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Hybridized magnonic-photonic systems are key components for future information processing technologies
such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum
(cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave
cavity over the full temperature range from 290 K to 30 mK. The cavity-magnon polaritons are studied from the
classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at
temperatures below 1 K. We compare the temperature dependence of the coupling strength geff (T ), describing
the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior
of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature
dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering
leading to a strong peak at 40 K. The linewidth κm decreases to 1.2 MHz at 30 mK, making this system suitable
as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in
excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room
temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated
as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single
measurement, thus simplifying investigations significantly.
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I. INTRODUCTION

Cavity-magnon polaritons are bosonic quasiparticles asso-
ciated with the hybridization of a photon and a magnon—
the quanta of a collective spin excitation—within a cavity
resonator [1]. This hybridization is harnessed for new tech-
nologies in data manipulation and processing and exploits
the individual advantages of each component. In the strong
coupling regime [2,3], this results in an anticrossing in the
dispersion spectrum. The size of the splitting depends on the
coupling strength geff (T ) as a measure for the frequency of
coherent information exchange. The controllability of quan-
tum coherent systems has already been demonstrated with
various resonant platforms [4–6]. Hybridized spin ensembles
and macroscopic systems such as superconducting qubits are
promising approaches for nonlinear devices. Long coherence
times of spin ensembles are combined with the tunability,
scalability, and strong coupling to external fields of super-
conducting quantum circuits [7–9]. In order to prevent rapid
decoherence to an open environment, both components are
individually strongly coupled to a cavity resonator’s photon
mode [7]. This resonator mediates the coupling by acting as
a quantum bus. It allows for control of coupling between a
spin ensemble and qubit, i.e., the memory and data processor,
respectively [7,8]. Recently, several experiments with magnons

*Klaeui@Uni-Mainz.de

coupled to photons in microwave resonators in the strong
coupling regime were conducted [10–13]. Additionally, strong
coupling between a qubit and a magnon in a three-dimensional
(3D) microwave resonator has already been demonstrated [14].
However, these experiments were either performed exclusively
at room or cryogenic temperature regimes only.

For a full picture of the behavior of all individual compo-
nents (magnon, cavity) and in particular the key parameters
coupling strength and local dissipation of the hybrid system
one needs to close the gap between the classical and quantum
regimes. The hybridized cavity photon-magnon states are char-
acterized by the total coupling strength as a measure for the in-
teraction geff (T ), which in order to reach the interesting strong
coupling regime has to greatly exceed both the magnonic and
the photon dissipation factors κm and κl [geff (T ) � κm,κl].
Thus, for the characterization of the temperature dependence
of the magnon polariton properties the study of the coupling
strength and the system’s dissipation factors is necessary.
Generally, for an N -particle system the coupling strength is
proportional to the square root of N [geff (T ) ∝ √

N ]. Hence, it
should scale accordingly to the change in N as the temperature
is changed [2,14,15]. However, it is unclear if this classical
behavior holds across the whole temperature range. As the
second governing factor that determines the coupling regime,
we need to ascertain the dissipation processes. For the dissi-
pation, different mechanisms can play a role and in particular
opposite temperature dependencies have been observed in the
high-temperature [16] and the low-temperature [14] regimes.
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This calls for a characterization across the whole temperature
range. Here, we present a temperature-dependent study of
magnon polaritons from 30 mK to 290 K. The microwave
photons confined in the standing wave mode of a 3D cavity
resonator are strongly coupled to magnons in a sphere made
from yttrium-iron-garnet (YIG). The cavity-magnon polaritons
are studied across classical to quantum transitions when the
thermal energy is less than a single microwave quanta at
the resonant transition frequency, i.e., temperatures below
1 K. Specifically, we determine the temperature dependence
of the coupling strength geff (T ) and the magnon dissipation
linewidth κm(T ), along with resonance fields, frequencies, and
cooperativity. Finally, we demonstrate that our measurement
scheme can be used to drastically simplify the analysis of
magnetic systems by allowing us to efficiently determine a
number of key parameters in a single measurement.

II. THEORETICAL BACKGROUND

In order to understand the properties of magnon polaritons
from a theoretical perspective, we start with a semiclassical
description of spin waves. Magnons as bosonic quasiparticles
describe collective excitations of spins in materials with a
finite magnetic moment [17,18]. This is reflected in the pre-
cessional motion of the magnetization vector M. Accordingly,
the time evolution is described by the Landau-Lifshitz-Gilbert
equation [19]: ∂M

∂t
= −γ M × Heff − αγ

Ms
M(M × Heff ), where

Heff = Hext + Hdemag + Hex is the effective magnetic field
acting on the spins of the sample. Hext describes the externally
applied static field, Hdemag the internal demagnetizing field,
and Hex the exchange field. The first term characterizes the
precession of the electronic spins with γ being the gyromag-
netic ratio. The second term refers to the intrinsic relaxation,
where α and Ms represent the Gilbert damping constant and
saturation magnetization, respectively. The sample is brought
to saturation by a correspondingly strong, uniform external
field. A radio-frequency magnetic field perpendicular to the
external magnetic fields acts as a small perturbation to the
spins. The lowest order of excitation is the mode of uniformal
precession around the axis of saturation magnetization, the
so-called Kittel mode [17]. With wave vector k = 0 this mode
is a special instance of a magnetostatic mode [20]. The relation
between an external, static field in one direction H = (0,0,Hz)
and frequency of resonant absorption ωm, with demagnetizing
factors Ni ,i ∈ (x,y,z) is given by [17]:

ωm = γ
√

[Hz + (Ny − Nz)Mz][Hz + (Nx − Nz)Mz]. (1)

For a sphere Nx = Ny = Nz = 4π
3 and the dispersion relation

reads ωm = γHz. Thus, by sweeping the external field, the
resonance frequency ωm of the Kittel mode can be tuned until
it matches the cavity photon frequency. Both the magnonic and
the photonic system can be expressed in terms of the harmonic
oscillator language [19] and we use the Tavis-Cummings
model for the description of the interaction [15]. It describes
the interaction between a light field, i.e., photons and a system
of N spins. Focusing on the magnon-photon system, we write:

HTC = h̄ωra
†a + h̄ωmm†m + h̄g0

√
2Ns(m†a + a†m), (2)

where we set geff = g0

√
2Ns for the experimentally measured

total coupling strength, with s = 5
2 the spin number of the Fe3+

ions in YIG. The first term in Eq. (2) refers to the photons, the
second to the magnons, and the third the interaction between
both. Each spin couples with a single spin coupling strength

g0 = η
γ

2

√
μ0h̄ωr

2Vmode
, (3)

where η is a factor describing the mode overlap of the photons
and magnons within the cavity, μ0 the vacuum permeability, ωr

the resonant frequency of the chosen cavity resonator mode,
Vmode the corresponding mode volume, and the factor of 2
refers to zero point energy of such a cavity [21]. In case of
perfect mode overlap, we could set η = 1.

In order to describe the anticrossing within our measured
microwave reflection or transmission spectra we utilize the
input-output formalism [22]. It results in complex scattering
ratios between the amount of reflected or transmitted amount
of energy (output) with respect to the incoming energy (input).
For the description of our system we consider a single mode
excited in the cavity resonator and that the magnons solely
interact with the photons in that specific cavity mode and
any direct interaction with the external bath is negligibly
small. The external bath is formed of discrete modes in the
microwave transmission line (feedline). Losses of the photon
field inside the cavity resonator κi and externally due to the
coupling to one feedline κe lead to a total cavity resonator
loss κl = κe + κi. With these considerations, following the
derivation of Ref. [22], we obtain for the reflection parameter
S11

S11(ω) = −1 + 2κe

i(ωr − ω) + κl + g2
eff

i(ωm−ω)+κm

, (4)

where κm refers to relaxation of the magnons. The quantity
ωr is the resonant frequency of the specific cavity resonator
mode and the precession frequency of the magnons in the Kittel
mode. Similarily, we obtain [11]

S21(ω) = 2
√

κe,1κe,2

i(ω − ωr ) − κe,1+κe,2+κi

2 + g2
eff

i(ω−ωm)− κm
2

, (5)

where the number subscripts in the external loss factors refer
to the losses at the two ports, the input and the output coupling
of the cavity to the feedline.

From the loss parameters, the internal and the external
quality factor Qi and Qe, respectively, can be calculated via
Q = ωr/2κ . The quality factor describes the ratio between
the stored and per cycle dissipated amount of energy [23]. In
order to calculate the average number of photons 〈n〉 within the
cavity resonator, the internal quality factor is defined as Qi =
ωr

〈Wr 〉
Ploss

, where 〈Wr〉 = 〈n〉 h̄ωr denotes the average energy
stored in the cavity resonator and Ploss the power lost due to
intracavity resonator losses. In combination with expressing
the amplitude of the reflected scattering parameter |S11|2 as
the ratio between backreflected power Po and input power Pi

and Ploss = Pi − Po, the average photon number is calculated

via 〈n〉 = 4Pi
h̄ω2

r

Q2
l

Qe
. Experimentally, the strong coupling, i.e.,

the cavity-magnon polariton, is observed in a level repulsion
between both coupled harmonic oscillators yielding an avoided
crossing (anticrossing) of the size 2geff (T ) in the spectrum [24].
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III. EXPERIMENTAL SETUP

For our experiment, we chose a sphere made of YIG
(Y3Fe5O12) with a diameter of d = 0.5 mm [25]. The sphere
has been polished with diamond to a surface quality of
0.05 μm. YIG is an insulating ferrimagnet with two anti-
ferromagnetically ordered ferromagnetic sublattices with 8
ions at the octahedral and 12 Fe3+ ions at the tetrahedral
sites with respect to the oxygen lattice sites. This results
in a net magnetization of 10 μB for the low-temperature
limit [26]. Its excellent magnetic properties such as very low
intrinsic damping factor of 10−3 to 10−5 [27–29] and high
spin density of 2.1 × 1022 μB cm−3 per unit cell [30] render
YIG a widely used material in strong coupling experiments
between microwave photons and magnons [10,11,31,32]. The
YIG sphere is glued to a ceramic (Berylliumoxide (BeO)) rod
along the [110] crystal direction. The saturation magnetization
Ms has been determined via Superconducting Quantum Inter-
ference Device (SQUID) measurements along the same axis
to μ0Ms = (282 ± 3) mT.

For our resonator we use a reentrant cavity resonator design
with an enhancement of the magnetic field density in the center,
see Fig. 1(a). This is realized by a cavity resonator with two
cylindrical posts in the cavity. Depending on the direction of
current of each post, the field between the posts results in
“bright” and “dark” modes [33]. In the “bright” mode the
post’s magnetic fields interfere constructively and enhance the
total magnetic field strength between the posts. Destructive
interference leads to a vanishing magnetic field in the “dark”
mode. Our cavity resonates at 5.5 GHz in the “dark” and at
6.5 GHz in the “bright” mode at room temperature. From
simulations we found that the next cavity mode resonates at
frequencies of 18 GHz, thus the coupling of microwave energy
into other cavity resonator modes than the bright one is strongly
suppressed.

Topview

Feedline B

Vector network analyzer
(VNA)

Port I Port II

Reflection (S ) Transmission(S )

30 mK - 290 K

In & Out (S ) Out (S )

Measure

[110]

Min.

Max. (b)(a)

(c)

5 mm

FIG. 1. Experimental setup and position of the YIG sphere in
cavity resonator. (a) Simulated magnetic field distribution of the
“bright” mode resulting in an enhancement between the posts at
resonance. (b) Schematics of the experimental setup. For reflection
and transmission measurements one or two loops with one winding
are used for inductively coupling the microwave signal from the VNA
into the resonator. The YIG sphere is placed in the magnetic field’s
antinode in the middle between the posts for enhanced coupling in the
bright mode. (c) Photograph of the assembled YIG-cavity resonator
system.

The microwave signal is provided by a vector net-
work analyzer (VNA) with an output power level of P =
0 dBm (1 mW) for all measurements from T = 5 K to T =
290 K. The total distance (cable length) from the VNA to the
sample and vice versa is ≈5 m with an attenuation of 3 dB/m.
Correspondingly, this yields an attenuation of (7.5 ± 0.5) dB
with taking uncertainties in the absolute cable length and the
changes due to different temperatures into account. From a cir-
cle fit to the data of the reflection cavity, the calculation for the
loaded quality factor Ql yields Ql = (1804 ± 13) and Qe =
(4074 ± 22) at T = 290 K [23]. The average photon number
in our cavity resonator 〈n〉 yields 〈n〉 = (3.23 ± 0.74) × 1012

with the attenuation given before due to the influcence of
the signal line at the cavity resonator. The feedline signal is
coupled into the cavity resonator via a single winded loop (cf.
Fig. 1). Rotation of the loop within the cavity resonator tunes
the coupling strength between feedline and cavity resonator.
Reflection and transmission cavities have been employed, see
Fig. 1. Specifically, we measured with two different cavities
from an identical design with the only difference being the
number of coupling loops. This means we performed reflection
measurements only with a single port (one coupling loop)
cavity resonator and transmission and reflection measurements
with a cavity resonator with two ports (two coupling loops).
Slight differences in production, mounting, or filling factors
cause different resonant fields for otherwise-identical con-
ditions (cf. Figs. 2 and 7). For the temperature-dependent
measurements from 5 K to 290 K, we use a 4He continuous
flow cryostat with a superconducting magnet at the bottom. The
millikelvin data (measured in reflection only) are obtained in a
dry dilution refrigerator setup with 110 dB attenuation on the
incoming line, a circulator in front of the sample, and cryogenic
amplifier at 4 K on the return line. The output power level of the
VNA was at −25 dBm, which results in a total power at the
coupler of −135 dBm. This corresponds to 〈n〉 < 1 photons
in the cavity resonator, thus we enter the single photon regime
where the quantum effects come into play [14]. We probe our
system using ferromagnetic resonance techniques with a VNA
and standard tools of network analysis. For data aquisition and
analysis we use the open-source toolbox qkit [34,35].

IV. DETERMINATION OF COUPLING STRENGTH geff (T )

The microwave scattering parameters of the magnon-
photon system were measured from 290 K down to 30 mK.
For each temperature we obtained a spectrum such as shown
in Fig. 2 for T = 50 K. In a first step, we fit the dispersion
of the coupled branches from cavity resonator and magnons in
Kittel mode (	k = 0) in the YIG sphere and extract the coupling
strength geff (T ) as function of temperature.

By means of Eq. (3), we first compare the theoretical
expectation of the single spin coupling strength gth

0 with our
experimental findings for the coupling strength at room tem-
perature. Numerical simulations yielded a cavity mode volume
Vmode = 9.53 × 10−7 m3, leading to gth

0 /2π = 18.82 mHz for
η = 1 [36]. Computing the field gradient over the volume of
the YIG sphere we obtain an estimated value of η = 0.58
[36]. Thus, we expect g0/2π = 10.92 mHz and an effective
coupling strength geff = gth

√
2Ns. A YIG sphere of a radius

of r = (0.25 ± 0.01) mm taking deviations into account,

184420-3



ISABELLA BOVENTER et al. PHYSICAL REVIEW B 97, 184420 (2018)

FIG. 2. Transmission (S21) measurement of the dispersion for the
cavity-magnon polariton for T = 50 K. Resonant coupling appears
at 227 mT with a coupling strength of geff (T )/2π = 29 MHz. The
raw data (not shown) had magnetic field independent oscillations
due to standing waves in the cables; for analysis of the data they
were removed as described in the Appendix. As an example, the
inset shows the background-corrected resonant linear amplitudes of
the coupled system with a fit of Eq. (5) to the data. The red line
shows the background corrected data and the other one (dotted) the
corresponding fit. The dotted lines in the main plot illustrate the
uncoupled dispersion of the cavity (field independent) and Kittel
magnon (field dependent).

yields N = (1.374 ± 0.15) × 1018 spins, thus we compute
geff/2π = (28.77 ± 3.29) MHz as an upper value. In the
main plot of Fig. 3, we show for geff (T ) along with a measure-
ment of the saturation magnetization Ms of our YIG sphere.
We identify two regimes for the temperature dependence of
geff (T ): T < 100 K and T � 100 K.

We first consider the T � 100 K regime. There, both the
coupling strength geff (T ) and the saturation magnetization
Ms(T ) increase in a similar fashion. Ms(T ) is proportional
to the number of spins N and changes with temperature

according to Bloch’s T 3/2 law; Ms(T ) = Ms(0)[1 − ( T
Tc

)
3
2 ],

where Ms(0) = ρ

μ0
μB with a net spin density ρ [38]. We can

link the saturation magnetization Ms(T ) ∝ N and the coupling
strength geff (T ) using geff (T ) ∝ √

N [Eq. (3)]. Thus, valuable
insight on the participating spins is provided by the relation
geff (T )/

√
Ms(T ). If the change in N would be the dominant

contribution to the changes of geff (T ) (shown in Fig. 9), it
should not change its value significantly. In principle, changes
in physical properties besides Ms , such as ωr or γ , could
account for the observed temperature dependence of geff (T )
as well. The resonance frequency of the bright mode ωr/2π

changes less than 0.5% [cf. Fig. 6(b)]. The gyromagnetic ratio
γ calculated from the ratio between resonance frequency ωm

and field Hres changes only by at most 4% [cf. Fig. 6(b)]
over the whole temperature range due to the change in the
resonance field [17]. However, Ms(T ) changes by ≈27%,
and we conclude that N has the strongest contribution on
the temperature behavior of geff (T ) above 100 K. The dotted

FIG. 3. Temperature dependence of the saturation magnetization
μ0Ms (SQUID measurements) and the effective coupling strength
geff (T ) of the Kittel mode measured with the single port cavity
resonator (reflection). The dotted lines in the main figure correspond
to fits of the data to Bloch’s T 3/2 law. The left inset shows a zoom into
the region around resonance of the magnon polariton for a temperature
of 100 K. The dotted lines indicate additional couplings to parasitic
spin wave modes close to the Kittel mode. For lower temperatures the
fields for the couplings start overlapping and the coupling strength of
the Kittel mode decreases. The left shows exemplarily a value of the
subKelvin temperature measurement which is consistent to the higher
temperature data (T � 5 K). The millikelvin regime is discussed in
detail in a separate publication [37].

lines in Fig. 3 show a fit of the data to Bloch’s law in

first order, which reads to Ms(T ) = Ms(0)[1 − ( T
Tc

)
β· 3

2 ] and

geff (T ) = geff (0)
√

[1 − ( T
Tc

)
β· 3

2 ], where β is a fitting param-
eter, respectively. This behavior for geff (T ) is only valid for
T � 100 K, and thus lower-temperature data were not in-
cluded for the fit. Fitting geff (T ) yields geff (0)/2π = (30.65 ±
0.5) MHz, Tc = (579 ± 43) K, and β = 1.06 ± 0.15. Ac-
cordingly, the results for Ms(T ) read μ0Ms(0) = (282 ±
3) mT, Tc = (566 ± 43) K and β = (1.30 ± 0.15). From
the fit we obtain an upper value for geff (T )/2π = 30.65 MHz
for decreasing temperatures, which is slightly higher than
the calculated value of 28.77 MHz. From the spin net den-
sity from the literature, 2.1 × 1022 μB cm−3 [30], we cal-
culate for Ms(T = 0 K) = (194 ± 32) kA

m
[μ0Ms = (245 ±

40) mT]. Within the errror bars this is in line with the fit-
ted value determined from SQUID measurements of Ms =
(282 ± 3) mT, although the absolute value is higher than
the value reported in the literature [38]. This difference can
be caused by an uncertainty in N . Assuming a deviation
of the sphere’s radius of 0.01 mm, the uncertainty of μ0Ms

is ±40 mT. Therefore, only by taking such deviations into
account, the measured and calculated value are in accordance.
Additionally, an inhomogeneous magnetic field between the
two posts of our specific cavity design affects the measured
coupling strength. In our design, the maximal field is located
close to the posts and decreases to the central position between
them where the YIG sphere is placed. Field variations over the
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sphere and some misalignment with respect to the center lead
to changes in η.

While geff (T ) for T > 100 K is well correlated to the
temperature dependence of the magnetization, for T < 100 K
the coupling strength geff (T ) behavior is different. As shown in
the left inset of Fig. 3 additional anticrossings of much smaller
coupling strength appear at lower values of the applied external
field but still rather close to the resonance field of the Kittel
mode. For even lower temperatures, the resonant fields for
both Kittel mode and higher-order modes shift to lower values
(for details see the Appendix). However, the resonant field of
the Kittel mode shifts more strongly [17,39]. Eventually, the
higher-order modes become degenerate with the Kittel mode.
In this case, the probability for cavity photons to couple to more
modes besides the Kittel mode is increased. As the number of
total spins N is conserved, we observe a decrease in the cou-
pling strength geff (T ) measured in the anticrossing of the Kittel
mode, see Fig. 3. When the temperature is lowered further, the
coupling strength geff (T ) starts increasing towards the satura-
tion value. As shown in the top right inset of Fig. 3, we measure
geff (T )/2π = 29.5 MHz at T = 30 mK, which is in the same
range as both the calculated gth

0 and the fitted geff (0) values.

V. DETERMINATION OF MAGNON LINEWIDTH κm(T )

The cavity-magnon polariton is the associated quasiparticle
of a coherent interaction between strongly coupled magnons
and (cavity resonator) photons. Losses from each subsystem
could in principle affect the magnon polariton and have to
be taken into account. Thus, for a full temperature-dependent
picture of the magnon polariton it is not sufficient to examine
the temperature evolution of the coupling strength only but to
study the temperature dependence of the system’s dissipation
and specifically the magnon linewidth κm(T ), as well. This
combination of ascertaining both coupling and dissipative
losses allows then for the key insights of the coupling regime
over the full temperature range. Accordingly, we can then
quantify our coupling regime by including dissipation from
both the magnons and the resonator by the dimensionless

cooperativity parameter C = g2
eff (T )

κm(T )κl (T ) . The strong coupling
regime is reached for values of C greater than 1 [22].

The magnon linewidth is comprised of contributions of
homogeneous and inhomogenous processes from two magnon
scattering which results in κm/2π = α ω

2π
+ �ω

2π
, where α

denotes the phenomenological Gilbert damping parameter
with a linear dependence on the frequency ω and �ω/2π

the contribution from inhomogenous processes. If multiple
scattering processes are present at the same time, then �ω

denotes the sum of single linewidth contributions and �ω =∑
i �ωi . For YIG, the Gilbert damping parameter with a very

low value of α can increase slightly as a function of temperature
[31]. However, the observed values for the linewidth decrease
towards higher temperatures, and contributions from scatter-
ing processes are dominanting the temperature dependence
[32,40]. In general, spin-spin interaction processes can lead to
a redistribution of the energy in the magnon mode spectrum.
Among them, one distinguishes between intrinsic and extrinsic
processes. The first occur in perfect crystal structures and the
latter describe processes due to scattering off defects [41].
In the presence of inhomogeneities from geometrical imper-

fections and impurities within the magnonic specimen [42],
surface pit and rare-earth impurity scattering, respectively,
have to be taken into account.

The intrinsic relaxation of the Kittel mode is described
by the Kasuya-Le Craw mechanism and is for highly pure
YIG crystals typically in the order of 0.01 mT or a frequency
linewidth of 0.28 MHz/2π [41,43]. In principle, the two
beforehand mentioned extrinsic processes could make sig-
nificant contributions: First, geometric imperfections such as
pores or rough surfaces result in spatially nonuniform samples
and thus different conditions for ferromagnetic resonance
employed in the Kittel mode. This broadens the linewidth as
the resonance frequency is nonuniform throughout the sample.
Second, scattering at rare-earth impurity ions with a strong
spin-orbit coupling within the YIG specimen can contribute
strongly to the linewidth as well. The linewidth peaks when
the temperature-dependent energy splitting of the ion’s ground-
state multiplet approaches the microwave photon energy in the
chosen cavity resonator mode [44].

We extract the values for the magnon linewidth κm from
a fit of our background corrected reflection (transmission)
amplitude data taken with a cavity resonator with two ports
to input-output theory via Eqs. (4) and (5), respectively.
Further information on our background correction scheme
and the fitting procedure can be found in the Appendix. The
temperature dependence of the linewidth κm/2π of the Kittel
mode at resonance is plotted in Fig. 4, where the circles
(red) refer to the reflection and the triangles (blue) to the
transmission data, respectively. Within the error bars, the
temperature dependence for the reflection and transmission
measurements reveal the same temperature dependence of
the linewidth κm/2π , as has been expected. For subkelvin
temperatures (measured in reflection only), as shown in the
inset of Fig. 4, the measured linewidth κm/2π = 1.2 MHz
is in good agreement with the literature value as reported
in Ref. [11]. The details of the behavior in the subkelvin
temperature regime are beyond the scope of this work and will
be the topic of a future study [37]. Starting from the lowest
temperature, we observe an increase of the magnon linewidth
with increasing temperature. As shown in Fig. 4 one dominant
peak of the magnon linewidth appears near 40 K. Additionally,
the curve’s modeling yields another, relatively broad, peaklike
structure around 100 K. Similar temperature behavior has been
observed for liquid phase epitaxy (LPE)-grown YIG films with
x-band ferromagnetic resonance (FMR) measurements [45], in
line with our measurement with a bulk YIG sample.

To understand this behavior, following Refs. [39,46], scat-
tering due to rough surface polish is modeled by small semi-
spherical pits with radii of 2/3 of the surface quality of the
polishing material. The expected linewidth is proportional to
the saturation magnetization, thus the same temperature depen-
dence is expected with the largest contribution to the linewidth
occurring at the lowest temperatures. This is expressed by

�ωsurface(T )

2π
∝ γ

Rpit

Rsample
4πMs(T ), (6)

where Rpit denotes the average radius of the surface pits and
Rsample the radius of the used spherical sample. An estimate
using Eq. (6) yields a contribution to the linewidth in the order
of 2π × 1 MHz. This background contribution is too small for
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FIG. 4. Magnon linewidth κm as derived from a fit to input-output
theory via Eqs. (4) and (5) for reflection (red, circles) and transmission
(blue, triangles) data (measured with our cavity resonator equipped
with two ports). The error bars are obtained from the fit’s covariance
matrix. Higher error bars for the transmission data result from the
influence of additional avoided crossings in the vicinity of the main
splitting. The data taken in the millikelvin setup with −135 dBm input
power at the inductive loop coupler of the cavity resonator is shown
on the left side of the figure. We observe a total change of the magnon
linewidth by a factor of six in the range between 30 mK to 290 K with
a peak around 40 K. This behavior is goverened by impurity rare-earth
ion relaxation [16,32,47,48]. The green curve models the temperature
dependence, taking a possible contribution from rare-earth impurity
scattering at different temperatures into account. The sum of them
results in the black line (stars). The millikelvin data are analyzed
closer in a separate publication [37].

the observed linewidth and cannot explain the observed peaks.
The relaxation due to rare-earth impurities dominates and leads
to the observed peaking at low temperatures. The temperature
dependence of this linewidth is described by:

�ωREI(T )

2π
∝ ω

eh̄�0/kBT

[eh̄�0/kBT + 1]2

τimp

τ 2
imp + ω2

m

, (7)

where h̄�0/kB denotes the temperature where the peak of
the magnon linewidth based on rare-earth impurity scattering
is measured and τimp represents the impurity relaxation rate.
Depending on the specific rare-earth element, peaks occur up
to temperatures of 150 K [16,19]. In our experiment, we find
one peaking at 43 K and a broad small increase around 100 K.
An exact determination of the specific rare-earth elements
requires further investigations which is beyond the scope of
this paper. In Fig. 4, we used this relation to model the
temperature behavior of our magnon linewidth (green curve)
with the dominant contribution appearing at h̄�0/kB = 43 K
with a linewidth of 7 MHz. Another second contribution
was estimated to be at 90 K with a linewidth of 3.5 MHz.
The relaxation rate of the spins to the lattice is modeled
with τimp = ζT 2, with ζ/2π= 0.2 × 10−3 GHz/K2 for the
first and ζ/2π= 29 × 10−3 GHz/K2 for the second peak,

FIG. 5. Temperature dependence of the cooperativity C (squares)
and the total cavity resonator losses κl(T ) (triangles) from the
measurement with the single port cavity resonator. The cooperativity
decreases with decreasing temperature but is much larger than one
for all temperatures. In contrast to the magnon linewidth κm the total
cavity resonator loss κl does not change significantly as a function of
temperature. Thus, the temperature dependence of the cooperativity
inversely reflects the changes of the magnon linewidth.

respectively. Approaching room temperature the linewidth
decreases to a value of κm/2π = 1.2 MHz at room temper-
ature. This linewidth agrees with previous values reported in
literature [10].

VI. CALCULATION OF COOPERATIVITY C(T )

Finally, we calculate the electromagnonic cooperativity
C, as displayed in Fig. 5. The cooperativity is much larger
than one and it shows, that the coupling strength exceeds
the losses for all temperatures in this study. Over the entire
temperature regime the cooperativity exceeds 20, with values
beyond 100 in the millikelvin regime as well as at room
temperature. Accordingly, such large cooperativity values over
the entire temperature range firmly place our hybrid system in
the strong coupling regime, where coherent dynamics between
both subsystems occur. Robust coherence is one of the key
properties for future applications in information technology
[49]. Thus, such a hybrid system can be a suitable candidate
since it can combine the advantages of each subsystem for
further use.

VII. SUMMARY

To conclude, in order to connect the cryogenic and room
temperature regimes we performed temperature dependent
measurements on a hybridized microwave cavity magnon
system. At resonance, a quasiparticle, the cavity-magnon
polariton is formed and observed as an anticrossing in the
spectrum. Correspondingly, we studied the temperature de-
pendence of the coupling strength geff (T ) and the linewidth
κm and linked both quantities via the cooperativity C showing
strong coupling prevails for all temperatures. For temperatures
T > 100 K the coupling strength is governed by Bloch’s
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law due to the scaling with the number of spins. For lower
temperatures an additional coupling of the microwave photons
to other modes in the sphere leads to a decrease in geff (T ),
because the total number of spins is conserved. We find that
for such coupled system, the temperature dependence of the
linewidth κm is dominated by rare-earth impurity scattering.
These measurements show the coupling and dissipation of
cavity-magnon polaritons, for instance, at transitions between
the single photon and the classical regime. In particular, we
show that spectroscopy on strongly coupled magnon-photon
systems is a versatile tool for spin material studies over large
temperature ranges, providing key parameters with the same
measurement.
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APPENDIX

1. Methods

The coupling strength geff (T ) and the magnon linewidth κm

were extracted from fitting our data to the complex scattering
parameters for reflection and transmission [Eqs. (4) and (5)].
The following steps are done to remove background resonances
before the fitting.

(1) The cables from the VNA to the cavity-YIG system
positioned at the end of the measurement setup contribute to
the measured signal with a constant, i.e., field-independent,
background in the form of a standing wave. These signals
reduce the signal-to-noise ratio such that, for instance, at 5 K
the signal is at the noise level for a length 5 m of the signal
line (7.5 dB). Therefore, the data needs to be corrected for that
field modulation. We perform a weighted average over all field
points for each entry in the frequency window. By assigning
zero weight to a selected area around both the cavity and the
Kittel magnon dispersions the background is averaged over
all fields. That average is then removed from the scattering
amplitude.

(2) Secondly, we perform a fit based on the standard least-
squares algorithm to the avoided crossing in our data by solving
the 2 × 2 matrix of the energy eigenmodes of a system of two
coupled harmonic oscillators at resonance. Further, we do a
circle fit to the cavity far away from resonance [34]. This yields
the coupling strength geff (T ), the resonance frequency ωr of
the cavity resonator, the ferromagnetic resonance frequency of
the magnon ωm and the quality factors Qi and Qe, i.e. loss
parameters of the cavity, respectively. The results from these
fits are used as input parameters for the final fit of the scattering
function.

(3) Finally, the scattering amplitudes are fit according to
equations 4 and 5 to the background corrected data and the
relevant parameters are extracted. This fit is based on the least-
squares alogrithm as well.

2. Temperature dependence of other quantities affecting the
coupling strength geff (T )

In order to explain the temperature dependence of the
coupling strength by the change in the spin number N and
thus the saturation magnetization, the contribution of the other
quantities in the expression for geff (T ) (Eq. 3) has to be
considered. In Fig. 6, the temperature dependent changes of
the applied external field Hext at resonance [Fig. 6(a)], the
gyromagnetic ratio γ [Fig. 6(b)] and the resonance frequency
of the cavity resonatorωr [Fig. 6(c)] are displayed. The external
fieldHext changes by 4%, the value for the gyromagnetic ratioγ

by 4% following the changes in the field values and resonance
frequency of the cavity resonator ωr by 0.5%, respectively.
These changes are alltogether much smaller than the absolute
change in the coupling strength from room temperature to the
low temperature regime. Therefore, the change in the coupling

FIG. 6. (a) Temperature dependence of the applied static field in
the resonance condition for the Kittel mode. The external static field
values for resonant coupling increases by 4% from 5 to 290 K. The
increase is attributed to the decrease of the saturation magnetization
Ms as a function of temperature (cf. Fig. 3) since demagnetizing fields
have to be taken into account, as well. Thus, Hres = Hext − Hdemag.
The error bars are in the order of 0.1 mT, and are covered by the data
symbols. (b) Temperature dependence of the gyromagnetic ratio. The
values are calculated from ωres = γ · Hext. It decreases towards higher
temperatures due to the changes in Hdemag. The total decrease is less
than 4% and thus small compared to the temperature dependence
of the coupling strength geff (T ). (c) Temperature dependence of the
cavity frequency. It decreases towards higher temperatures. The total
decrease is less than 0.4% and thus very small compared to the
temperature dependence of the coupling strength g(T ). The error bars
are of the order of 0.1 mT.
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FIG. 7. Typical field dependence of the linewidth parameters at
T = 50 K. The datapoints are taken from a reflection measurement.
The red curve (circles) shows values for the magnon linewidth κm,
the blue curve (squares) the linewidth related to the resonator, labeled
with κl , and the green one (stars), labeled with κe, the field dependence
of the coupling of the resonator to the microwave feedline. Since the
magnon linewidth is dominated by scattering within the sphere, it
does not depend on the resonance condition. Indeed, both κm and κe

are constant within the error bars for the displayed range of applied
external field. Approaching resonance opens a new loss channel due to
the energy transfer to the magnons in the YIG sphere. The total cavity
losses κl increase by 50% when reaching the resonance condition.

strength is governed by the variation of the participating spin
number N for the particular magnetostatic mode.

3. Field dependence of the magnon linewidth κm/2π (T )
close to resonance

When the Kittel magnons are on resonance with the cavity,
energy is transferred to the Kittel magnons. Thus, approaching
the resonance condition for the magnon polariton, ωr ≡ ωm,
adds loss to the cavity. Accordingly, the total losses of the
cavity resonator increases to a maximum value at resonance.
As discussed in the main part, the magnonic losses are due
to internal scattering processes. Likewise the external losses
from the feedline coupling do not depend on the resonance
condition, as shown in Fig. 7.

4. Evolution of difference between fields of main and supressed
avoided crossings

The data shown in Fig. 8 reveals how the difference in
applied external field between the Kittel mode anticrossing
and the most prominent, supressed one, decreases for lower
temperatures. As mentioned in the main text, this leads to
additional coupling to other magnetostatic modes in the YIG
sphere and decreases the coupling strength value for a coupling
to the Kittel mode.

FIG. 8. Difference between the applied field for resonant cou-
pling of the cavity photon to the Kittel mode (HKittel

res ) and to other
magnetostatic modes (HMS

res.) in the specimen, respectively. As shown
exemplary in the left inset of Fig. 3, the difference is estimated from the
distance of the resonant field for coupling to the Kittel mode to the field
for the additional coupling to other magnetostatic modes. For lower
temperatures, the probability for parasitic coupling to other modes
increases and the coupling strength of the Kittel mode is lowered
(cf. Fig. 3). Above 200 K, the distance is large and thus the parasitic
coupling rate decreases below the noise level. For temperatures below
50 K, the resonance frequencies are almost identical. At the same time,
the overall signal-to-noise ratio is reduced and the field difference
cannot be resolved.

5. Temperature evolution of the relative quantity geff (T )/
√

Ms

The following figure, Fig. 9, shows, that the ratio between
the temperature dependent change in the coupling strength and
the square root of the saturation magnetization, as Ms ∝ N

does not change significantly within the error bars. If another
quantity would have a comparable influence on the change in

FIG. 9. Ratio between the coupling strengthgeff (T ) and the square
root of the magnetization Ms . Over the whole temperature range the
value of that relative quantity changes by 6%.
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the coupling strength, the value of this relative quantity would
change more. Thus, together with comparing the absolute
changes of all quantities (Figs. 3 and 6(a-c)] contributing to
the coupling strength (Eq. 3), the change in the spin number N

as a function of temperature can be considered as the dominant
one, in general. However, for temperatures lower than 100 K,
additional coupling besides the Kittel mode, decreases the
coupling strength.
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