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We report on the stabilization of the topological bimeron structures in confined geometries. The Monte Carlo
simulations for a ferromagnet with a strong Dzyaloshinskii-Moriya interaction revealed the formation of a mixed
skyrmion-bimeron phase at finite temperatures. The vacancy grid created in the spin lattice drastically changes
the picture of the observed spin configurations and allows one to choose between the formation of a pure bimeron
and skyrmion lattice. We found that the rhombic plaquette provides a natural environment for stabilization of the
bimeron structures. Such a rhombic geometry can protect the topological state even in the absence of the magnetic
field.
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I. INTRODUCTION

A specific shape of an object plays an important role
in nature. One of the famous examples is the avian egg
shape, whose significant variation in degree of asymmetry and
ellipticity was recently related to flight adaptation of birds [1].
Another fascinating example is exoskeletons of viruses that
are in the forms of the Platonic solids such as icosahedron [2],
which provides the best and fastest connection of the subunits.
There are also numerous examples when the particular shape
choice revolutionized different fields of science or technology.
In the first point-contact transistor invented by Bardeen and
Brattain [3] a triangular form of the contact with one sliced
tip was realized. It is important that the final shape of the
system is formed via a trial and error process during evolution
or engineering independently on the origin of the system.

Here we address the problem of the system shape choice
on the level of the topologically protected magnetic structures
[4,5] that attract considerable attention due to their potential
technological applications in spintronics. The focus in this field
of research gradually shifts from the study of the bulk crystals
characterized by infinite skyrmion lattices [6,7] to confined
geometries [8,9] with isolated topological spin configurations
that can be controlled by means of electric and magnetic fields
[10]. A practical realization of the skyrmion-based device
with a strongly confined nanodisk geometry was recently
reported in Ref. [8]. The authors of the work have demonstrated
switching between different stable skyrmionic states in a
160-nm-diameter FeGe nanodisk. These experimental results
stimulated the theoretical search for other confined geometries
[11].

The scanning tunneling microscopy (STM) allows one to
manipulate individual atoms deposited on the surface and
provides access to a completely different scale of the confined
magnetic geometries with size of several nanometers. In this
sense clusters or plaquettes of magnetic atoms constructed by
means of the STM [12] on a surface can be considered as
an elementary unit cell for stabilization of the topologically
protected excitations. Moreover, the local spin current from
a scanning tunneling microscope can be used to write and to
delete individual skyrmions, as was shown in Ref. [13].

In this paper we demonstrate that the choice of the rhombic
shape of the spin plaquette is important to stabilize a distinct
type of topological structures, bimerons [14] that consist of
two merons (half-disk domain carrying the skyrmion number
Q = 1/2) separated by a stripe domain with zero topological
charge. According to Fig. 1 the pair of bimerons can be
stabilized on rhombic clusters in a wide range of ratios between
Dzyaloshinskii-Moriya interaction (DMI) and Heisenberg fer-
romagnetic exchange. Remarkably, being formed at the finite
magnetic field, these topological spin structures remain stable
with magnetic field switched off at very low temperatures,
which is in demand for creating new atomic-memory tech-
nologies. At the same time, in the case of the two-dimensional
square lattice the magnetic bimerons can be segregated in a
fully controllable way with a vacancy grid.

II. MODEL AND METHOD

Hamiltonian. In our study we used the following spin
Hamiltonian for simulations of the topological magnetic spin
configurations on the L × L square lattices:

H = −
∑
i<j

Jij Si · Sj −
∑
i<j

Dij · [Si × Sj ] −
∑

i

BSz
i , (1)

where Jij and Dij are the isotropic interaction and
Dzyaloshinskii-Moriya vector, respectively. Si is a unit vector
along the direction of the ith spin and B denotes the out-
of-plane magnetic field. We take into account the interaction
only between nearest neighbors. The summation for interspin
couplings runs once over every pair. The isotropic exchange
interaction is positive in our simulations, which corresponds to
the ferromagnetic case. The symmetry of the Dzyaloshinskii-
Moriya vectors is of C4v type; DMI has an in-plane orientation
and is perpendicular to the corresponding intersite radius
vector, rij = rj − ri .

Since the values of the Dzyaloshinskii-Moriya interaction
used in our simulations are equal or larger than the isotropic
exchange interaction, then the resulting skyrmion species
are compact. The possible realization of such an interaction
regime was recently demonstrated in Ref. [15] by means of
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FIG. 1. Family of the rhombic plaquettes with bimeron pairs
stabilized in Monte Carlo simulations of systems described by the spin
Hamiltonian, Eq. (1). Calculations were performed at different ratios
J

|D| ranging from 0 to 1. Magnetic atoms are represented by circles,
black arrows denote the xy-plane projections of the spin moments,
and color shows the z component of the spin. The magnetic field in
these simulations was chosen to be 0.22, 0.3, 0.4, 0.7, and 1.3 for the
plaquettes from left to right, respectively. The temperature is equal to
0.014. All the parameters are in units of DMI.

high-frequency laser fields. On the other hand, there are surface
nanosystems [16] with sp electrons that are naturally charac-
terized by a strong suppression of the isotropic interaction.

Monte Carlo approach. To solve the spin Hamiltonian,
Eq. (1), we use the Monte Carlo approach with GPU par-
allelization [17–19]. It gives us an opportunity to achieve
significant acceleration of the Monte Carlo simulations up to 5–
200 times compared to the CPU analogs [17,18]. For example,
we can perform simulations of large-scale two-dimensional
systems with linear sizes up to L = 1024. Since each spin
in our model interacts only with nearest neighbors, we chose
the spin update scheme within the Metropolis algorithm of
checkerboard type. During Monte Carlo (MC) simulations, we
gradually cooled down the system fromT = 1.0J . The number
of temperature steps was equal to 50. Each run comprises
1.5 × 105 MC steps per spin. Simulation parameters in a
similar range were used in Ref. [20].

Topological charge. To calculate the skyrmion number
(topological charge) denoted as Q we adopted the approach
proposed in Refs. [21,22],

Q = 1

4π

∑
l

Al, (2)

where Al is the solid angle subtended by three spins located at
the vertices of an elementary triangle l,

Al = 2 arccos

(
1 + Si · Sj + Sj · Sk + Sk · Si√

2(1 + Si · Sj )(1 + Sj · Sk)(1 + Sk · Si)

)
.

(3)

The sign of Al in Eq. (2) is determined as sgn(Al) = sgn(Si ·
[Sj × Sk]). Importantly, we do not consider the exceptional
configurations for which

Si · [Sj × Sk] = 0; 1 + Si · Sj + Sj · Sk + Sk · Si � 0. (4)

Spin structure factor. Other important observables that can
be used for identification of magnetic phases are the spin
structure factors given by

χ‖(q) = 1

N

〈∣∣∣∣∣
∑

i

Sz
i e

−iqri

∣∣∣∣∣
〉
, (5)

FIG. 2. Top panel: Phase diagram of the ferromagnet with
Dzyaloshinskii-Moriya interaction. The abbreviations SkL, S+FM,
S+B, FM, and Sp denote skyrmion lattice state, nonperiodic skyrmion
state, mixed phase of skyrmions with bimerons, ferromagnetic, and
spin spiral states, respectively. The phase diagram was obtained by
using the simulations for lattices of 256 × 256 at T = 0.02. Bottom
panel: Fragment of the full phase diagram corresponding to the weak
magnetic fields B < 0.05 and Dzyaloshinskii-Moriya interactions
|D| < 0.5. All the parameters are given in units of isotropic exchange
interaction.

χ⊥(q) = 1

N

〈∣∣∣∣∣
∑

i

Sx
i e−iqri +

∑
i

S
y

i e−iqri

∣∣∣∣∣
〉
, (6)

where q is the reciprocal space vector, Sα
i [α = (x,y,z)] is the

projection of the ith spin, and ri is the radius vector for the ith
site.

Phase diagram. To construct the phase diagram we used
a 100 × 200 grid (20 000 points in total) on the magnetic
field/DMI plane. For each point we carried out 15 Monte Carlo
runs. Thus, the total number of Monte Carlo calculations was
equal to 300 000. To identify the different phases realized in
the system we used the calculated topological charge, Eq. (2),
spin structure factors, Eqs. (5) and (6), and visualized a number
of magnetic configurations during Monte Carlo simulations.

To test the stability of the phase classification results we
have varied the number of Monte Carlo steps in our simulations
from 104 to 50 × 104 per spin. To check the sensitivity of
the obtained results to the cooling procedure we varied the
maximal temperature from 0.5J to 5J and the number of
the temperature steps from 20 to 150. All these additional
simulations confirm the stability and correctness of the phase
diagram results presented in Fig. 2.

III. RESULTS

Regular lattice. The first step of our investigation is to
construct a phase diagram (Fig. 2) for the spin Hamiltonian,
Eq. (1). The corresponding numerical details are presented in
the previous section. Figure 3 gives the typical examples of
the spin structure factors corresponding to the different phases.
One can see that the different magnetic phases can be uniquely
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FIG. 3. Structure factors of different phases observed in the system under consideration. These results were obtained at B = 0.5J and
|D| = 0.7J (FM), 0.77J (S+FM), J (SkL), 1.4J (S+B), 1.5J (Sp).

identified from the inspection of the pictures of intensities.
For instance, the in-plane structure factor of mixed skyrmion-
bimeron and skyrmion phases is characterized by double-q and
triple-q states, respectively. In turn, all the skyrmionic phases
are characterized by a nonzero topological charge value.

According to the results presented in Fig. 2 (bottom panel),
at zero magnetic field we observe the formation of the spin
spiral state for |D|/J > 0.01, which is in agreement with
analytical solution, and previous numerical and experimental
results [23].

The phase diagram plot [Fig. 2 (top panel)] shows that
the skyrmion phase is composed of a nonperiodic skyrmion
(S+FM) state, a periodic skyrmion lattice (SkL), and a mixed
state of skyrmions and bimerons (S+B). Our main focus is
on the S+B phase, since we search for the conditions of
pure bimeron structure stabilization. A typical example of
the magnetic configuration corresponding to the S+B phase
is presented in Fig. 4 (top panel). The bimerons of different
sizes are located along the diagonals of the square lattice with
periodic boundary conditions. From the calculated topological
charge density plot, Fig. 4 (bottom panel), one can see that each
bimeron contains two merons and a rectangular stripe domain
in the middle part.

A similar mixed phase was simulated in Ref. [14] with the
two-dimensional nonlinear sigma model and was experimen-
tally observed at low temperatures in itinerant ferromagnets
with Dzyaloshinskii-Moriya interaction [23]; however, it was
identified as a combination of skyrmions and fragments of
helices. At the same time, from analytical calculations [24,25]
it is known that the mixed regimes do not represent the
ground state of the system at zero temperature, where only
the spin spiral, skyrmion lattice, and ferromagnetic phases
can be observed. Such a difference between analytical and
numerical solutions is due to the temperature effects. Indeed,
as was shown in Ref. [14] the meron phase appears at finite
temperature, since its entropy is much larger than that of the
spin spiral or skyrmion phase.

The width of observed bimerons corresponds to the diam-
eter of the skyrmion. The latter is controlled by the J

|D| ratio.
The mean length of bimerons increases with an increase of
DMI strength at a fixed magnetic field. On the other hand, the
bimeron length decreases with an increase of the magnetic field

value at the fixed DMI. In such a system setup it is impossible
to predict an exact length and location of a bimeron, which is
our main interest in this study.

Vacancy grid. The effect of point defects on the skyrmionic
lattice state attracts considerable attention mainly due to the
possibility to observe magnetic monopoles [26] predicted by
Dirac. Experimentally, it was also shown [27] that inlayer and

FIG. 4. Top panel: Fragment of the square lattice with L =
512 demonstrating the Monte Carlo solution obtained with the
parameters B = 0.6, |D| = 1.5, T = 0.02 (white cross in Fig. 2),
which corresponds to the S+B phase. Bottom panel: The calculated
topological charge density. Bimerons are marked with red ovals. All
the parameters are given in units of isotropic exchange interaction.
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FIG. 5. Fragments of the square lattice with L = 512 demonstrating the Monte Carlo solution of the spin model, Eq. (1), in the presence
of a periodic vacancy grid with cells in the form of squares (a), rhombus (b), and parallelogram (c). (d)–(f) give the corresponding topological
charge densities. Simulations were carried out at B = 0.4, J = 0.67, T = 0.014 [white cross in Fig. 2 (top panel)]. All the parameters are
given in units of DMI.

adatom defects in surface nanostructures can modify the energy
landscape and can be used for moving individual skyrmions in
the STM experiments.

Previous numerical studies [20] on the discrete lattices
revealed the formation of the bimerons in the presence of the
vacancies randomly distributed over the system. As proposed
in Ref. [20] on the basis of the previous theoretical [14]
and experimental [26] works, the presence of spin vacancies
is equivalent to the local magnetic field term in the spin
Hamiltonian. In this sense, the authors of Ref. [20] identified
the mechanism of the bimeron stabilization as the impact of
effective local magnetic fields introduced by spin vacancies.
However, a probabilistic formation of bimerons prevents one

FIG. 6. Monte Carlo solutions of the spin model, Eq. (1), on the
rhombic plaquette at B = 0 (a) and B = 0.4 (b). (c) The topological
charge density corresponds to (b). Bimerons are marked with red
ovals. Here J = 0.67, T = 0.014. All the parameters are given in
units of DMI.

from using such a system in practical applications. In this work
we mainly focus on the study of the topological spin configura-
tions in systems where vacancies have regular positions, which
opens a way for the creation of atomic-scale memory units. In
this respect, recent STM experiments [28] demonstrated an

FIG. 7. (a) Dependence of the Monte Carlo solution on the
magnitude of the magnetic field. Here J = 0.67, T = 0.014.
(b) Dependence of the topological structures on the J

|D| ratio. Here
B = 0.45, T = 0.014. All the parameters are given in units of DMI.
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FIG. 8. Demonstration of solution stability. (a) The bimeron (top)
and skyrmion (bottom) magnetic configurations obtained at B = 0.4
and B = 0.9, respectively. Here, T = 0.005 and J = 0.67. (b) Time
evolution of the prepared bimeron and skyrmion states after switching
the field off. The inset shows short-time evolution of the topological
structures. All the parameters are given in units of DMI.

unprecedented possibility to manipulate the vacancies in the
surface nanosystems for high-density storage of information.

Here we used a similar idea for stabilization of the bimerons
on the two-dimensional lattice. To demonstrate the effect of
vacancies insertion we choose the Hamiltonian parameters
near the border between the SkL and S+B phases. The
corresponding Monte Carlo solution for the lattice without
vacancies presented in Fig. 4 shows that the system is mainly
filled by the skyrmions with several bimeron structures. For
the same set of parameters the regular square grid of vacancies
created in the spin lattice leads to the formation of the bimerons
of the same size. However, there is still a fraction of the
skyrmions [Figs. 5(a) and Fig. 5(d)]. We found that the size
of the square vacancy grid cell should be close to the period of
the spin spiral in the initial lattice without defects. For instance,
in the considered case the diagonal of the vacancies grid cell
is equal to 5

√
2 in the units of the lattice constant, while the

period of the spin spiral is 4
√

2. With a further increase in
length, the bimerons also arise, but these configurations do not
exhibit a stable appearance of such spin structures.

A pure skyrmion or pure bimeron lattice can be stabilized
by forming a vacancy grid with rhombic or parallelogram unit
cells. As is demonstrated in Figs. 5(b) and Fig. 5(c) the choice
between pure bimeron and skyrmion phases can be made by
choosing the corresponding shape of the vacancy grid cell.
Importantly, the size of the grid cell must also be adjusted
to the spin spiral period length. For instance, the number of
magnetic atoms on the shorter diagonal of the parallelogram is

four, which is close to the period of spin spiral (4
√

2) formed
on the nondefective initial lattice at zero magnetic field.

Rhombic plaquette. Having simulated the lattices with
periodic boundary conditions, we are in a position to find
a shape of a finite spin cluster in which the pure bimeron
states are stabilized at finite temperatures and magnetic fields.
Figure 6 demonstrates such a plaquette that is a rhombic
fragment of the square lattice. At zero magnetic field we
observe a spin spiral state, Fig. 6(a). At constant ratio J/|D|,
the plaquette state can be switched between a bimeron pair, a
single skyrmion, and a fully polarized case by variation of the
external magnetic field [Fig. 7(a)].

In turn, the different values of the isotropic exchange
interaction at the fixed magnetic field of 0.45|D| can produce
three-bimeron, two-bimeron, or skyrmion state, as can be seen
from Fig. 7(b).

One of the fascinating properties of the spin clusters with
rhombic shape is that bimeron spin structures remain stable
when the magnetic field is instantly switched off. According
to the Monte Carlo results presented in Fig. 8, the skyrmion
number of the plaquette with starting bimeron configuration
fluctuates around 1.8, which is slightly smaller than the
saturated value of 2 at the finite magnetic field. In turn, the
single skyrmion stabilized at the magnetic field of 0.9|D|
transforms into another structure with nonzero topological
charge when the magnetic field is switched off. As can be
seen from Fig. 8(b), the new structure is characterized by one
skyrmion in the center of the plaquette and boundary spins that
are parallel to the skyrmion core magnetization. According to
our simulation results, strong fluctuations of the topological
charge are mainly related to fluctuations of the orientation of
the boundary spins.

Since without magnetic field such a bimeron state corre-
sponds to the local minimum of the system, it can be destroyed
by temperature fluctuations. For instance, the systems visual-
ized in Fig. 8(a) relax to a spin spiral state when the temperature
is increased from 0.005 to 0.012|D| (for the bimeron pair
state) or to 0.025|D| (for the skyrmion state). These results
are sensitive to the details of the Monte Carlo simulations. For
instance, in our scheme the new direction of a spin is chosen
by using the solid angle restriction of 10◦.

At last, the stability of the bimerons structures in the
connected rhombic clusters should be investigated in order
to use such systems in real applications, for instance as a
building block of nanoscale memory devices. The results
for the two-plaquette configurations with different number
of boundary spins having nearest neighbors belonging to
another plaquette are visualized in Fig. 9. The stable bimeron

FIG. 9. Example of connections between two rhombic plaquettes carrying a pair of bimerons. The number of contacting spins is one, three,
five, and six for (a)–(d), respectively. The parameters used in these simulations are J = 0.67, T = 0.014. The arrow denotes the direction of
the shift of the plaquettes with respect to each other. All the parameters are given in units of DMI.
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configurations in both plaquettes having 19 diagonal spins exist
while the number of contacting spins is less than six. We have
checked that the complete linking of two plaquettes leads to
the formation of a mixed skyrmion-bimeron state.

IV. CONCLUSIONS

We have shown that the two-dimensional bimeron lattice
can be stabilized in a controllable way by means of the regular
vacancies grid created in the spin lattice with competing
Dzyaloshinskii-Moriya and isotropic exchange interactions.
The size and shape of the vacancy grid cell define the type

and length of the topological magnetic structures in the spin
system. In the limiting case of the finite spin cluster one needs
to choose the rhombic shape to guarantee the formation of
bimerons. The obtained results can be used to guide future
scanning tunneling microscopy experiments aiming to control
the topological spin configurations in confined nanostructures.
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