibrated
and in the limit of T = 0. The ground state limit requires
extraordinarily low temperatures because of the weak links
that connect percolating clusters. Details are provided in the
Appendix B.

Now that we have shown that the percolating clusters are
magnetically disordered, the generic expectation is that the
quadrupolar order vanishes before the percolation threshold
is reached at some p < p∗ as illustrated for “R” in Fig. 1.
To address this question quantitively we study a quadrupolar

“Binder” ratio RQ ≡ 〈O4
Q〉

〈O2
Q〉2 . RQ is expected to be monotoni-

cally decreasing with L in a quadrupolar ordered phase. When
graphed as a function of the tuning parameter p, RQ data
for different L are expected to cross at the phase transition
to a nonmagnetic phase. Our zero temperature data for the
case of site dilution in Fig. 3 clearly shows that the RQ

crosses and as the thermodynamic limit is reached the crossing
point approaches the percolation threshold p∗ = 0.5 with high
accuracy. This establishes that the quadrupolar order vanishes
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FIG. 3. Crossing of the Binder ratio RQ for the site diluted
triangular lattice, demonstrating that the order parameter vanishes
first at p = p∗ with high precision. The main panel shows a zoom in
of RQ as a function of the site occupation probability p close to the
percolation threshold. The crossings points between (L/2,L) pairs
are marked with errors. Inset shows the p(L) value at the crossings
of (L/2,L) pairs. The crossing data extrapolates accurately to the
percolation threshold of the site diluted triangular lattice, p∗ = 0.5
with a power law fit. This numerical evidence establishes that the
quadrupolar order parameter is finite for all p < p∗ and vanishes first
exactly at the percolation threshold as illustrated in case “M” in Fig. 1.

continuously as the percolation threshold is approached. This
allows us to eliminate the possibility “R,” in which the order
parameter vanishes before the percolation threshold is reached.
We hence conclude that the order parameter vanishes first
precisely at the percolation threshold p∗, as illustrated in the
cartoon “C” shown in Fig. 1. The vanishing of quadrupolar
order right at the percolation threshold raises the interesting
possibility that at p = p∗ the system is quantum critical and
the quadrupolar correlation possess scale invariance.

Random systems are well known to display a range of novel
scaling behavior. We present evidence however that our model
possesses conventional power law scaling. In order to test
the scaling hypothesis, we first study the dynamic scaling in
imaginary time of the order parameter at p = p∗. In Fig. 4
we show scaling collapse of the order parameter data at the
percolation threshold p = p∗ for the maximum sized cluster
on an L × L lattice as a function of the putative scaling variable
LzT . For a quantum critical system, we expect the scaling form
O2

Q = 1
L1+η F(LzT ). Note the absence of a tuning parameter

(we only require the system to be at the percolation threshold)
that would normally be expected for instance from previously
studied phase diagrams of quantum rotor models in Fig. 1
(the tuning parameter there is the choice of g = gC). We find
an excellent collapse with small finite size corrections to the
exponents.

An alternate test of scaling can be made by varying p away
from the percolation threshold. In Fig. 5 we study the scaling
of the order parameter with the deviation from the percolation
threshold p − p∗. We find excellent scaling behavior assum-
ing the simple scaling form O2

Q = 1
L1+η G((p − p∗)L1/ν). The

value of η so obtained is in excellent agreement with the
estimate obtained from the previous scaling analysis at the
percolation threshold Fig. 4.

FIG. 4. Finite temperature scaling collapse of the quadrupolar
order parameter at p = p∗. Here we are testing the quantum critical
scaling form O2

Q = 1
L1+η F(LzT ). The main panel shows the collapse

of the order parameter at p = p∗, using the values z = 1.987 and
η = 0.178 for the exponents. The inset illustrates the finite size
corrections and convergence of the critical exponents: The values
of z and η obtained from pair-wise collapse for (L,L/2) are graphed
as a function of the maximum temperature data used in the collapse.
The drifts on the largest system sizes at the smallest temperatures
are relatively small allowing us to make reliable estimates for the
exponents and their error windows: z = 2.1(2) and η = 0.17(2).

IV. DISCUSSION

We have presented extensive evidence that in two dimen-
sions quadrupolar order vanishes continuously as a function of
dilution right at the percolation threshold. At the percolation
threshold the systems shows conventional scaling behavior
symptomatic of a finite disorder fixed point. Our study is
an unusual example of quantum criticality at the percolation
threshold without any fine tuning. We contrast this with

*

FIG. 5. Scaling collapse of the order parameter as a function of
the deviation from the percolation threshold p − p∗. A good collapse
is found without any corrections to scaling with η = 0.196 and
ν = 0.977. We have collected this data assuming z = 2 and hence
fixed T = 1/L2. The critical exponents were used for this collapse.
From pair-wise collapse similar to Fig. 4 we find ν = 1.01(5) and
η = 0.18(1). The value obtained for η is consistent with the collapse
in Fig. 4.
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the generic phase diagram Fig. 1 where at the percolation
threshold, tuning of quantum fluctuations to a special value
if required to observe quantum criticality.

An interesting open question is whether the critical expo-
nents we have found are universal or can vary continuously
as nonuniversal properties of the magnet are varied at the
percolation threshold. Such varying exponents were reported
in a study of specific diluted dimerized S = 1/2 magnet [16].
Interestingly, the dynamic critical exponent z we find from
our scaling analysis is numerically somewhat close to df =
91/48 ≈ 1.8958 . . . (the fractal dimension of a percolating
cluster). A number of previous works have found or predicted
such scaling at the percolation threshold and our finding could
be consistent with such behavior [13,14,17], though numer-
ically z = 2 would also be consistent with our value within
errors. A complete theory of the unusual behavior and scaling
we have found here is an interesting direction for future work.
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APPENDIX A: EQUILIBRATION OF
DISORDERED CLUSTERS

In order to ensure the proper equilibration of our disordered
clusters, we have adopted the same equilibration and
measurement protocol as in Ref. [8]. For each disorder
realization we begin by performing Ne equilibration sweeps
at some large initial temperature (β ≈ 1, setting |J | = 1),
followed by Nm more measurements sweeps, then again Ne

equilibration sweeps, and finally Nm measurement sweeps.
Once this process is complete we perform β doubling on
our configurations (see Appendix B) and start the process
again. Thus for each disorder realization we have two separate
measurement cycles at many different values of β.

Separating out two distinct measurement segments allows
us to check the equilibration of our disordered clusters. In order
to achieve the best QMC averages with minimal computational
time, we have set Nm = 2Ne. We can then study the percent
difference of our two measurement segments (each averaged
over disorder realizations) as a function of Nm to determine its
optimal value, which is given in Fig. 6. We observe that at the
percolation threshold (where the clusters are most fragmented),
the difference between our first and second measurement
cycles becomes statistically insignificant when Nm ≈ 64. We
therefore cautiously set Nm = 200 throughout the course of
our numerical studies.

APPENDIX B: ZERO TEMPERATURE CONVERGENCE

The most computationally expensive component of our nu-
merical studies is to converge our configurations to the ground
state on disordered clusters. In order to achieve this, extremely
large values of the inverse temperature are needed (relative to
that of a clean lattice). Furthermore, the free energy landscape
of configurations is rugged, and thus quenching a randomly

FIG. 6. Here we show the percent difference of the quadrupolar
order parameter between the first and second measurement segments
(�O2

Q) as a function of β for several different values of Nm = 2Ne.
The difference between the two segments becomes statistically in-
significant over the whole temperature range nearNm = 64, indicating
that we have sufficiently equilibrated our configurations beyond this
number of sweeps. We therefore cautiously set Nm = 200 throughout
the course of our numerical studies.

initialized starting configuration to low temperature abruptly
may leave it stuck in a local minimum. In order to circumvent
this issue, and to efficiently reach the low temperatures required
with minimal equilibration, we implement the β doubling pro-
cedure [8]. The procedure works as follows: Given a disorder
realization, we begin the equilibration and measurement cycles
at some initial high temperature (β0 on the order of unity).
Configurations at high temperatures are relatively easy to
equilibrate, since there are few operators acting in the operator
string. After the equilibration and measurement cycles, the
value of β and the QMC configuration are both doubled.
In terms of the configuration, this corresponds to repeating
the operator sequence twice. This procedure gives another

FIG. 7. Here we show the zero temperature convergence of the
quadrupolar binder ratio near the site diluted percolation threshold
for max clusters on an L = 32 lattice. Each one of the β values was
obtained by the β doubling procedure explained in Appendix B. We
note that very large values of β are required to converge to the ground
state, especially near the percolation threshold (p∗ = 0.5) where we
observe quantum critical behavior.
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valid partition function configuration that is close to being
equilibrated at an inverse temperature 2β0. From here the equi-
libration and measurement sequence is again carried out. The
process is continued until the final target value βmax is reached.

In order to illustrate the convergence of our zero temperature
data, in Fig. 7 we show the binder ratio for max clusters on an

L = 32 lattice near the site percolation threshold for all of our β

doubled values. We see that very large values of β are required
to converge to the ground state. This is a reflection of the fact
that z is close to 2 at this disordered quantum critical point,
meaning that doubling the size of the lattice would require
quadrupling β to remain near the ground state.
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