# Magnetic ground state of the multiferroic hexagonal LuFeO<sub>3</sub>

Pittala Suresh,<sup>1</sup> K. Vijaya Laxmi,<sup>1</sup> A. K. Bera,<sup>2</sup> S. M. Yusuf,<sup>2,3</sup> Bheema Lingam Chittari,<sup>4</sup> Jeil Jung,<sup>4</sup> and P. S. Anil Kumar<sup>1,\*</sup>

<sup>1</sup>Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India

<sup>2</sup>Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India

<sup>3</sup>Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

<sup>4</sup>Department of Physics, University of Seoul, Seoul 02504, Korea

(Received 27 November 2017; revised manuscript received 15 March 2018; published 15 May 2018)

The structural, electric, and magnetic properties of bulk hexagonal LuFeO<sub>3</sub> are investigated. Single phase hexagonal LuFeO<sub>3</sub> has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with  $P6_3cm$  space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFeO<sub>3</sub> persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature  $(T_N) \sim 130$  K. Analysis of magnetic neutron-diffraction patterns reveals an in-plane (ab-plane) 120° antiferromagnetic structure, characterized by a propagation vector k = (000) with an ordered moment of 2.84  $\mu_{\rm B}/{\rm Fe^{3+}}$  at 6 K. The 120° antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U)and Hund's parameter  $(J_H)$  on Fe atoms reproduced the neutron-diffraction  $\Gamma_1$  spin pattern among the Fe atoms. P-E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization  $P_{\rm r} \sim 0.18 \,\mu{\rm C/cm^2}$ . A clear anomaly in the dielectric data is observed at  $\sim T_{\rm N}$  revealing the presence of magnetoelectric coupling. A change in the lattice constants at  $T_N$  has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFeO3.

DOI: 10.1103/PhysRevB.97.184419

## I. INTRODUCTION

Multiferroic materials are of great interest in recent times due to their technological and scientific importance. They are fascinating due to the coexistence of electric and magnetic orders, simultaneously. The mutual control of charge and spin orders leads to a new effect called magnetoelectric (ME) coupling, due to which these materials are very promising candidates for applications in memory devices and sensors [1–3]. However, it is very rare to find multiferroics having a finite ME coupling at room temperature (RT). To date, BiFeO<sub>3</sub> (BFO) perhaps is the only RT multiferroic having coupling between spin and charge orders. However, the ME effect is relatively weak in this material due to its cycloid spin structure [4]. Thus, the quest is immense in the research community for (i) finding new multiferroic compounds and (ii) improving the ME coupling coefficient of the existing multiferroics at RT. Other than BFO, rare-earth manganites,  $RMnO_3$  (R = La-Lu, Y, or Sc), are the most meticulously studied multiferroic systems [5]. RMnO<sub>3</sub> compounds can have favorable crystallization in both orthorhombic and hexagonal phases depending on the choice of the rare-earth element. The orthorhombic structure (o-RMnO<sub>3</sub>) with Pbnm symmetry is possible for large R ionic radius (R = La-Dy) while the hexagonal structure  $(h-RMnO_3)$  with  $P6_3cm$  symmetry is possible

for small R ionic radius (R = Ho-Lu, Y, or Sc) [6–10]. Despite the room-temperature antiferromagnetism (AFM) exhibited by orthorhombic RMnO<sub>3</sub>, these materials have very weak polarization, which is induced by its magnetic structure, thus hinders the observation of ME coupling. Nevertheless, hexagonal manganites are fascinating due to their noncentrosymmetry, which leads to high polarization and high ferroelectric (FE) transition temperature [ $T_{\rm C} \sim 900$  K] [11,12]. In these systems, the ferroelectricity mainly originated from the polar  $P6_3cm$ crystal structure [9] while the ME coupling is mediated by magnetoelastic coupling [13]. However, the magnetic order in these systems appears at temperatures much lower than RT (~below 100 K) [9,14,15], and Mn spins couple feebly with its FE order due to its antiferromagnetism. The magnetic ordering is expected to be higher in the isostructural hexagonal ferrites (h- $RFeO_3$ , R = Ho-Lu, Y, or Sc), due to (i) the strong exchange coupling between Fe<sup>3+</sup> ions in the lattice compared with Mn<sup>3+</sup> ions [16] and (ii) the high localized magnetic moment of Fe [12]. Hence, h-RFeO<sub>3</sub> systems are expected to exhibit higher magnetization and ordering temperature, which is essential for practical device applications. Conversely, unlike manganites, RFeO<sub>3</sub> compounds tend to exhibit orthorhombic structure for all the rare-earth elements [8].

Hexagonal LuFeO<sub>3</sub> (*h*-LuFeO<sub>3</sub>) has attracted immense interest due to the theoretical prediction of reversal of magnetization along the *c* axis using an external electric field [12]. These theoretical calculations are performed by considering the  $\Gamma_2$  spin configuration of the *h*-LuFeO<sub>3</sub> which allows

<sup>\*</sup>Corresponding author: anil@physics.iisc.ernet.in

the ferromagnetism (FM) in the material. A very recent article by Wang et al. [17] based on experimental thin-film work claimed h-LuFeO<sub>3</sub> as a room-temperature multiferroic compound. They have reported  $\Gamma_2$  spin configuration with a high-temperature magnetic transition,  $T_N$ , at 440 K, which is highly debated. A later study by Disseler et al. [18] argued that the actual  $T_{\rm N}$  of this material is below 150 K with  $\Gamma_1$  spin configuration, which allows complete AFM, and stated that the 440-K transition observed by Wang et al. [17] corresponds to a structural transition. Thus, the ambiguity on the magnetic ordering temperature and the nature of spin configuration of h-LuFeO<sub>3</sub> is resolved in thin films. But, no studies are found on bulk or single-crystal samples. Moreover, the spin frustration due to the triangular spin arrangement on the hexagonal lattice of h-LuFeO<sub>3</sub> promotes the instability of the magnetic structure and leads to rich magnetic phase diagrams [19]. Therefore, it is essential to study the multiferroic nature of single phase h-LuFeO<sub>3</sub>.

In order to investigate the magnetic ordering and to understand the underlying mechanism, bulk samples, free of external influences, are essential [20,21]. However, the preparation of single phase h-LuFeO<sub>3</sub> is very challenging in the bulk form due to its metastable nature, and often ends up being in the orthorhombic *Pbnm* phase [22,23]. Nevertheless, the hexagonal phase is stabilized in thin-film form by using epitaxial strain [17, 18, 24]. Thus, the studies on *h*-LuFeO<sub>3</sub> so far are limited to the thin films [8,17,18,24–26]. In literature, a few reports can be traced on the synthesis of h-LuFeO<sub>3</sub> in bulk form [27–29]. But, no electric or magnetic studies are reported on the bulk single phase h-LuFeO<sub>3</sub> system. Kumar et al. [27,28] obtained the h-LuFeO<sub>3</sub> minor phase as an impurity in the o-LuFeO<sub>3</sub> major phase through quenching high-temperature melt rapidly. The hexagonal phase of LuFeO<sub>3</sub> can be stabilized in the bulk form by a doping method; either at the Lu site or at the Fe site by suitable ions [20,21,30]. Disseler et al. [20] studied the LuFeO<sub>3</sub> with Sc doped at the Lu site and Mn doped at the Fe site to stabilize the hexagonal structure. Lin et al. [21] and Masuno et al. [30] doped Sc at the Lu site and stabilized the hexagonal phase.

In spite of these reports, pure h-LuFeO<sub>3</sub> bulk studies are highly desirable to understand and investigate its electric and magnetic ordering temperatures. This material is not only promising in technological applications but, more importantly, is extremely intriguing for fundamental research. Detailed study of the structure and ferroelectric behavior is essential to have a comprehensive understanding of this new h-RFeO<sub>3</sub> multiferroic material. In the present paper we aimed to (i) synthesize hexagonal LuFeO<sub>3</sub> in bulk form, (ii) investigate the detailed magnetic ordering, (iii) explore the crystal structure as a function of temperature, and (iv) explore possible coupling between crystal, electric, and magnetic orders. Keeping these goals in mind, we have successfully stabilized the hexagonal single phase in the LuFeO<sub>3</sub> bulk ceramics using optimized sol-gel synthesis conditions; the sample quality is confirmed by Raman and x-ray photoemission spectroscopy (XPS) studies. By using neutron and magnetometer studies, we have shown that single phase h-LuFeO<sub>3</sub> orders antiferromagnetically below 130 K with the moment lying in the *ab* plane. *P*-*E* loop measurements confirm a spontaneous polarization at room temperature. A comprehensive temperature-dependent study by magnetization, specific heat, dielectric constant, and neutron diffraction reveals coupling between the crystal structure and magnetic and electric orders, proving the magnetoelectric coupling in h-LuFeO<sub>3</sub> multiferroic material. Our experimental findings are suppoted by density functional theory (DFT) calculations.

### **II. EXPERIMENTS**

## A. Experimental details

High-purity chemicals, Lu(NO<sub>3</sub>)<sub>3</sub> · H<sub>2</sub>O (99.9%, Alfa Make) and Fe(NO<sub>3</sub>)<sub>3</sub> 9H<sub>2</sub>O (99.9%, Alfa Make), were taken as precursors for the preparation of lutetium ferrite using the sol-gel method. These powders were carefully weighed stoichiometrically in 1:1 molar ratio and dissolved separately in 20 ml of 1:5 dil. HNO<sub>3</sub> solution. These solutions were stirred continuously for 5 h under magnetic stirrer. Once the solution became completely transparent, these two solutions were mixed in a beaker and citric acid was added as a chelating agent under the constant stirring at room temperature. This mixture was stirred for 4 to 5 h to form a highly uniform solution. Finally, the solution was heated at 250 °C constant temperature using a hot plate. The brown color fumes evolve from the solution, and at the end of the reaction the formation of the gel was observed. The xerogel powder obtained in the above process was ground finely using agate mortar. Finally, to obtain the crystal structure, these powders were calcinated at 750 °C for 10 h. The calcinated powders were pressed into pellets of 10-mm diameter and annealed for the densification. These densified samples were used for the further characterization.

Structure and purity of the LuFeO3 powder were examined by a Smart Lab x-ray diffractometer with the Cu-K<sub> $\alpha$ </sub> source  $(\lambda = 1.5418 \text{ Å})$ . High-resolution XPS data were collected using a Kratos Axis Ultra X-ray Photoelectron Spectrometer, model AXIS 165 equipped with an ion gun (EX-05) for cleaning the surface. Binding-energy resolution was 0.01 eV, while background correction was done by using the Shirley algorithm and data were fitted using the Casa XPS Spectroscopy software. The core-level binding energies were aligned with the carbon binding energy of 284.5 eV. Vibrational modes of the sample were examined by the Horiba JobinYvon, LabRAM-HR 800 micro-Raman system equipped with an excitation wavelength of 514.5 nm and laser power of 3 mW under backscattering geometry using a 50X objective lens. For electrical measurements, silver electrodes were made on both sides of the sample disc to make capacitor geometry. Dielectric constant measurements were carried out using an Agilent E4980A LCR meter at different frequencies. Ferroelectric measurements were performed at room temperature using the Radiant precision premier II. Field- and temperaturedependent magnetic measurements were performed on a Quantum Design superconducting quantum interference device magnetometer. Neutron-diffraction patterns were recorded by using the powder diffractometers PD-I ( $\lambda = 1.094$  Å) and PD-II ( $\lambda = 1.2443$  Å) at Dhruva reactor, Trombay, India. The limited Q-range powder diffractometer PD-I was used to study the temperature evolution of the magnetic Bragg peaks with higher statistics. For the neutron-diffraction measurements, samples were filled in a vanadium can of diameter 5 mm. All low-temperature measurements were performed by using a closed cycle helium refrigerator. The neutron-diffraction patterns were analyzed by the Rietveld method by using the FULLPROF suite computer program [31].

#### B. Results and discussion

The crystal structure of LuFeO<sub>3</sub> is investigated by both x-ray and neutron-diffraction techniques. In general, bulk LuFeO<sub>3</sub> is known to exist in the orthorhombic structure. It is hard to stabilize the hexagonal structure of LuFeO<sub>3</sub> in the bulk form compared to thin films. The powders are calcinated at different temperatures from 750 to 900 °C. It is observed that the calcination temperature plays a key role in stabilizing the hexagonal phase. The metastable single phase hexagonal structure was obtained for the samples calcined at 750 °C. Further, as the calcination temperature increases, the orthorhombic phase grows and a single phase orthorhombic with Pbnm space group is found for the samples calcined at 900 °C. That means, as the temperature increases, the hexagonal phase transforms to the orthorhombic phase, which is thermodynamically stable at high calcination temperature. Therefore, in the present paper, single phase h-LuFeO<sub>3</sub> is prepared by controlling the calcination temperature. The x-ray diffraction (XRD) and neutron-diffraction patterns of LuFeO3 recorded at 300 K are depicted in Figs. 1(a) and 1(b). Refinements were performed for both the hexagonal and orthorhombic structural phases. An agreement between observed and calculated patterns is obtained for the hexagonal phase. The refinements confirm that our sample crystallizes in the hexagonal structure with noncentrosymmetric space group  $P6_3cm$ . The refined values of lattice parameters are a = b = 5.9430(4) Å, c = 11.7108(11) Å,  $\alpha =$  $\beta = 90^\circ$ ,  $\gamma = 120^\circ$ , and cell volume  $V = 358.21(5) \text{ Å}^3$  at RT (Table I). The crystal structure of the h-LuFeO<sub>3</sub> has a rotational symmetry at RT. A schematic representation of the hexagonal crystal structure is shown in Fig. 1(c); the structure cartoon was prepared by using the VESTA software [32]. It is observed that each unit cell consists of two layers of Fe-O and Lu-O each. Within the unit cell, Lu atoms are situated at two crystallographic sites (Lu1:2a and Lu2:4b sites), Fe is situated at the 6c site, and oxygen atoms are situated at four crystallographic sites (O1 and O2, 6c; O3, 2a; O4, 4b). Each Fe atom is surrounded by five oxygen atoms forming a FeO<sub>5</sub> trigonal bipyramid, while the Lu atom is surrounded by eight oxygen atoms forming a LuO<sub>8</sub> cage. There is a presence of slight rotation of the FeO<sub>5</sub> trigonal bipyramids along the [102] crystal axis. The rotation in the FeO<sub>5</sub> breaks the inversion symmetry and allows ferroelectricity along the c axis in this compound [23]. It is found that the FeO<sub>5</sub> trigonal bipyramids are distorted where the Fe ions shift from the center of the FeO<sub>5</sub> towards O<sub>4</sub> (one of the equatorial oxygens) leading to a removal of threefold as well as twofold rotation symmetry. Along the c axis, two bond lengths are also found to be unequal, where the bond length Fe-O1 = 1.9361(2) Å is shorter than the bond length Fe-O2 = 1.9772(2) Å (Table II). Moreover, a tilting of the  $FeO_5$  trigonal bipyramid with respect to the *c* axis is evident with an angle between the O1-Fe-O2 direction and the c axis of  $\sim 4.29(9)$  Å. On the other hand, unequal bond lengths are also evident for LuO<sub>8</sub> polyhedra where Lu1-O3 distance,



FIG. 1. Rietveld refined (a) x-ray and (b) neutron-diffraction patterns at 300 K. The observed and calculated patterns are shown by circles and lines, respectively. The difference between the observed and calculated patterns is shown by the blue line at the bottom of each panel. The vertical bars represent the Bragg peak positions. (c) The unit cell of *h*-LuFeO<sub>3</sub> shown with FeO<sub>5</sub> polyhedra cages. The arrangements of the FeO<sub>5</sub> octahedra at z = 0 and  $\frac{1}{2}$  layers and Lu atoms within the *ab* layers are also shown.

2.4597(3) Å, is shorter than the Lu2-O4 distance, 2.7031(3) Å, along the *c* axis, which is the polar direction of this material. It is also found that the Lu atoms have an asymmetric vertical shift with respect to the neighboring oxygen atoms along the *c* axis, which results in a noncentrosymmetry and, hence, the observation of ferroelectricity in *h*-LuFeO<sub>3</sub> [25,33].

The room-temperature Raman spectrum of polycrystalline h-LuFeO<sub>3</sub> is depicted in Fig. 2. Besides XRD, Raman spectroscopy is another powerful tool to investigate the crystal purity and crystal symmetry of the samples [34]. Active Raman modes for the h-LuFeO<sub>3</sub> in its polar  $P6_3cm$  symmetry can be represented as [35–37]

$$\Gamma_{P6_3cm} = 9A + 14E_1 + 15E_2$$



FIG. 2. The measured Raman spectra of h-LuFeO<sub>3</sub> at RT. The inset images show the fitted spectra for different ranges (red line).

Hexagonal LuFeO<sub>3</sub> with  $P6_3cm$  symmetry contains six formula units per unit cell, which make 38 possible Raman active modes [18]. There are in total 19 prominent active Raman modes observed experimentally (after deconvolution) in the present paper. The Raman peak positions are in good agreement with the previous reports on the *h*-LuFeO<sub>3</sub> thin films [18]. It is also noted that the observed Raman modes are considerably different from those expected for orthorhombic LuFeO<sub>3</sub> [38], clearly confirming that the LuFeO<sub>3</sub> sample under study is in the polar hexagonal phase.

In order to confirm the valence states of the Lu and Fe, the XPS measurements are performed at RT. Figure 3 shows the observed peak positions for the Fe 2p and Lu 4f spectra of h-LuFeO<sub>3</sub>. It is observed that Fe has two prominent peaks at ~710.2 and ~723.9 eV corresponding to Fe<sup>3+</sup> 2p3/2 and 2p1/2 states [39]. In addition to these peaks, a small satellite peak at ~718.2 eV is also noticed. XPS spectra of Fe 2p along with the associated satellite peak are characteristics of the Fe<sup>3+</sup> valence state, which is consistent with the values reported for Fe<sup>3+</sup> [39–42].

Figure 4(a) shows the field cooled (FC) and zero-field cooled (ZFC) magnetization-temperature (M-T) curves of h-LuFeO<sub>3</sub> in the temperature range 3 to 400 K under 100-Oe applied magnetic field. From Fig. 4, a hump is seen around 130 K, which is associated to the antiferromagnetic Néel transition,  $T_{\rm N}$ . Below this temperature, unlike the typical AFM, a slight increase in the magnetization is found, due to a possible canting of AFM spins. The magnetic ordering in the hexagonal phase of LuFeO<sub>3</sub> is highly discussed. So far, there are no experimental works on the single phase h-LuFeO<sub>3</sub> bulk samples. Based on LuFeO<sub>3</sub> thin films, Wang et al. [17] reported a magnetic ordering around 440 K associated with a spin reorientation at around 120 K. In contrast, Disseler et al. [18] proved that the transition observed by Wang et al. [17] at 440 K is not the true magnetic order of h- LuFeO<sub>3</sub> but related to a structural phase transition from the nonpolar  $P\bar{3}c$ to the polar  $P6_3cm$  structure. Disseler *et al.* [18] reported that the spins lie in the canted antiferromagnetic order below 150 K for all the h-LuFeO<sub>3</sub> films grown on different substrates. The magnetic transition for most of the doped bulk h-LuFeO<sub>3</sub> ceramics is reported to be below room temperature [20,43]. However, a high-temperature magnetic transition above 425 K is observed in the case of Sc-doped LuFeO<sub>3</sub> samples [21]. Nevertheless, the nature of this particular high-temperature magnetic transition remains debatable, whether it is intrinsic to the *h*-LuFeO<sub>3</sub> system or related to a structural phase transition. In the present paper, we do not see any magnetic transition above 130 K within the measurement range up to 550 K (see Supplemental Material, Fig. S1 [44]), having paramagnetic behavior. The observed  $T_{\rm N} \sim 130$  K for the present compound is also supported by theoretical estimation which predicts that to achieve room-temperature multiferroicity in the h-RFeO<sub>3</sub> compounds the c/a ratio should be greater than 2.15 [20]. The c/a ratio of the present compound is 1.97, which suggests the  $T_{\rm N}$  should be below room temperature. The magnetic transition temperature ( $T_{\rm N} \sim 130 \,\text{K}$ ) of *h*-LuFeO<sub>3</sub> is higher than that of the isostructural compounds LuMnO<sub>3</sub> ( $T_{\rm N} \sim 92 \, {\rm K}$ ) and LuMn<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>3</sub> ( $T_N \sim 112 \text{ K}$ ) [20,21,45,46]. The magnetic order is primarily dominated by antiferromagnetic Fe-O-Fe superexchange and is complemented by Fe-O-O-Fe supersuperexchange in the stacked triangular lattice [47]. The higher magnetic ordering temperature of h-LuFeO<sub>3</sub> reveals a stronger



FIG. 3. XPS spectra of (a) Fe 2p peaks and (b) Lu 4f peaks of *h*-LuFeO<sub>3</sub>.



FIG. 4. (a). The ZFC and FC curves of h-LuFeO<sub>3</sub> under 100-Oe applied field. The inset shows the FC derivative curve, inverse susceptibility plot of the FC curve, and Curie-Weiss law fitting. (b). M-H curves of the h-LuFeO<sub>3</sub> at 3 and 300 K (the inset shows the zoomed part near the origin for the same plot).

exchange interaction as compared to LuMnO<sub>3</sub> because Fe<sup>3+</sup> possesses one more unpaired electron than Mn<sup>3+</sup>. Besides the onset of magnetic ordering at  $T_N$ , another anomaly at  $T \sim 42$  K is also evident in the *M*-*T* curve. Similar findings are reported in earlier studies on LuMn<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>3</sub> and LuMn<sub>0.7</sub>Fe<sub>0.3</sub>O<sub>3</sub> samples at around ~55 K [43,46], which is attributed to the spin-reorientation temperature.

The inverse magnetic susceptibility  $(1/\chi)$  of *h*-LuFeO<sub>3</sub> at 100 Oe is shown in the inset of Fig. 4(a). Curie-Weisslike temperature dependence  $\chi(T) = C/(T - \theta)$  with a Curie constant C and a Curie-Weiss temperature  $\theta$  is observed. At high temperatures (above 200 K), the  $1/\chi$  (T) curve follows the Curie-Weiss law with a negative Weiss temperature  $(\theta)$ . This indicates the presence of a predominant AFM coupling among Fe-Fe spins and the estimated  $|\theta|$  from the fit is 1097 K, the Curie constant is  $0.0127 \,\mathrm{cm}^3 \,\mathrm{g}^{-1} \,\mathrm{K}$ , and the effective magnetic moment is  $5.32 \,\mu_{\rm B}/{\rm f.u.}$  The value of the  $\theta$  is higher compared to that for the undoped LuMnO<sub>3</sub>, which is  $\sim$ 820 K [46]. The recent findings show that the  $T_N$  and  $|\theta|$  increase with an increase of Fe content in LuMnO<sub>3</sub> [43], which is consistent with our findings on undoped LuFeO<sub>3</sub>. The increase in Néel and Weiss temperatures is due to the increase in exchange interactions between magnetic Fe ions within the *ab* planes as the lattice constant decreases with Fe concentration [47]. The calculated frustration parameter for h-LuFeO<sub>3</sub> is 8.43, classifying this spin system as a strong geometrically frustrated system [43].

Field-dependent magnetization (*M* versus *H*) curves are measured at 3 and 300 K by sweeping the 7-T external field and shown in Fig. 4(b). At 300 K, the *M*-*H* curve shows a typical paramagnetic behavior with a linear curve having zero magnetic remanence and coercivity ( $H_C$ ), whereas the *M*-*H* curve at 3 K shows a slight opening in the loop resulting in  $H_C = 290$  Oe. However, the loop still lacks the tendency of saturation, suggesting a weak ferromagneticlike behavior. The magnetization value at 7 T ( $M_{7T}$ ) increases from 0.0015  $\mu_B$ /Fe to 0.013  $\mu_B$ /Fe as the temperature decreases from 300 to 3 K, however  $M_{7T}$  remains very weak. These findings are in agreement with the *M*-*T* observations. The observed low-temperature hysteresis loop at 3 K may be arising from a Dzyaloshinskii-Moriya interaction by the nonperfect triangular arrangement of Fe ions in the *ab* plane [20]. A nonperfect triangular arrangement of Fe ions for the present compound is evident from the deviation of the c/a value [0.3276(35)] from an ideal value of 1/3 (Table I).

Further, to get more insight on the crystal structure and magnetic ground state, neutron-diffraction measurements are performed over the temperature range 3 to 300 K. The crystal structure for LuFeO<sub>3</sub> is found to be hexagonal over the studied temperature range. The temperature-dependent neutrondiffraction patterns are shown in Fig. 5. From Fig. 5, it is found that, with decreasing temperature, additional magnetic Bragg peaks are found below  $T_C \sim 130$  K. Upon further lowering of temperature, a monotonous increase in the intensity of the magnetic Bragg peaks is observed without any change in their O (magnitude of scattering vector) position. This confirms that there is no change of magnetic propagation vector over the measured temperature range. This also implies that the magnetic structure remains unchanged over the studied temperature range. Though the M-T measurements show an anomaly at around  $\sim 42$  K [inset of Fig. 4(a)], neutron experiments do not show any signature of spin reorientation at this temperature, as it would lead to a certain change of intensity of the  $(1\ 0\ 0)$ magnetic Bragg peak. In the previous studies on LuMnO<sub>3</sub>, the spin reorientation transition is observed in the optical experiments while it is absent in neutron scattering [9]. On the other hand, the ScMnO<sub>3</sub> sample exhibits spin reorientation in the neutron studies [9]. It is not very clear why neutron experiments have not shown any sign of spin reorientation in a few samples. Nevertheless, the previous works on h-LuFeO<sub>3</sub> thin films [18] show spin reorientation transition in the neutron measurements for different samples grown on YSZ-250 and Al<sub>2</sub>O<sub>3</sub>-200 nm, where they observe a decrease in the intensity of (1 0 0) reflection to zero above the spin reorientation transition (53 K for YSZ-250 nm and 38 K for Al<sub>2</sub>O<sub>3</sub>-200 nm). However, the thin-film samples grown on YSZ-200- or

TABLE I. The Rietveld refined lattice constants (*a* and *c*), fractional atomic coordinates, and isotropic thermal parameters ( $B_{iso}$ ) for *h*-LuFeO<sub>3</sub> at 300 and 6 K, and the DFT (spin-orbit with non-collinear spins along with U = 4.5 eV and  $J_H = 0.95$  eV) optimized parameters (described later) are given in the curly brackets for comparison. [300 K ( $P6_3cm$ ):  $R_p$ : 3.03%  $R_{wp}$ : 3.79%  $R_{exp}$ : 1.75%  $\chi^2$ : 4.70%] and [6 K ( $P6_3cm$ ):  $R_p$ : 3.41%  $R_{wp}$ : 4.21%  $R_{exp}$ : 1.78%  $\chi^2$ : 5.62%  $R_{mag}$ : 16.0%].

|                                                                                                                   |                                         | 300 K ( <i>P</i> 6 <sub>3</sub> <i>cm</i> ) |                                      |                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------|--|--|--|--|
| $a = 5.9430(4) \{5.8833\} \text{ Å}; c = 11.7108(11) \{11.7077\} \text{ Å}; V = 358.21(5) \{350.97\} \text{ Å}^3$ |                                         |                                             |                                      |                                 |  |  |  |  |
| Atom                                                                                                              | x/a                                     | y/b                                         | z/c                                  | $B_{\rm iso}$ (Å <sup>2</sup> ) |  |  |  |  |
| Lu1                                                                                                               | 0                                       | 0                                           | 0.2665(32) {0.27473}                 | 0.38(8)                         |  |  |  |  |
| Lu2                                                                                                               | 1/3                                     | 2/3                                         | 0.2315(21) {0.22477}                 | 0.38(8)                         |  |  |  |  |
| Fe                                                                                                                | 0.3276(35) {0.33398}                    | 0                                           | 0                                    | 0.68(5)                         |  |  |  |  |
| 01                                                                                                                | 0.3083(43) {0.29448}                    | 0                                           | 0.1649(21) {0.15965}                 | 1.08(8)                         |  |  |  |  |
| O2                                                                                                                | 06595(47) {0.62773}                     | 0                                           | 0.3313(19) {0.33188}                 | 1.08(8)                         |  |  |  |  |
| O3                                                                                                                | 0                                       | 0                                           | 0.4765(40) {0.46901}                 | 1.08(8)                         |  |  |  |  |
| O4                                                                                                                | 1/3                                     | 2/3                                         | 0.0069(34) {0.01913}                 | 1.08(8)                         |  |  |  |  |
|                                                                                                                   |                                         | 6 K ( <i>P</i> 6 <sub>3</sub> <i>cm</i> )   |                                      |                                 |  |  |  |  |
|                                                                                                                   | $a = 5.9365(4) \{5.9417\} \text{ Å}; c$ | = 11.7106(12) {11.720                       | 9} Å; $V = 357.30(8) \{358.36\} Å^3$ |                                 |  |  |  |  |
| Lu1                                                                                                               | 0                                       | 0                                           | 0.2655(36){0.27584}                  | 0.16(6)                         |  |  |  |  |
| Lu2                                                                                                               | 1/3                                     | 2/3                                         | 0.2301(18){0.22789}                  | 0.16(6)                         |  |  |  |  |
| Fe                                                                                                                | 0.3266(39){0.33379}                     | 0                                           | 0                                    | 0.57(4)                         |  |  |  |  |
| 01                                                                                                                | 0.2924(46){0.29648}                     | 0                                           | 0.1650(26){0.16222}                  | 0.67(7)                         |  |  |  |  |
| O2                                                                                                                | 06698(43){0.62957}                      | 0                                           | 0.3319(21){0.33363}                  | 0.67(7)                         |  |  |  |  |
| O3                                                                                                                | 0                                       | 0                                           | 0.4840(36){0.47109}                  | 0.67(7)                         |  |  |  |  |
| 04                                                                                                                | 1/3                                     | 2/3                                         | 0.0114(37){0.02072}                  | 0.67(7)                         |  |  |  |  |

Al<sub>2</sub>O<sub>3</sub>-200-nm samples have the finite intensity of  $(1 \ 0 \ 0)$  reflection till the magnetic transition, indicating the absence of spin reorientation signature in neutron data [18]. Likewise, the present studies on the hexagonal LuFeO<sub>3</sub> bulk samples do not show any signature related to the spin reorientation transition as it shows finite intensity for  $(1 \ 0 \ 0)$  reflection from 6 to 120 K (inset of Fig. 5). However, the magnetic data show a cusp around ~42 K in the temperature-dependence curve. As the sample cools down to low temperature, the spin canting occurs, which results in the increase of magnetization, as shown in Fig. 4. Thus, the cusp observed around ~42 K in the *M*-*T* data may be due to the spin canting effect. The Rietveld



FIG. 5. The neutron-diffraction patterns for *h*-LuFeO<sub>3</sub> measured by PD-I ( $\lambda = 1.094 \text{ Å}$ ) at 3, 40, 90, 120, and 300 K. The inset shows the integrated intensity of the (100) magnetic Bragg peak as a function of temperature. The solid line in the inset is a guide to the eye.

refined neutron-diffraction patterns at 300 K (paramagnetic state) and 3 K (magnetically ordered state) are shown in Fig. 6. Temperature variation of the lattice parameters, cell



FIG. 6. Experimentally observed (circles) and calculated (solid lines through the data points) neutron-diffraction patterns for h-LuFeO<sub>3</sub> at (a) 160 K (paramagnetic state) and (b) 6 K (magnetically ordered state), respectively measured by PD-II ( $\lambda = 1.249$  Å). The solid lines at the bottom of each panel represent the difference between observed and calculated patterns. The vertical bars indicate the positions of allowed nuclear and magnetic [the bottom row in (b)] Bragg peaks. The inset of (b) shows the zoomed pattern at 6 K over the low-Q range.



FIG. 7. Temperature variations of the lattice parameters (*a*), (*c*), the unit-cell volume (*V*), and the ordered magnetic moment of the  $Fe^{3+}$  ion for *h*-LuFeO<sub>3</sub>. The solid lines are a guide to the eye.

volume, and ordered magnetic moment of the Fe<sup>3+</sup> ion for LuFeO<sub>3</sub> are shown in Fig. 7. An anomaly in the temperaturedependent lattice constants has been found at  $T_N$  indicating a magnetoelastic coupling in LuFeO<sub>3</sub>.

All the magnetic peaks could be indexed with a propagation vector k = (000) with respect to the hexagonal nuclear unit cell. The symmetry-allowed magnetic structure is determined by a representation analysis using the program BASIREPS available within the FULLPROF suite [31]. The symmetry analysis reveals that there are six irreducible representations (IRs), i.e., six possible symmetry allowed magnetic structures. Among them, four IRs ( $\Gamma_1$  to  $\Gamma_4$ ) are one dimensional and two IRs ( $\Gamma_5$  and  $\Gamma_6$ ) are two dimensional. It is known that for isostructural hexagonal manganites only four one-dimensional IRs are required to describe the magnetic structures [18]. For each of these representations, the Fe sublattice displays antiferromagnetic order within the *ab* plane, forming  $120^{\circ}$ structures among the three spins in the triangular sublattice. For the homometric pairs,  $\Gamma_1$  ( $\Gamma_2$ ) and  $\Gamma_3$  ( $\Gamma_4$ ), one-dimensional IRs are found to be indistinguishable with perfectly identical neutron-scattering structure factors for our samples. Moreover,



FIG. 8. The noncollinear spin patterns  $(\Gamma_1 - \Gamma_4)$  are represented at z = 0 and  $\frac{1}{2}$  along the *z* axis. The color variation is to differentiate the atoms.

the  $\Gamma_1$  ( $\Gamma_3$ ) and  $\Gamma_2$  ( $\Gamma_4$ ) are related by the in-plane rotations [17]. In the present paper, the highest and second highest magnetic intensity are found for the Bragg peaks (100) and (102), respectively. Among the four IRs,  $\Gamma_1$  and  $\Gamma_3$  magnetic structures contribute mainly to the (100) magnetic Bragg peak. For the  $\Gamma_2$  and  $\Gamma_4$  magnetic structures, the contributions to diffraction intensities from the  $Fe^{3+}$  sites of the z = 1/2 and 0 layers are canceled out for the (100) magnetic Bragg peak. The main contribution from  $\Gamma_2$  and  $\Gamma_4$  magnetic structures appears for the (101) magnetic Bragg peak. On the other hand, for the (102) peak, the diffraction intensity is nonzero for all the spin structures  $\Gamma_1$  to  $\Gamma_4$ . Therefore, the magnetic structure of the present compound can be defined by either  $\Gamma_1$ or  $\Gamma_3$ . The refinement with  $\Gamma_1$  is shown in Fig. 6(b). A good agreement between observed and calculated pattern is evident. The corresponding magnetic structure is shown in Fig. 8. The magnetic structure is pure antiferromagnetic in nature without having any net magnetization per unit cell. The ordered site moment of Fe ions is found to be  $m = 2.84(7) \mu_{\rm B}/{\rm Fe}^{3+}$  at 6 K (Fig. 7). Among the four IRs, only the  $\Gamma_2$  allows for a ferromagnetic component along the c axis. A trial refinement with  $\Gamma_1 + \Gamma_2$  results in a similar quality of fit for a finite moment component along the c axis  $(m_c)$  up to a maximum value of 0.4  $\mu_{\rm B}$ . Therefore, if the ferromagnetic moment for our sample is present, it is significantly weak and the corresponding ordered moment ( $m_c$ ) should be below 0.4  $\mu_B$  per Fe<sup>3+</sup>.

The electrical properties of *h*-LuFeO<sub>3</sub> are investigated in the capacitor geometry. Figure 9 shows the frequency dependence of dielectric constant ( $\varepsilon'$ ) and loss measured at RT for *h*-LuFeO<sub>3</sub>. The dielectric constant [see Fig. 9(a)] is large in the low-frequency region and decays exponentially as the frequency increases. The value of the dielectric constant decreases from 3000 at 100 Hz to 300 at 1 kHz showing a Debye-like relaxation. On the other hand, dielectric loss (tan  $\delta$ ) has a significantly high value at low frequencies, and the value reduces as the frequency increases to 10 kHz. Beyond 10 kHz,



FIG. 9. (a) Dielectric constant versus frequency plot of h-LuFeO<sub>3</sub>. The inset shows the loss tangent versus frequency. (b) P-E loop of h-LuFeO<sub>3</sub> ceramics.

loss again increases, having a peak around 100 kHz, and then decreases further with increasing frequency value.

Hexagonal ferrites exist in a polar  $P6_3cm$  structure below the Curie temperature ( $T_{\rm C} \sim 1050 \, {\rm K}$ ), while they possess the paraelectric  $P6_3/mmc$  phase above the  $T_C$ . Hexagonal LuFeO<sub>3</sub>, similar to manganites, is an improper ferroelectric, where induced polarization is nonlinearly coupled to the trimerization of rare-earth planes [12,49]. Below the Curie temperature, the size mismatch between the  $Lu^{3+}$  ion (small radius) and FeO<sub>5</sub> bipyramid (large radius) leads to an inward tilting of the FeO<sub>5</sub> polyhedra which is associated with a two-up/one-down buckling of the Lu planes (Fig. 1) [48,49]. This is called trimerization of the unit cell due to which the crystal attains the lower structural symmetry,  $P6_3cm$ . In this polar state, the strong asymmetric covalent bonding interaction between Lu and O along the c axis favors the off centering electric dipoles, eventually inducing ferroelectricity [26]. Since the magnetic transition is much below room temperature, the observed polarization is purely from the hexagonal structure.

The relative atomic positions in the lattice will experience a displacement when the structure changes from non-polar  $P6_3/mmc$  to the polar  $P6_3cm$  phase. These displacements can generally be represented in terms of K<sub>1</sub>, K<sub>3</sub>, and  $\Gamma_{2-}$ phonon modes, where K<sub>1</sub> and K<sub>3</sub> are the zone-boundary modes and  $\Gamma_{2-}$  is the zone-center polar mode [12,20]. The K<sub>1</sub> mode describes the Fe and O displacements in the *ab* plane, while the K<sub>3</sub> mode relates to the rotation of the FeO<sub>5</sub> bipyramids and buckling of the Lu-O planes [20]. Thus, the net polarization is induced as a result of the nonlinear coupling between K<sub>3</sub> and  $\Gamma_{2-}$  modes. The magnitude of K<sub>1</sub>, K<sub>3</sub>, and  $\Gamma_{2-}$  phonon modes is calculated based on the atomic positions at 300 K (Table I). The polarization values are estimated analytically from the atomic displacements ( $\Delta z$ ), relative to respective positions in the undistorted  $P6_3/mmc$  paraelectric phase by  $P_s = (258 \pm 9) \times \Delta z \,\mu C/cm^2$  [50]. The resultant displacement amplitudes and the polarization values calculated using different methods are listed in Table III. The corresponding atomic pattern is shown in Fig. 10.

The P-E loop measured at room temperature is shown in Fig. 9(b). For applied electric field of 8 kV/cm, the observed electric coercivity is 2.71 kV, remnant polarization is  $P_{\rm r} \sim$ 0.18  $\mu$ C/cm<sup>2</sup>, and polarization is  $P_{\text{max}} \sim 0.46 \,\mu$ C/cm<sup>2</sup> at an applied electric field, 8 kV/cm. The P-E loop appears more like a lossy dielectric loop, rather than an actual ferroelectric hysteresis loop [51]. The current conduction due to the mixed valance of Fe ( $Fe^{2+}/Fe^{3+}$ ) or due to the oxygen vacancies results in such lossy loops in the h-LuFeO<sub>3</sub> system. Since the XPS data clearly show the  $Fe^{3+}$  state (Fig. 3), the presence of oxygen vacancies might lead to the lossy loops for the samples under study. In order to avoid the extrinsic contributions, the polarization measurements are performed using the Positive-Up Negative-Down (PUND) method [52] at 9-kV/cm applied electric field. The PUND results, which are intrinsic to the sample, are given as  $P_{\text{max}} \sim 0.55 \,\mu\text{C/cm}^2$  and  $P_r \sim 0.04 \,\mu\text{C/cm}^2$  (see Supplemental Material, Fig. S2 [44]). The ferroelectric polarization of h-LuFeO<sub>3</sub> has been calculated using the Berry-phase theory of polarization [53] for the crystal structure obtained from 6-K neutron-diffraction data, and is found to be 5.36  $\mu$ C/cm<sup>2</sup>. The ferroelectric polarization of *h*-LuFeO<sub>3</sub> is comparable with the LuFe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> for x =0.25 and is  $3.4 \,\mu\text{C/cm}^2$  [20]. Though the observed value is smaller than the theoretical predictions, it is much higher

TABLE II. Selective bond lengths and bond angles for *h*-LuFeO<sub>3</sub> at 300 K.

|       | Во                   | Bond angles (°)       |                      |          |            |
|-------|----------------------|-----------------------|----------------------|----------|------------|
| Fe-O1 | 1.9361(2)            | 3 × Lu1/Lu2-O1        | 2.1839(2)/2.2017(2)  | 01-Fe-O2 | 178.83(3)  |
| Fe-O2 | 1.9772(2)            | $2 \times Lu1/Lu2-O2$ | 2.1613(2)/2.2822(1)  | O1-Fe-O3 | 94.64(1)   |
| Fe-O3 | 1.9664(2)            | Lu1-O3                | 2.4597(3), 3.4211(5) | 01-Fe-O4 | 91.51(1)   |
| Fe-O4 | 1.9987(2), 1.9984(1) | Lu2-O4                | 2.7031(3), 3.6784(4) | O2-Fe-O3 | 84.19(1)   |
|       |                      |                       |                      | O2-Fe-O4 | 89.09(1)   |
|       |                      |                       |                      | O3-Fe-O4 | 120.54(1)  |
|       |                      |                       |                      | O4-Fe-O4 | 118.301(2) |

|                                | Phonon modes    |                  | $P(\mu C/cm^2)$  |               |                                   |      |
|--------------------------------|-----------------|------------------|------------------|---------------|-----------------------------------|------|
| Structure                      | $K_1$ $K_3$     | $\Gamma_{2-}$    | Analytical       | DFT           | Expt.                             |      |
| 300 K (neutron)<br>300 K (DFT) | 0.091<br>0.0100 | 0.8305<br>1.2538 | 0.1414<br>0.2373 | 7.88<br>10.96 | 5.36ª, 8.7 [55], 9 [21], 9.8 [12] | 0.46 |

TABLE III. Amplitude of the K<sub>1</sub>, K<sub>3</sub>, and  $\Gamma_{2-}$  phonon modes derived for the  $P6_3/mmc$  to  $P6_3cm$  distortion determined from the refined atomic positions at 300 K. The polarization is obtained from Ref. [49], as well DFT compared with experimental value.

<sup>a</sup>Present paper, calculations performed at 6 K.

compared to its orthorhombic phase, which has the polarization  $\sim 7 \text{ nC/cm}^2$  [54]. In the case of the thin films, the value of the remnant polarization is reported to be  $\sim 6.5 \mu \text{C/cm}^2$  [26].

Temperature dependences of the heat capacity, dielectric constant, and derivative curve of susceptibility of *h*-LuFeO<sub>3</sub> below RT are shown in Fig. 11. From the dielectric data, it is noticed that the dielectric constant increases with increasing temperature with an anomaly at magnetic transition temperature,  $T_N$ . This is a characteristic of a coupling between ferroelectric and antiferromagnetic order, i.e., ME coupling, and such observations are also reported earlier for similar compounds [21,56]. The temperature-dependent specific heat curve ( $C_p/T$  versus T) also shows an anomaly at  $T_N$  which is consistent with the magnetic susceptibility data  $[d\chi/dT$  in Fig. 11(c)]. In addition, the observed anomaly in the lattice parameters at  $T_N$  (Fig. 7) indicate a strong coupling between lattice-spin degrees of freedoms.

## **III. DENSITY FUNCTIONAL THEORY CALCULATIONS**

The magnetic structure of *h*-LuFO<sub>3</sub> is an important discussion in recent years [12,18,26,49,57], because of its planar spin pattern among Fe atoms. The choice of planar spins for the Fe atom is strongly dependent on growth and stability of the sample phase. It is reported that a noncollinear planar triangular spin order is most preferable for *h*-LuFeO<sub>3</sub> [12,17,18,49] due to strong competing nearest-neighbor AFM interactions between Fe atoms. There are four fundamental planar spin patterns, namely,  $\Gamma_1$ ,  $\Gamma_2$ ,  $\Gamma_3$ , and  $\Gamma_4$  (see Fig. 8), and combinations, i.e.,  $\Gamma_1 + \Gamma_2$  and  $\Gamma_3 + \Gamma_4$ , are possible for *h*-LuFO<sub>3</sub> [12,18,26,49]. In contrast to the results reported for thin films, i.e., a canted AFM structure (described by

 $\Gamma_1 + \Gamma_2$ ), our neutron-diffraction data reveal a pure in-plane antiferromagnetic spin structure ( $\Gamma_1$ ) within the experimental error bar. This is where actual interest occurs to find the spin pattern through DFT calculations to understand the actual ground-state spin order for bulk h-LuFeO<sub>3</sub>. We considered noncollinear spin calculations within spin-orbit coupling using Hubbard U and Hund's exchange parameter  $J_H$ , to relax the crystal and atomic structure at the experimental lattice parameters for neutron-diffraction data of h-LuFeO<sub>3</sub>. We use normconserving pseudopotentials of Perdew-Burke-Ernzerhof exchange correlations [58]. All calculations are carried out using plane-wave pseudopotential density functional theory as implemented in QUANTUM ESPRESSO [59]. We use a k-point mesh of  $8 \times 8 \times 4$  with electronic relaxation convergence to 1E-10Ry until the forces on the atom reduce to 1E-5Ry without any external constraints. Our noncollinear spin calculations of h-LuFeO<sub>3</sub> stabilized freely, without any constraint, and the optimized structural parameters are well reproduced as obtained in experiments (compared in Table I). From the DFT calculations, it is revealed that the noncollinear planar spin patterns are found to be lower in energy compared to the spin polarization along the z axis. As mentioned above, we have optimized the four fundamental planar spin patterns  $\Gamma_1$ ,  $\Gamma_2$ ,  $\Gamma_3$ , and  $\Gamma_4$ . We verified the ground-state spin order with different Hubbard U (= 4.0, 4.5, and 5.0 eV) and Hund's exchange parameter  $J_H$  (= 0.95, 1.00, and 1.05 eV). It is found that the ground state remains unchanged with the choice of U and  $J_H$  values (see Supplemental Material, Table S1 [44]); for consistency, further DFT calculations obtained using U = 4.5 eV with  $J_H = 0.95$  eV are presented. It is found that the experimental lattice structure obtained from



FIG. 10. The atomic pattern associated with the three phonon modes  $K_1$ ,  $K_3$ , and  $\Gamma_{2-}$ , respectively.



FIG. 11. Temperature dependence of (a) heat capacity, (b) dielectric constant, and (c) dc susceptibility of h-LuFeO<sub>3</sub> ceramics.

neutron-diffraction data at 6 K exhibits  $\Gamma_1$  spin order as the ground state as shown in Fig. 8. The magnetic moments on Lu and O atoms have almost vanished to zero. The  $\Gamma_2$  spin order with 0.010-meV/Fe higher energy is almost degenerate with  $\Gamma_1$  spin order, whereas the  $\Gamma_3$  and  $\Gamma_4$  spin orders are

with 0.011- and 0.056-meV/Fe higher energy compared to  $\Gamma_1$  spin order. It is shown that the ground-state  $\Gamma_1$  spin order has a clear energy difference compared to the  $\Gamma_2$ ,  $\Gamma_3$ , and  $\Gamma_4$  spin order for the obtained experimental crystal structure. Furthermore, the calculated  $m_z$  magnetic moment along the *z* axis for Fe atoms is found to be zero for the ground-state  $\Gamma_1$  spin order.

Meanwhile, our neutron data and DFT calculations confirm that the spin pattern for bulk *h*-LuFeO<sub>3</sub> samples is associated to  $\Gamma_1$ . The experimental determined planar spin pattern for thin films [17,18,26] always acquires the substrate strains, and the spin pattern has a direct effect on the substrate in layered structures like *h*-LuFeO<sub>3</sub>. In the case of bulk *h*-LuFeO<sub>3</sub>, the Fe atoms have free choice of planar spin pattern. Furthermore, Hund's parameter ( $J_H$ ) that represented *h*-LuFeO<sub>3</sub> thin films [12,49] leads to spin pattern  $\Gamma_2$ , but for bulk samples it leads to the  $\Gamma_1$  spin pattern. Therefore, it is clear that the choice of planar spin pattern among  $\Gamma_1$ ,  $\Gamma_2$ ,  $\Gamma_3$ , and  $\Gamma_4$  or their combinations ( $\Gamma_1 + \Gamma_2, \Gamma_3 + \Gamma_4$ ) in *h*-LuFeO<sub>3</sub> is purely dependent on the sample architecture.

The electronic band structure and density of states for noncollinear *h*-LuFeO<sub>3</sub> are shown in Fig. 12. It has a wide band gap of 1.38 eV along M- $\Gamma$ , while the reported band gap for thin films is 1.1 eV [12,49]. We see a clear variation in the electronic structure in the bulk compared to the thin films. From density of states, the states just below the Fermi level are from the Fe-3*d* and O-2*p* states, and the states between -0.5 and -2.5 eV are dominated by Lu-4*f* and O-2*p* states; however, there are smaller contributions from Lu-3*d* and Fe-3*d* states. The states between -2.5 to -6.5 eV are mainly due to the Fe-3*s*, Fe-3*d*, and O-2*p* states. The conduction band mainly contains the Fe-3*d* state near the Fermi level and Lu-3*d* at the higher-energy state.



FIG. 12. The noncollinear band structure and density of states of *h*-LuFeO<sub>3</sub> calculated under spin-orbit coupling with U = 4.5 eV and  $J_H = 0.95 \text{ eV}$ . The Fermi level is set to zero.

## **IV. CONCLUSIONS**

We have successfully stabilized single phase hexagonal LuFeO<sub>3</sub> ceramics in bulk form using the sol-gel method and investigated the structural, electric, and magnetic properties of the h-LuFeO<sub>3</sub> bulk sample. The hexagonal crystal structure is confirmed by XRD and neutron diffraction, and supported by the corresponding Raman modes. XPS measurements show the  $Fe^{3+}$  valance state. The detailed neutron and magnetic measurements confirm the antiferromagnetic ordering  $(T_N)$ of hexagonal LuFeO<sub>3</sub> is at  $\sim$ 130 K. Temperature-dependent magnetization curves show an additional anomaly at around  $\sim$ 42 K may be due to a spin canting. At room temperature, the samples exhibit the paramagnetic state while a weak ferromagnetic nature is found at low temperatures due to the spin canting. Neutron data and DFT calculations reveal that the possible spin configuration of h-LuFeO<sub>3</sub> is associated with  $\Gamma_1$  corresponding to a noncollinear 120° AFM spin structure. The  $120^{\circ}$  antiferromagnetic ordering is further confirmed with spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U) and Hund's parameter  $(J_H)$  on Fe atoms reproduced the neutron-diffraction  $\Gamma_1$  spin pattern among the Fe atoms. Furthermore, Hund's parameter  $(J_H)$ that represented *h*-LuFeO<sub>3</sub> thin films leads to spin pattern  $\Gamma_2$ ,

- [1] J. F. Scott, Nat. Mater. 6, 256 (2007).
- [2] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
- [3] R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes, Nat. Mater. 13, 345 (2014).
- [4] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
- [5] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 75, 144425 (2007).
- [6] H. L. Yakel, E. F. Forrat, E. F. Bertaut, and W. C. Koehler, Acta Crystallogr. 16, 957 (1963).
- [7] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
- [8] S. Song, H. Han, H. M. Jang, Y. T. Kim, N.-S. Lee, C. G. Park, J. R. Kim, T. W. Noh, and J. F. Scott, Adv. Mater. 28, 7430 (2016).
- [9] B. Lorenz, ISRN Condens. Matter Phys. 2013, 497073 (2013).
- [10] A. Kumar, S. M. Yusuf, and C. Ritter, Phys. Rev. B 96, 014427 (2017).
- [11] M. Lilienblum, T. Lottermoser, S. Manz, S. M. Selbach, A. Cano, and M. Fiebig, Nature Phys. 11, 1070 (2015).
- [12] H. Das, A. L. Wysocki, Y. Geng, W. Wu, and C. J. Fennie, Nat. Comm. 5, 2998 (2014).
- [13] S. Lee, F. Gozzo, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Cheong, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature Letters 451, 805 (2008).
- [14] M. Fiebig, T. Lottermoser, and R.V. Pisarev, J. Appl. Phys. 93, 8194 (2003).
- [15] P. Tong, D. Louca, N. Lee, and S.-W. Cheong, Phys. Rev. B 86, 094419 (2012).

while we have  $\Gamma_1$  spin configuration for the bulk structure. An intrinsic ferroelectric polarization is observed at room temperature with remnant polarization  $P_r \sim 0.18 \,\mu\text{C/cm}^2$  and at an applied electric field, 8 kV/cm. An evidence of magnetoelectric coupling is found from dielectric, specific-heat measurements as they exhibit an anomaly at the magnetic transition temperature. Presence of a strong magnetoelastic coupling is confirmed from the variation of lattice parameters at  $T_N$ . This makes the material a fascinating candidate for fundamental physics and also promising from a practical application point of view.

## ACKNOWLEDGMENTS

P.S. acknowledges financial support from University Grants Commission (UGC), India for the Dr. D. S. Kothari postdoctoral fellowship No. F.4-2/2006 (BSR)/PH/13-14/0085. The authors also acknowledge Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bengaluru. Computations were carried out using the resources provided by the Texas Advanced Computing Center. This project was supported financially by National Research Foundation of Korea Grants No. NRF-2017R1D1A1B03035932 (B.L.C.) and No. NRF-2016R1A2B4010105 (J.J.).

- [16] A. R. Akbashev, A. S. Semisalova, N. S. Perov, and A. R. Kaul, Appl. Phys. Lett. 99, 122502 (2011).
- [17] W. Wang, J. Zhao, W. Wang, Z. Gai, N. Balke, M. Chi, H. N. Lee, W. Tian, L. Zhu, X. Cheng, D. J. Keavney, J. Yi, T. Z. Ward, P. C. Snijders, H. M. Christen, W. Wu, J. Shen, and X. Xu, Phys. Rev. Lett. **110**, 237601 (2013).
- [18] S. M. Disseler, J. A. Borchers, C. M. Brooks, J. A. Mundy, J. A. Moyer, D. A. Hillsberry, E. L. Thies, D. A. Tenne, J. Heron, M. E. Holtz, J. D. Clarkson, G. M. Stiehl, P. Schiffer, D. A. Muller, D. G. Schlom, and W. D. Ratcliff, Phys. Rev. Lett. 114, 217602 (2015).
- [19] M. L. Plumer and A. Caillé, J. Appl. Phys. 70, 5961 (1991).
- [20] S. M. Disseler, X. Luo, B. Gao, Y. S. Oh, R. Hu, Y. Wang, D. Quintana, A. Zhang, Q. Huang, J. Lau, R. Paul, J. W. Lynn, S-W. Cheong, and W. Ratcliff II, Phys. Rev. B 92, 054435 (2015).
- [21] L. Lin, H. M. Zhang, M. F. Liu, Shoudong Shen, S. Zhou, D. Li, X. Wang, Z. B. Yan, Z. D. Zhang, Jun Zhao, Shuai Dong, and J.-M. Liu, Phys. Rev. B 93, 075146 (2016).
- [22] R. L. White, J. Appl. Phys. 40, 1061 (1964).
- [23] X. S. Xu and W. B. Wang, Mod Phys. Lett. B 28, 1430008 (2014).
- [24] A. A. Bossak, I. E. Graboy, O. Y. Gorbenko, A. R. Kaul, M. S. Kartavtseva, V. L. Svetchnikov, and H. W. Zandbergen, Chem. Mater. 16, 1751 (2004).
- [25] S. Cao, X. Zhang, T. R. Paudel, K. Sinha, X. Wang, X. Jiang, W. Wang, S. Brutsche, J. Wang, P.J. Ryan, J-W. Kim, X. Cheng, E.Y. Tsymbal, P.A. Dowben, and X. Xu, J. Phys. Condens. Matter. 28, 156001 (2016).
- [26] Y. K. Jeong, J.-H. Lee, S.-J. Ahn, and H. M. Jang, Chem. Mater. 24, 2426 (2012).
- [27] M. S. V Kumar, K. Nagashio, T. Hibiya, and K. Kuribayashi, J. Am. Ceram. Soc. 91, 806 (2008).
- [28] M. S. V Kumar, K. Kuribayashi, and K. Kitazono, J. Am. Ceram. Soc. 92, 903 (2009).

- [29] E. Magome, C. Moriyoshi, Y. Kuroiwa, A. Masuno, and H. Inoue, Jap. Jour. Appl. Phys. 49, 09ME06 (2010).
- [30] A. Masuno, A. Ishimoto, C. Moriyoshi, N. Hayashi, H. Kawaji, Y. Kuroiwa, and H. Inoue, Inorg. Chem. 52, 11889 (2013).
- [31] FULLPROF suite, http://www.ill.eu/sites/fullprof/.
- [32] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
- [33] Y. K. Jeong, J.-H. Lee, S.-J. Ahn, S.-W. Song, H. M. Jang,
  H. Choi, and J. F. Scott, J. Am. Chem. Soc. 134, 1450 (2012).
- [34] M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett. 91, 071910 (2007).
- [35] S. Venugopalan and M. M. Becker, J. Chem. Phys. **93**, 3833 (1990).
- [36] M. N. Iliev, H. G. Lee, V. N. Popov, M. V. Abrashev, A. Hamed, R. L. Meng, and C. W. Chu, Phys. Rev. B 56, 2488 (1997).
- [37] A. Ghosh, J. R. Sahu, S. V. Bhat, and C. N. R. Rao, Solid State Sci. 11, 1639 (2009).
- [38] L. P. Zhu, H. M. Deng, L. Sun, J. Yang, P. X. Yang, and J. H. Chu, Cer. International. 40, 1171 (2014).
- [39] A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, Surf. Interface Anal. 36, 1564 (2004).
- [40] J. A. Kurzman, J. Li, T. D. Schladt, C. R. Parra, X. Y. Ouyang, R. Davis, J. T. Miller, S. L. Scott, and R. Seshadri, Inorg. Chem. 50, 8073 (2011).
- [41] F. Liu, J. Li, Q. Li, Y. Wang, X. Zhao, Y. Hua, C. Wang and X. Liu, Dalton Trans. 43, 1691 (2014).
- [42] L. Yin, I. Adler, T. Tsang, L. J. Matienzo, and S. O. Grim, Chem. Phys. Lett. 24, 81 (1974).
- [43] Z. Fu, H. S. Nair, Y. Xiao, A. Senyshyn, V. Y. Pomjakushin, E. Feng, Y. Su, W. T. Jin, and T. Bruckel, Phys. Rev. B 94, 125150 (2016).
- [44] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.97.184419 for the field cooled curve of *h*-LuFeO<sub>3</sub> at an applied field of 1 kOe and the Curie-Weiss fit of the FC data. The PUND polarization measurement of the *h*-LuFeO<sub>3</sub> sample at 9 kV/cm applied electric field, along with the total-energy difference (meV/Fe) compared from the ground state ( $\Gamma_1$ ) to the  $\Gamma_2$ ,  $\Gamma_3$ , and  $\Gamma_4$  spin configuration with diiferent choice of Hubbard U (4.0, 4.5, and 5.0 eV) with Hund's  $J_H$ (0.95, 1.00, and 1.05 eV).

- [45] H. J. Lewtas, A. T. Boothroyd, M. Rotter, D. Prabhakaran, H. Muller, M. D. Le, B. Roessli, J. Gavilano, and P. Bourges, Phys. Rev. B 82, 184420 (2010).
- [46] H. S. Nair, Z. Fu, C. M. N. Kumar, V. Y. Pomjakushin, Y. Xiao, T. Chatterji, and A. M. Strydom, Euro. Phys. Lett. 110, 37007 (2015).
- [47] T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B 66, 134434 (2002).
- [48] M. Ye and D. Vanderbilt, Phys. Rev. B 92, 035107 (2015).
- [49] H. Wang, I. V. Solovyev, W. Wang, X. Wang, P. J. Ryan, D. J. Keavney, J.-W. Kim, T. Z. Ward, L. Zhu, J. Shen, X. M. Cheng, L. He, X. Xu, and X. Wu, Phys. Rev. B **90**, 014436 (2014).
- [50] S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Phys. Rev. 172551 (1968)
- [51] J. F. Scott, J. Phys.: Condens. Matter 20, 021001 (2008).
- [52] S. M. Feng, Y. S. Chai, J. L. Zhu, N. Manivannan, Y. S. Oh, L. J. Wang, Y. S. Yang, C. Q. Jin, and Kee Hoon Kim, New J. Phys. 12, 073006 (2010).
- [53] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
- [54] U. Chowdhury, S. Goswami, D. Bhattacharya, J. Ghosh, S. Basu, and S. Neogi, Appl. Phys. Lett. **105**, 052911 (2014).
- [55] Ch. Xu, Y. Yang, S. Wang, W. Duan, B. Gu, and L. Bellaiche, Phys. Rev. B 89, 205122 (2014).
- [56] D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys, and J. A. Mydosh, J. Phys.: Condens. Matter. 13, 4543 (2001).
- [57] B. S. Holinsworth, D. Mazumdar, C. M. Brooks, J. A. Mundy, H. Das, J. G. Cherian1, S. A. McGill, C. J. Fennie, D. G. Schlom, and J. L. Musfeldt, App. Phys. Lett. **106**, 082902 (2015).
- [58] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [59] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter **21**, 395502 (2009).