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Driving chiral domain walls in antiferromagnets using rotating magnetic fields
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We show theoretically and numerically that an antiferromagnetic domain wall can be moved by a rotating
magnetic field in the presence of Dzyaloshinskii-Moriya interaction (DMI). Two motion modes are found: rigid
domain wall motion at low frequency (corresponding to the perfect frequency synchronization) and the oscillating
motion at high frequency. In the full synchronized region, the steady velocity of the domain wall is universal,
in the sense that it depends only on the frequency of the rotating field and the ratio between DMI strength and
exchange constant. The domain wall velocity is independent of the Gilbert damping and the rotating field strength.
Moreover, a rotating field in megahertz is sufficient to move the antiferromagnetic domain wall.

DOI: 10.1103/PhysRevB.97.184418

I. INTRODUCTION

Antiferromagnetic spintronics is a rapidly developing re-
search area and has drawn considerable attention recently
[1–4]. The antiparallel alignment of the microscopic magnetic
moments in antiferromagnets directly leads to two effects.
Statically, the net magnetization of antiferromagnets is van-
ishingly small [3] and thus the antiferromagnetic states are
not sensitive to uniform external field. Dynamically, two
Landau-Lifshitz-Gilbert equations are needed to describe the
dynamics in one unit cell (or equivalently using the coupled
equations in terms of the uncompensated magnetization M and
the Néel order parameter L [5–7]), which makes the dynamics
of antiferromagnets different from that of ferromagnets. For
example, spin waves (magnons) in antiferromagnetic materials
provide more degrees of freedom for information encoding
[8–10], and the magnonic analog of relativistic Zitterbewegung
is predicted in an antiferromagnetic spin chain [11].

Antiferromagnetic domain walls, as another important ex-
ample, behave differently from the ferromagnetic domain
walls. For instance, a static external field failed to move
the antiferromagnetic domain walls while it is a well-known
force to drive the ferromagnetic domain walls [12]. Antifer-
romagnetc domain walls (DWs) can be driven by spin waves
(magnons) [13–15], external field gradients [16,17], spin-orbit
torques [6,7], and thermal gradients [18]. Finding new methods
to control the domain wall in antiferromagnets is of great
importance.

In this work, we will show that an antiferromagnetic domain
wall can be moved by a rotating magnetic field in the presence
of Dzyaloshinskii-Moriya interaction (DMI). The DMI is
crucial in moving the antiferromagnetic domain walls which is
very different from its ferromagnetic counterpart that a rotating
magnetic field alone can drive the domain walls effectively
[19] without the necessity of DMI. Interestingly, a rotating
magnetic field even in megahertz (which is much smaller than
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the characteristic frequency of an antiferromagnet in terahertz)
can move the antiferromagnetc domain walls. The steady
velocity of the domain wall only depends on the frequency
of the rotating field and is independent of the Gilbert damping
and the rotating field strength. Our proposal provides a way to
manipulate antiferromagnets.

II. MODEL

We start with a two-sublattice antiferromagnetic (AFM)
nanowire along the z axis as illustrated in Fig. 1. The Hamilto-
nian of the one-dimensional (1D) system is given by [20–22]

H =J

2N∑
i

Si · Si+1 +
2N∑
i

Di · (Si × Si+1)

− K

2N∑
i

(ez · Si)
2 − h̄γ

2N∑
i

H(t) · Si , (1)

where J (> 0) is the antiferromagnetic exchange constant,
Di = D0ẑ is the uniform bulk Dzyaloshinskii-Moriya (DM)
vector [21,23]. As we will see, the presence of DMI leads
to a twisted DW for a head-to-head DW structure. Note
that the staggered bulk DMI [23] in the form HDM = D ·∑

i(−1)i(Si × Si+1) does not result in a twisted DW. The
uniaxial anisotropy strength is denoted by K and the spin
Si is treated as a classical vector with length S. The rotating
magnetic field H = (H cos ωt,H sin ωt,0) is applied in the
xy plane, as shown in Fig. 1.

To proceed, we introduce the net magnetization m ≡ (S2i +
S2i−1)/2S and the normalized staggered Néel order n ≡ (S2i −
S2i−1)/|S2i − S2i−1| and thus one has m · n = 0 and n · n =
1. In the exchange approximation the Hamiltonian density H
reads [5,16]

H = 1

2χ
m2 + A

2
(∂zn)2 + Lm · ∂zn − K

2
n2

z

− m · h + Dez · (∂zn × n), (2)
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FIG. 1. Illustration of an antiferromagnetic domain wall in an
AFM nanowire along the z axis and the nearest-neighbor spacing
is a. The rotating magnetic field is applied in the xy plane.

where χ−1 = 4JS2/a and A = 2aJS2 are homogeneous and
inhomogeneous exchange constants with a being the nearest-
neighbor spacing in the one-dimensional (1D) system. The L

term (L = 2JS2) lifts the energy degeneracy of the sublattice
exchange and results in a nonzero magnetization of an antifer-
romagnetic DW [16]. The anisotropy constant K = 2K0S

2/a,
DMI constant D = D0S

2, and the rotating magnetic field
h = (h̄γ S/a)H.

The dynamics of the total magnetization m and the stag-
gered magnetization n are given by [13,24]

∂tn = −n × hm, (3a)

∂tm = −n × (hn − α∂tn) − m × hm, (3b)

where hm = −ρ−1δH/δm and hn = −ρ−1δH/δn are effec-
tive fields and ρ = h̄S/a is the density of the staggered spin
angular momentum per unit cell [14]. Note that only the phe-
nomenological damping α associated with ∂tn is considered.
The magnitude of α can be calculated from first-principles
calculation [25]. Inserting hm = ρ−1(h − m/χ − L · ∂zn) into
Eq. (3), one obtains

χ−1m = n × [(h × n) − ρ∂tn] − L · ∂zn, (4)

which shows that m is a slave variable of n.
The static DW profile can be obtained by setting ∂tm =

0 and ∂tn = 0 in Eq. (3). Noting that hn = ρ−1(A∂zzn +
L∂zm + Knzẑ − 2Dẑ × ∂zn), in the absence of external field,
by eliminating m we arrive at

n × [(A − L2χ )∂zzn + Knzẑ − 2Dẑ × ∂zn] = 0. (5)

Similar to the ferromagnetic case [26], we use the DW ansatz:

nx = sech[(z − q)/	] cos[(z − q)ξ + φ], (6a)

ny = sech[(z − q)/	] sin[(z − q)ξ + φ], (6b)

nz = −tanh[(z − q)/	], (6c)

where q = q(t) is the DW position, 	 is the domain wall width,
φ = φ(t) is the DW tilt angle, and ξ is a parameter related to
the DMI constant. Substituting Eq. (6) into Eq. (5), we have

ξ = 2D

A
, 	 =

√
A

2K − ξ 2A
. (7)

For the case ξ = 0, the domain wall width reduces to 	0 =
a
√

J/2K0, which is the same as the one in a ferromagnetic
spin chain [27]. The presence of external field influences the
domain wall profile. For example, a static Zeeman field in
the z direction modifies the antiferromagnetic DW width [17].

FIG. 2. The domain wall profile obtained by solving the LLG
equation. The used simulation parameters are K0/J = 0.002,
D0/J = 0.02, and H/H0 = 0.004 with H0 = JS/h̄γ .

In the rotating frame, the rotating field h is transformed to a
static field [28] perpendicular to the z axis. In this situation,
the antiferromagnetic DW profile is not sensitive to the static
field. Therefore, it is reasonable to use the rigid DW model.

Numerically, the domain wall profile can be obtained by
solving the Landau-Lifshitz-Gilbert (LLG) equation

dSi

dt
= −γ Si × Heff + α

S
Si × dSi

dt
, (8)

where α is the Gilbert damping and Heff is the effective
field given by Heff = −(1/h̄γ )(∂H/∂Si) with γ (> 0) the
gyromagnetic ratio. Figure 2 shows the domain wall profile
[6] using lines. The dots are obtained by solving the LLG
equation with the parameters K0/J = 0.002, D0/J = 0.02,
and H/H0 = 0.004 with H0 = JS/h̄γ . As we can see, the
profile [6] fits the simulation results very well even in the
presence of external field applied in the xy plane.

Similar to Eq. (5), the dynamics of DW motion can be
obtained by eliminating m:

n × [−ρ∂ttn + T0 − χ−1α(∂tn) + T ] = 0, (9)

where T0 = (1/ρχ )[(A/2)∂zzn + Knzẑ − 2Dẑ × ∂zn] and
T = 2h × ∂tn − ρ−1(n · h)h − L∂zn × ∂tn + ∂th × n. Here,
we assume that the domain wall structure is rigid and
thus use two parameters [the DW position q = q(t) and
the DW tilt angle φ = φ(t)] to describe the domain wall
dynamics. Applying the collective coordinate approach [5],
we have ∂tn = φ̇∂φn + q̇∂qn and ∂ttn = φ̈∂φn + q̈∂qn +
φ̇2∂φφn + q̇2∂qqn + 2φ̇q̇∂φqn where the overdot represents
∂/∂t . For the domain wall profile (6), one has ∂qn = −∂zn
and ∂φn = ẑ × n. Applying the cross product of ∂qn (and ∂φn)
to Eq. (9) and integrating over the whole nanowire region, we
have

(
α

χ
Q̇ + ρQ̈

)
− κ	

1 + κ2

(
α

χ
ψ̇ + ρψ̈

)

= c	ψ̇ cos ψ (10a)(
α

χ
Q̇ + ρQ̈

)
κ −

(
α

χ
ψ̇ + ρψ̈

)
	 − α

χ

ω	

1 + κ2

= (1 + κ2)cQ̇ cos ψ + d	 sin 2ψ, (10b)
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where c = (1/2)h0π sech(πκ/2), d = (1/2ρ)h2
0πκ csch

(πκ), and κ = ξ	. Also, we have introduced ψ = φ − ωt

and Q = q − ωκ	t/(1 + κ2).

III. RESULTS

Equation (10) is a coupled second-order differential equa-
tion. Here, we show that Eq. (10) has a special solution:

Q̇ = 0, ψ̇ = 0, sin 2ψ = −α

χ

ω

d(1 + κ2)
. (11)

It is straightforward to see that ψ̇ = 0 gives φ̇ = ω, which
corresponds to the perfect frequency synchronization. In this
scenario, the angular velocity of the DW rotation is exactly the
same as the frequency of the rotating field. The steady velocity
of DW is

v = q̇ = ωκ	

1 + κ2
. (12)

The velocity, Eq. (12), scales linearly with the frequency
ω of the rotation field. The presence of DMI is critical in
driving the antiferromagnetic domain wall since a nonzero
velocity requires that κ �= 0. Without the DMI, the velocity
of the antiferromagnetic DW is zero, which is different from
the ferromagnetic case that a rotating field alone can drive
the ferromagnetic DW motion [19]. For the ferromagnetic
case, a head-to-head DW and a tail-to-tail DW move in
opposite directions when driven using rotating fields. The
antiferromagnetic DW can be considered as a combination
of a head-to-head DW and a tail-to-tail DW and thus the
antiferromagnetic DW velocity is zero. In the presence of DMI
the DW becomes twisted, which induced a symmetry breaking.
In this scenario the two twisted ferromagnetic DWs failed to
cancel each other totally and thus results in a net velocity.
Moreover, the DW angle rotates with an angular velocity of ω

due to the synchronization of rotation field. Interestingly, the
velocity [Eq. (12)] is independent from the Gilbert damping α

and the strength of the rotational field, which is because the
motion of DW in the presence of DMI can be considered as a
side effect of the frequency synchronization.

Using Eq. (11), the critical frequency ωc can be found as

ωc = χ

α
(1 + κ2)d. (13)

As can be seen, the critical frequency ωc is proportional to the
square of the external field strength, and a larger damping α

leads to a smaller ωc.
The perfect synchronized motion is valid only in the region

ω < ωc. For the case that the frequency is larger than the critical
frequency (ω > ωc), an oscillation motion emerges. By using
the assumption

dψ

dt
= −g(ω + ωc) sin 2ψ, (14)

where g is a parameter related to rotating field, one finds that
(see Appendix B for details)

〈dQ/dψ〉 = 	κ

1 + κ2
. (15)
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FIG. 3. (a) The DW position as a function of time for ω/ω0 =
10−5 and ω/ω0 = 2 × 10−4. (b) The DW tilt angle as a function of
time for ω/ω0 = 10−5 and ω/ω0 = 2 × 10−4. The dimensionless time
10 corresponds to approximately 40 ns for KMnF3. The data is ob-
tained by solving the LLG equation numerically. The used simulation
parameters are H/H0 = 5 × 10−4, α = 5 × 10−4, D0/J = 0.02, and
K0/J = 0.002.

Using Eq. (14), the solution of ψ can be found as

tan ψ = −ωc

ω
−

√
1 −

(ωc

ω

)2
tan

(
gt

√
ω2 − ω2

c − ψ0
)
.

(16)

The period is T = π/(g
√

ω2 − ω2
c ) and thus the average ψ̇ can

be computed as 〈ψ̇〉 = −g
√

w2 − ω2
c . Therefore, we obtain the

average velocity for ω > ωc:

〈q̇〉 = 	κ

1 + κ2

(
ω − g

√
w2 − ω2

c

)
, (17)

where g is given by Eq. (B7).
To verify our analytical results for the two scenarios, we

perform numerical simulations based on the LLG equation
(8) and the Hamiltonian (1). In practice, it is convenient to
use the dimensionless LLG equation (see Appendix A). As
shown in Appendix A, the dimensionless LLG equation can
be characterized by several parameters: the damping α, the
dimensionless time t ′ = (JS/h̄)t , the dimensionless external
field (h̄γ /JS)H , and the energy ratios D0/J and K0/J . There-
fore, we introduce a characteristic frequency ω0 = JS/h̄ and a
characteristic field H0 = ω0/γ . For KMnF3, the typical param-
eters are a = 0.418 nm, S = 5/2, and J = 0.656 meV [29,30],
which results in ω0 = 2.48 × 103 GHz and H0 = 14.14 T.
Also, evidence of nonzero DMI in KMnF3 is reported [31].

Figure 3(a) shows the DW position as a function of time
for the cases ω/ω0 = 10−5 and ω/ω0 = 2 × 10−4 where the
parameters H/H0 = 5 × 10−4, α = 5 × 10−4, D0/J = 0.02,
and K0/J = 0.002 are used. It can be found that for the low
frequency case (ω/ω0 = 10−5) the DW displacement is a linear
function of time, as predicted by Eq. (12). The corresponding
DW tilt angle φ is shown in Fig. 3(b). We conclude that
the low frequency case (ω/ω0 = 10−5) corresponds to the
perfect synchronized motion because the rotation frequency
of DW plane 〈φ̇〉 is equal to the frequency of the rotation
wave. For the high frequency case (ω/ω0 = 2 × 10−4), the
DW moves back and forth, corresponding to the incomplete
synchronized region. In this region, the DW tilt angle also
shows an oscillation and the rotation frequency of DW plane
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FIG. 4. The critical frequency ωc as a function of the rotating
field strength. The dots are obtained using numerical simulation. The
lines are plotted using Eq. (13). The dimensionless field strength
5.0 corresponds to 7.07 mT while the dimensionless frequency 4.0
corresponds to 0.99 GHz for KMnF3.

〈φ̇〉 is smaller than the rotating field frequency ω, as depicted
in Fig. 3(b).

To get further insight into the magnitude of critical fre-
quency ωc, we plot ωc as a function of the rotating field strength
in Fig. 4. The dots are obtained by solving the LLG equation
directly and the lines are plotted using Eq. (13); it is found that
the analytical result, Eq. (13), agrees with the simulation results
very well. For KMnF3, the used frequency is in megahertz
(ω/ω0 = 10−5 corresponds to ω = 24.8 MHz). The amplitude
of the rotating field is H = 7 mT for H/H0 = 5 × 10−4.
Therefore, a rotating field in the megahertz frequency range
is sufficient to move the chiral antiferromagnetic DW motion.

Figure 5 plots the DW velocity as a function of the rotating
field frequency where the dots are obtained using numerical
simulations while the lines are plotted analytically [Eq. (12) for
ω < ωc and Eq. (17) for ω > ωc]. In the region ω < ωc the DW

0.0 0.5 1.0 1.5 2.0 2.5
ω/ω0 × 104

1

2

3

4

5

V
el

oc
it
y

v
/v

0
×

10
4

analytical
α = 0.0003 H/H0 = 0.0005
α = 0.0001 H/H0 = 0.0003

FIG. 5. The (average) DW velocity as a function of the rotating
field frequency obtained by numerical simulations with parameters
(i) α = 0.0003 and H/H0 = 0.0005, and (ii) α = 0.0001 and
H/H0 = 0.0003. Gray lines are plotted using analytical equations
(12) and (17). The dimensionless frequency 1.0 corresponds to 0.25
GHz while the dimensionless velocity 1.0 corresponds to 0.1 m/s for
KMnF3.
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FIG. 6. The DW velocity as a function of the rotating field
frequency for the 2D/3D system. The parameters used in simulations
are α = 0.0003 and H/H0 = 0.0005.

velocity agrees with analytical prediction very well. We have
introduced a characteristic velocity v0 = ω0a. For KMnF3,
v0 = 1.04 × 103 m/s. So the typical velocity is 0.5 m/s. This
speed is smaller than the typical speed driven by the spin
waves [13] and spin-orbit torques [6]. Also, it can be seen that
the velocity is universal in the region ω < ωc since different
parameters result in the same velocity. In the region ω > ωc,
there is a small deviation between the analytical result, Eq. (17),
and the numerical simulations, which is because Eq. (14) is not
an exact solution of coupled differential equation (10).

It is interesting to ask whether the critical frequency ωc

obtained by Eq. (13) is reasonable for a two- (2D) or three-
(3D) dimensional system. The number of nearest neighbors ND

for the squared (2D) and simple cubic (3D) lattice are ND =
4 and ND = 6, respectively. Therefore, we have ρ = 2h̄S/V

(the density of the staggered spin angular momentum per unit
cell), χ−1 = 4NDJS2/V , and h = (2h̄γ S/V )H where V is
the volume of the unit cell and V = 2a for the 1D unit cell and
V = 2a2 for the 2D unit cell. By analyzing the Eq. (13), we find

ωc = 2

ND

ω1D
c (18)

and thus ω2D
c = (1/2)ω1D

c and ω3D
c = (1/3)ω1D

c due to the fact
that for 2D or 3D systems each spin has more nearest neighbors.

Figure 6 shows the DW velocity as a function of the rotating
field frequency for the 2D/3D system with different sizes and
the parameters α = 0.0003 and H/H0 = 0.0005 are fixed in
the simulation. Similar to the 1D system, in the low frequency
region the DW velocity increases linearly as the frequency
increases. In the high frequency region, the DW speed shows a
Walker breakdown. The critical frequency for the 1D system is
ωc/ω0 ≈ 10−4 and thus the predicted critical frequency for 2D
is ω2D

c /ω0 ≈ 0.5 × 10−4. As the system size increases, it can
be seen that the critical frequency is converged to the predicted
one. Moreover, the velocity also approaches the analytical
result for the 2D system as plotted in Fig. 6 using a gray line.
A 3D system with size 2 × 2 × 2000 is presented in Fig. 6 as
well; the velocity for this quasi-1D system is similar to that
obtained using bulk DMI.
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IV. SUMMARY

In summary, we have studied the antiferromagnetic domain
wall motion driven by a rotating field in the presence of
Dzyaloshinskii-Moriya interaction. We found that the DMI is
critical in moving the antiferromagnetic DW. Two DW motion
modes are found: in the low frequency region, the DW performs
a perfect synchronized motion with the rotational field. The
steady domain wall velocity is only related to the frequency
of the rotating field as well as the strength of DMI and it
is independent of the Gilbert damping and the rotating field
strength. In the high frequency region (which corresponds to
the incomplete synchronized region), the domain wall shows
a ratchet motion.
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APPENDIX A

The effective field at site i is given by Hi =
−(1/h̄γ )[J (Si−1 + Si+1) + D × (Si−1 − Si+1) − 2K0(ez ·
Si)ez − h̄γ H]. Inserting the effective field into the LLG
equation (8), we have

dui

dt ′
= αui × dui

dt ′
− ui × [(ui−1 + ui+1) − 2(K0/J )uz

i ẑ

+ (D0/J )ẑ × (ui−1 − ui+1) − (h̄γ /JS)H], (A1)

where ui = Si/S is the unit vector of Si and t ′ = (JS/h̄)t
(the time t is in SI units). From the dimensionless equation
(A1), we conclude that the system which is governed by the
LLG equation (8) and the associated Hamiltonian (1) can be
characterized by several parameters: the damping α, the ratios
D0/J and K0/J , and the rotating field (h̄γ /JS)H.

APPENDIX B

The variable Q can be considered as a function of ψ , i.e.,
Q = Q(ψ), so we have Q̇ = ψ̇Q′ = YQ′ where Y = ψ̇ and

′ represents the derivative with respect to ψ . Notice that when
Q̈ = ψ̇2Q′′ + ψ̈Q′ and ψ̈ = Ẏ = YY ′, we have

X − κ	

1 + κ2

(
α

χ
+ ρY ′

)
= c	 cos ψ, (B1)

XYκ −
(

α

χ
Y + ρY ′

)
Y	 − α

χ

ω	

1 + κ2

= (1 + κ2)cYQ′ cos ψ + d	 sin 2ψ, (B2)

where X = (α/χ )Q′ + ρ(YQ′′ + Y ′Q′). Eliminating X, we
arrive at

	

1 + κ2

(
α

χ
+ ρY ′

)
Y + 	

1 + κ2

αω

χ

(
1 + ωc

ω
sin 2ψ

)

= cY (1 + κ2)

(
κ	

1 + κ2
− Q′

)
cos ψ. (B3)

We assume that

Y = −g(ω + ωc) sin 2ψ, (B4)

where g is a parameter to be determined, then by substituting
Eq. (B4) into Eq. (B3), we obtain

	

1 + κ2

[
2ρgωc +

(
1 − 1

g

)
α

χ
− 4ρgωc cos2 ψ

]

= c(1 + κ2)

(
κ	

1 + κ2
− Q′

)
cos ψ. (B5)

Since Eq. (B5) is assumed to hold for every ψ , the coefficients
of powers of cos ψ must balance and we obtain

2ρgωc +
(

1 − 1

g

)
α

χ
= 0, (B6a)

−4g
	

1 + κ2
ρωc cos ψ = c(1 + κ2)

(
κ	

1 + κ2
− Q′

)
. (B6b)

The coefficient g can be determined from Eq. (B6a), which
gives

g = (
√

1 + 8ρωcχ/α − 1)α/(4ρχωc). (B7)

Equation (B6b) results in

Q′ = 	

1 + κ2

(
κ + 4gρ

d

c

χ

α
cos ψ

)
(B8)

and thus we have 〈Q′〉 = κ	/(1 + κ2).
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