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Finite-temperature behavior of a classical spin-orbit-coupled model for YbMgGaO4
with and without bond disorder
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We present the results of finite-temperature classical Monte Carlo simulations of a strongly spin-orbit-coupled
nearest-neighbor triangular-lattice model for the candidate U(1) quantum spin liquid YbMgGaO4 at large system
sizes. We find a single continuous finite-temperature stripe-ordering transition with slowly diverging heat capacity
that completely breaks the sixfold ground-state degeneracy, despite the absence of a known conformal field theory
describing such a transition. We also simulate the effect of random-bond disorder in the model, and find that
even weak bond disorder destroys the transition by fragmenting the system into very large domains—possibly
explaining the lack of observed ordering in the real material. The Imry-Ma argument only partially explains this
fragility to disorder, and we extend the argument with a physical explanation for the preservation of our system’s
time-reversal symmetry even under a disorder model that preserves the same symmetry.
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I. INTRODUCTION

The notion of the gapless U(1) quantum spin liquid has come
under extensive theoretical study in recent years [1–3]. Such
phases are similar in some ways to the more well-understood
gapped quantum spin liquids [4,5]—for example, they have
topological-defect-like excitations with nontrivial braiding
statistics—but unlike in the gapped case, these excitations
can be extended rather than be localized, leading to quasi-
long-range correlations similar to those found near a second-
order phase transition or in quantum electrodynamics [6].
This paradigm may also be useful for understanding cuprate
high-temperature superconductors [7].

Unfortunately, conclusive evidence of experimental realiza-
tions of such a phase remain elusive. In many candidate U(1)
spin liquid materials, the U(1) gauge field appears to be coupled
to fractionalized spinon excitations that form a Fermi surface
at low temperature [8–11]. The strongly spin-orbit-coupled
material YbMgGaO4 has recently come under both theoretical
[12–14] and experimental [15–21] study as a potential U(1)
spin liquid with such a spinon Fermi surface. The material
shows low-temperature magnetic heat capacity Cv ≈ T 2/3 [16]
in good agreement with theoretical predictions [8], no sign of
magnetic ordering down to 48 mK (despite a spin exchange
interaction energy of about 4 K) [17], and a continuum of
magnetic excitations [18,19], which support this picture.

However, recent density-matrix renormalization group
(DMRG) simulations suggest that a perfectly clean sample
of YbMgGaO4 should show stripe order at zero temperature
[22,23]. Reference [23] found that adding explicit disorder to
the model destroys the ground-state ordering, and proposed
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that the experimentally observed lack of ordering and other
spin-liquid-like effects actually arise from sample disorder.

In this paper, we use classical Monte Carlo simulations to
extend this line of argument to the finite-temperature regime.
We first perform finite-temperature Monte Carlo simulations
of the classical version of a widely used microscopic model
for YbMgGaO4 in order to establish the existence, nature, and
experimental signatures of the finite-temperature ordering tran-
sition(s). We then consider the effect of adding explicit disorder
to the Hamiltonian via a model in which the disorder strength
can be tuned continuously. Similarly to Ref. [23], we find that
even very weak disorder removes any finite-temperature phase
transition—even if the disorder model preserves time-reversal
symmetry, which could logically still be broken spontaneously.
We propose that, at least at the classical level, even infinitesimal
disorder removes the ground state’s long-range order. This
result supports our proposed disorder model as being realistic
for YbMgGaO4, and provides further evidence that effects less
exotic than spin-liquid physics may suffice to explain the lack
of experimentally measured ordering in the material.

The article is organized as follows. We introduce the micro-
scopic model below. Section II (largely summarizing previous
work) discusses the model’s classical zero-temperature phase
diagram and shows that there are six degenerate ground states
related by Z6 symmetry. Section III discusses our choice of
order parameter for measuring the sixfold symmetry breaking.
Section IV presents the results of our classical Monte Carlo
simulations on the clean model. We find only a single, contin-
uous symmetry-breaking transition at moderate temperature.
We present a theoretical analysis of this transition, but are
unable to determine its universality class. Section V presents
the results of our simulations when we incorporate explicit
disorder into the model. We find that infinitesimal disorder
destroys the phase transition, and offer an explanation based
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FIG. 1. The magnetic Yb3+ ions form a triangular lattice with
a lattice spacing of 3.4 Å. The nearest-neighbor bonds are oriented
parallel to the three directions ai . The four sublattices A, B, C, D

described in the main text are colored differently.

on a generalization of the Imry-Ma argument. Section VI
concludes.

A. The model

YbMgGaO4 consists of structurally clean layers of mag-
netic Yb3+ ions and nonmagnetic oxygen atoms separated at
8.4 Å by disordered Mg2+, Ga3+, and O2− ions. The Yb3+

ions in each layer form a structurally clean triangular lattice
(illustrated in Fig. 1) with a lattice spacing of 3.4 Å, so we
can neglect interlayer interactions and treat the system as
two-dimensional [15]. We set the lattice spacing equal to 1
throughout. The 4f electrons in the valence shell are quite
localized, so nearest-neighbor interactions should dominate.
(Recent experiments suggest that second-neighbor interactions
may be non-negligible [19,24], but we do not consider such
interactions in this work.) As with most rare-earth magnets,
spin-orbit (SO) effects are very important and the exchange
couplings are strongly anisotropic in both spin and real space
[25]. Each Yb3+ ion has 13 electrons in the 4f valence
shell, but the strong spin-orbit interaction breaks the 14-fold
energy degeneracy given by Hund’s rule down to an eightfold
degeneracy, and the electric crystal field (with point group D3d)
further splits the energy levels down to twofold-degenerate
Kramer’s doublets, which are separated by a large energy gap
of 420 K. The electronic degrees of freedom can therefore
be well approximated by a pseudospin-1/2 (as confirmed by
low-temperature magnetic entropy measurements of ln 2 per
spin) [16].

The system has the space symmetry group R3̄m, with
generators T1, T2, C3, C2, and I described in Ref. [12].
We will only consider the system in the absence of external
magnetic fields, and assume time-reversal symmetry as well.
Reference [15] found that the most generic nearest-neighbor
spin Hamiltonian invariant under this symmetry group is

H =
∑
〈ij〉

[
JzzS

z
i S

z
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where 〈ij 〉 denotes nearest-neighbor sites and S± := Sx ± iSy

[26]. The phase factor γij = γji equals 1, ei2π/3, and e−i2π/3
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illustrated in Fig. 1, respectively. The spatially isotropic Jzz

and J± terms constitute the usual XXZ model, while the J±±
and Jz± terms constitute the spin-orbit (SO) interaction (for
which Refs. [26,27] give a geometric interpretation).

Thermodynamic measurements suggest that for
YbMgGaO4, Jzz = 0.99 K and J± = 0.91 K. The SO
couplings are more difficult to estimate experimentally,
but electron spin resonance measurements suggest that
J±± = ±0.15 K and Jz± = ±0.05 K (the measurements
cannot determine the signs of the couplings) [15]. The
Hamiltonian (1) should also be a realistic model for several
other triangular antiferromagnets with strong spin-orbit
coupling, such as the rare-earth materials RCd3P3, RZn3P3,
RCd3As3, RZn3As3, and RO2CO3 [12].

II. CLASSICAL GROUND STATES

Finding even the classical ground state of the Hamiltonian
(1) is highly nontrivial. Switching the sign of Jz± is equivalent
to a 180◦ rotation about the z-axis in spin space, so we need
only consider Jz± � 0 [12]. A powerful tool for finding the
exact ground states of frustrated classical spin systems is the
Luttinger-Tisza theorem [28]. Unfortunately, the theorem is
only guaranteed to work when the spins lie on a Bravais lattice
and there is at least a continuous U(1) spin symmetry [29],
and the latter condition fails for our system. Nevertheless, the
Luttinger-Tisza theorem does give the exact ground state over
much of the phase diagram (see Appendix A for more details),
allowing us to create an approximate phase diagram illustrated
in Fig. 2 with three phases.

(1) If the SO couplings J±± and Jz± are zero, then the
system reduces to the XXZ model, which has a U(1) spin
symmetry. The estimates for Jzz and J± given above indicate
that YbMgGaO4 is in the easy-plane regime, so the Luttinger-
Tisza theorem gives that the ground states form a continuous
set of in-plane 120◦-order states. Slightly away from XXZ

point, the Luttinger-Tisza theorem fails. But the energy of the
120◦ order state does not actually depend on the SO couplings,
indicating that the 120◦-order states remain exact ground states
over some finite neighborhood of the XXZ point. This phase
therefore displays an emergent U(1) symmetry, despite the
Hamiltonian (1)’s only having discrete symmetry.

(2) IfJ±± is sufficiently negative, then the spins lie in thex-y
plane and form stripes that run along the principal directions of
the triangular lattice. We will refer to this phase as the “in-plane
SO phase.”

(3) If J±± is not strongly negative, then the spins again form
stripes. But in this case, they point perpendicular to the stripes
and partially out of the plane. If the stripes run parallel to the x

axis, as illustrated in Fig. 2, then the spins on one set of stripes
lie in the y-z plane in spin space, forming an acute angle with
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FIG. 2. Cross-section with J± = 0.915Jzz of the approximate
T = 0 phase diagram for the Hamiltonian (1) from the Luttinger-Tisza
ansatz. In the strong SO regime |J±±| � 0, there are six degenerate
stripe-ordered ground states. In the “in-plane SO phase” with J±± 	
0, the spins lie in the x-y plane and point along the stripes. In
the “out-of-plane SO phase” with J±± � 0 (and extending to weak
negative J±± for large Jz±), they point perpendicular to the stripes
and tilt out of the x-y plane (and so appear shorter when viewed
from above). For weak SO couplings J±±,Jz± 	 Jzz, the ground
state shows in-plane 120◦ order with an emergent continuous U (1)
symmetry in spin space. The two black dots in the SO phases represent
the Hamiltonians whose finite-temperature behavior is investigated in
this paper.

the +y axis and an obtuse angle θ with the +z axis, where

tan(2θ ) = Jz±
J±± + 1

4 (2J± − Jzz)
, θ ∈

(
1

2
π,π

)
. (2)

The spins on the other set of stripes point in the opposite
direction. We will refer to this phase as the “out-of-plane SO
phase.”

The phase boundaries in Fig. 2 are not exact, due to the
failure of the Luttinger-Tisza theorem in the regime of weak
but nonzero SO couplings. Reference [12] performed Monte
Carlo calculations on small (6 × 6 and 12 × 12) systems
and found good agreement. However, Ref. [29] uses a more
sophisticated generalization of the standard Luttinger-Tisza
approach and Monte Carlo simulations of larger systems to
argue for the existence of three small incommensurate phases
(which are difficult to identify from small systems) near the
phase boundaries illustrated in Fig. 2, each characterized
by multiple incomensurate ordering wave vectors. In this
work, we will not be concerned with the exact details of the
classical zero-temperature phase diagram (which is of course
of dubious experimental relevance for YbMgGaO4, which
probably has strong quantum fluctuations). Instead, we will
consider finite-temperature phase transitions, where quantum
fluctuations should be negligible, for couplings deep in the two
stripe-ordered spin-orbit phases (indicated by the two black
dots in Fig. 2), where the Luttinger-Tisza ansatz provably gives
the exact classical ground state.

III. SO PHASE ORDER PARAMETERS

In both SO phases, the six stripe-ordered ground states can
be indexed by two integers: b ∈ {1,2,3} specifying which prin-
cipal lattice direction ab the stripes run along, and p ∈ {0,1}
specifying the spin orientations within each stripe. Explicitly,
the spin at site r is

S(b,p)
r = (−1)peiqb ·r nb = (−1)p+�b(r)nb, (3)

where qb := (2π/
√

3) ẑ × ab is the M point at the center of
the Brillouin zone edge parallel to ab (see Appendix A), and
�b(r) := (2/

√
3)(ab × r)z is an integer that numbers the stripe

running in the ab direction that contains the site r . Time reversal
changes the value of p but not b. In the in-plane phase

nb := ab, (4)

and in the out-of-plane phase

nb := cos(θ ) ẑ × ab + sin(θ ) ẑ, (5)

where θ is given by (2).
This triangular spin-orbit-locked stripe order is fairly un-

usual, and the appropriate order parameter is not immediately
obvious. Over each of the four triangular sublattices A, B,
C, and D illustrated in Fig. 1, the spin orientations are
uniform within each ground state and different between the
six ground states. So one possible order parameter is the
average magnetization on a single sublattice, but we would
like to incorporate the configuration of the spins on all four
sublattices. To this end, consider the average dot product
between two spin configurations

{S} · {S′} := 1

N

∑
r

Sr · S′
r ,

where N is the total number of spins. The average dot product
between an arbitrary spin configuration S and a ground state
S(b,p) given by (3) is

{S} · {S(b,p)} = (−1)pnb · 1

N

∑
r

eiqb ·r Sr

= (−1)pnb · S̃(qb). (6)

Define ω := ei2π/3, and consider the complex quantity

�[{S}] :=
3∑

b=1

ωb−1{S} · {S(b,0)} =
3∑

b=1

ωb−1nb · S̃(qb). (7)

For the six ground states, � takes on values over the sixth roots
of unity (Fig. 3):

�[{S(b,q)}] = (−1)pωb−1.

The symmetry transformations that relate the physical ground
states are generated by S6 := C−1

3 I, which rotates the system
by π/3 about the z axis and reflects across the x-y plane.
The order parameter transforms as � → eiπ/3� under this
operation, so the ground state manifold has a Z6 symmetry
that is clear from the figure.
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FIG. 3. The complex order parameter � defined in (7) equals a
different sixth root of unity for each of the six stripe-ordered ground
states in the SO phases. Values of � depicted in the same color
correspond to ground state pairs related by time-reversal symmetry.

We can express � as a spatial average over a local order
parameter ψ(x) by rewriting (7) as

�[{S}] = 1

N

∑
r

[
Sr ·

(
3∑

b=1

(−1)�b(r)ωb−1nb

)]
. (8)

If we formally consider the sum in large parentheses as a
complex-valued spin configuration {C}, then this becomes
�[{S}] = {S} · {C}. A straightforward calculation shows that
C r is constant on each of the four sublattices, so � is a complex
linear combination of the four sublattice magnetizations, with
coefficients given in Appendix B. The on-site quantity in the
large brackets above is not uniform within each ground state, so
it is convenient to coarse-grain the spins to the N/4 plaquettes
illustrated in Fig. 1, which contain one spin from each of the
four sublattices. Denoting the location of a plaquette by x, we
define

ψ(x) := 1

4

D∑
s=A

Cs · Sx,s (9)

so that � = 1/(N/4)
∑

x ψ(x). In each ground state ψ(x) ≡
� is uniform and equal to a sixth root of unity.

IV. FINITE-TEMPERATURE BEHAVIOR
OF CLEAN SYSTEMS

Reference [12] studied the finite-temperature behavior of
the classical model (1) by performing classical Monte Carlo
simulations on very small (6 × 6 and 12 × 12) systems over a
wide region of the phase diagram. However, because the spins
in the classical model (1) are O(3) vectors whose orientations
can vary continuously, the model is very sensitive to thermal
fluctions and requires very large systems and many Monte
Carlo sweeps to equilibrate to the thermodynamic limit [30].
In this section, we report results of classical Monte Carlo
simulations for only two sets of couplings—one deep in each
of the SO phases of the T = 0 phase diagram—but on much
larger systems than those studied in Ref. [12], and with much
finer temperature resolution.

A. Monte Carlo simulation results

We chose the couplings

Jzz = 1, J± = 0.915, J±± = −0.9, Jz± = 0.5

and

Jzz = 1, J± = 0.915, J±± = +0.8, Jz± = 0.5

as representative points in the in-plane and out-of-plane SO
phases, respectively. (Jzz > 0,J± = 0.915Jzz represent exper-
imentally realistic values for YbMgGaO4 based on thermo-
dynamic measurements, but we chose SO coupling values
significantly larger than those suggested by experiment in order
to isolate the physical effects of strong SO interactions, as they
are less well-understood than the XXZ couplings. Further-
more, DMRG calculations suggest that quantum fluctuations
may stabilize the stripe order in YbMgGaO4, despite its SO
couplings’ being relatively weak from a classical standpoint
[23].) The critical behavior of the systems in both T = 0
phases turns out to be fairly similar. For each set of couplings,
we performed a detailed sweep of the temperature range
1.0 < T < 2.0 on L × L systems with periodic boundary
conditions for L = 46, 64, 90, and 128. We used the Metropolis
Monte Carlo algorithm with 4–10 × 105 equilibration sweeps
followed by 1–5 × 106 measurement sweeps, performing more
sweeps near the critical temperature to compensate for critical
slowing down.

1. Bulk thermodynamic quantities

The heat capacity and order parameter � for each system
are plotted as a function of temperature in Figs. 4 and 5. Both
phases show a single sharp transition at which the heat capacity
appears to be diverging with system size. Figure 5 shows
remarkably large finite-size effects; even for very large systems
of 16,384 spins, the ordering transitions are not sharp enough
to allow us to identify the critical temperatures by inspection.
We extracted the critical temperatures by plotting the Binder
ratios Q := 〈|�|2〉/〈|�|〉2 as a function of temperature for
several system sizes. These ratios are constructed to be scale-
independent at the critical temperature [31], and we found
that the different size systems’ curves crossed at the critical
temperatures

Tc = 1.5600 ± 0.0025

for the system in the in-plane phase and

Tc = 1.4900 ± 0.0025

for the system in the out-of-plane phase. In Fig. 6, we plot the
thermal distributions for the order parameter at temperatures
below and above the transitions.

Both thermal energy distributions (plotted in Fig. 7) are
single- rather than double-peaked at the transitions, indicating
that the transitions are continuous. Moreover, the heat capac-
ities diverge far more slowly than the volume-law divergence
expected at a first-order transition. (Each system size plotted in
Fig. 4 approximately doubles the previous plotted size, so if the
transition were first-order, then we would expect the height of
each curve’s peak to double the height of the previous curve’s
peak.)
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FIG. 4. Heat capacity per site for clean systems of various sizes in the (a) in-plane and (b) out-of-plane phases.

2. Spin structure factor

We also simulated the spin structure factor

S(k) := 1

N

∑
�r

C(�r)e−ik·�r , (10)

C(�r) := 1

N

∑
r

〈Sr · Sr+�r〉,

which can be compared with the results of scattering exper-
iments such as integrated inelastic neutron scattering. The
structure factors are shown in Fig. 8 for temperatures below and
above the critical temperature. In each subfigure, we indicate
by black dots (shown to scale) the endpoints of individual
reciprocal lattice vectors that contain a substantial fraction of
the total spectral weight, which always lie exactly at the M

points of the Brillouin zone. We plot the remaining spectral
weight as a heat map. Below the critical temperatures, one
particular symmetry-breaking state is spontaneously selected
during the equilibration stage, and the resulting long-range
order at one particular M point is reflected in the high spectral
weight indicated by the black dots.

We can estimate the connected correlation lengths ξ by
taking cuts along the edges of the Brillouin zone and fitting

the resulting curves to Lorentzian distributions

S(kM + q) ∝ 1

1 + (ξq)2
,

where kM represents that edge’s M point. (Below the critical
temperature, we neglect the single reciprocal lattice vector
indicated by the black dots, as the spectral weight at this
vector reflects the long-range order and we want the connected
correlation length.) We find excellent fits near the M points
for temperatures above the critical temperature, and also
below the critical temperature if we include a constant offset,
representing a uniform background arising from nonuniversal
short-distance physics. The fitted values of ξ for inequivalent
M points are shown in the figure. Even fairly high above the
critical temperature, the correlation lengths are a significant
number of lattice spacings, explaining the large finite-size
effects displayed in Fig. 5 and the difficulty of reaching the
thermodynamic limit.

B. Theoretical analysis of ordering transitions

As discussed above, the slow divergence of the heat capacity
and the single-peaked energy distribution at the transitions
indicate that both systems’ transitions are continuous and
should therefore show universal behavior. In this section, we
present two theoretical analyses of the ordering behavior—one

FIG. 5. Order parameter (7) for clean systems of various sizes in the (a) in-plane and (b) out-of-plane phases.
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FIG. 6. Thermal order parameter � distributions for the clean 46 × 46 system in the in-plane phase at temperatures (a) T = 1.0, (b) T = 1.5,
(c) the critical temperature Tc = 1.56, (d) T = 1.7, and (e) T = 2.0, and for the clean 64 × 64 system in the out-of-plane phase at temperatures
(f) T = 1.0, (g) T = 1.4, (h) the critical temperature Tc = 1.49, (i) T = 1.6, and (j) T = 2.0. The circle in each plot represents the unit circle
of the complex plane.

based on a comparison with previously studied Z6-symmetric
lattice models and one based on field theory.

1. Comparison with Potts-type models

We can compare our ordering transitions with the known
transitions in previously studied 2D nearest-neighbor classical
models whose ground state manifolds also have Z6 symmetry.
The models that have been studied in by far the most depth
are the spatially isotropic Potts-type models, in which each
spin can take on six possible configurations, with the nearest-
neighbor couplings respecting aZ6 symmetry but otherwise ar-
bitrary. These models have a very rich phase diagram [32–34],
with three (nonmulticritical) types of transitions: (1) a single
first-order Z6 breaking transition [35,36]; (2) a Kosterlitz-
Thouless (KT) transition at an upper critical temperature and
an inverted KT transition (which spontaneously breaks the
Z6 symmetry) at a lower critical temperature, surrounding
a “massless” phase in which the correlation functions are

power law with an exponent that varies continuously with
temperature [30,37–40]; and (3) separate second-orderZ2- and
Z3-symmetry breaking at two different temperatures (in either
order) [30].

The two KT transitions and the first-order transition all
meet at a multicritical “Fateev-Zamolodchikov” (FZ) line at
which the model is integrable [41]. This entire line has a single
renormalization-group (RG) IR fixed point, which is described
by the same minimal-model conformal field theory (CFT) as
the antiferromagnetic RSOS model [42–44].

Unfortunately, there are at least three reasons why these
models probably do not make a good analogy for our systems.
First, our systems’ ground-state manifolds have Z6 symmetry,
but it is not clear that the finite-temperature states below the
ordering transitions do as well—the structure of the ground
states suggests that thermal fluctuations might reduce the
symmetry toZ3 × Z2. Second, as we explain below, we believe
that the spin-orbit coupling, which is not captured by the

FIG. 7. Thermal energy distributions for the clean 128 × 128 systems in (a) the in-plane and (b) the out-of-plane phase. The distributions
are single-peaked as expected for a continuous transition, rather than double-peaked as expected for a first-order transition.
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FIG. 8. Spin structure factors S(k) defined by (10), and connected correlation lengths in lattice spacings, for the clean 46 × 46 systems in
the in-plane phase [(a) and (b)] and the out-of-plane phase [(c) and (d)], for temperatures T = 1.3 [(a) and (c)] and T = 1.7 [(b) and (d)]. The
spin structure factors at the critical temperatures look qualitatively similar to those for T = 1.7, except that a much higher fraction of the total
spectral weight lies exactly at the M points. The spectral weight at the M points indicated by black dots is far higher than the plotted scale:
they contain 62% and 56% of the total spectral weight for temperature T = 1.3, 32% and 34% at the critical temperatures (not shown), and 7%
for T = 1.7.

Potts-type models, is qualitatively important at the transitions
(even beyond the fact that it explicitly breaks the symmetry
group down to a discrete group and allows finite-temperature
ordering).

Third, our Monte Carlo results described in Sec. IV A 1
do not seem compatible with any of the Potts-model phase
transitions described above.

(1) The slow divergence of the heat capacity and the single-
peaked energy distribution at the transitions rule out first-order
transitions.

(2) However, the heat capacities do certainly appear to
diverge with system size (albeit slowly), and at a double
Kosterlitz-Thouless transition the heat capacity remains com-
pletely smooth in the thermodynamic limit (with an expo-
nentially flat nonanalytic contribution) [45]. In particular, our
Fig. 4 shows a much sharper peak than Fig. 6 of Ref. [40],
in which the heat capacity near an inverted KT transition
shows a negligible dependence on system size. Moreover, a
continuous U(1) symmetry emerges at an inverted KT transi-

tion [30,37,39,46], which would be indicated by a continuous
ring of order parameter concentration with nonzero radius, like
the one shown in Fig. 2(g) of Ref. [40]—but in our systems
the discrete sixfold symmetry is still very clear at the critical
temperatures in Fig. 6.

(3) The heat capacities plotted in Fig. 4 only show a single
peak, rather than the two separate peaks we would expect for
separate Z2 and Z3 symmetry breaking. Moreover, the order
parameter distributions plotted in Fig. 6 do not clearly indicate
that either symmetry subgroup is preferentially preserved at
the critical temperature. Finally, the natural order parameters
for these partial symmetry breakings are

1

N/4

∑
x

〈ψ(x)3〉 and
1

N/4

∑
x

〈ψ(x)2〉 (11)

for the upper Z2 or Z3 symmetry breaking, respectively, with
ψ(x) defined in (9). The former order parameter transforms
nontrivially under spatial inversion I [which generates the Z2
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FIG. 9. Order parameters for Z6, Z3, and Z2 symmetry breaking for 128 × 128 systems in the (a) in-plane and (b) out-of-plane phases. All
three symmetry subgroups appear to break together. The angle brackets denote a spatial as well as thermal average. The differences between
these curves and the corresponding curves for the smaller systems are smaller than the plot markers.

symmetry subgroup and takes ψ(x) → −ψ(x)] but trivially
under the plane rotation C3 [which generates the Z3 symmetry
subgroup and takes ψ(x) → e2πi/3ψ(x)], and the latter vice
versa. As shown in Fig. 9, both symmetries appear to be
broken at the same temperature (to within our simulations’
temperature resolution) as the Z6 symmetry, providing fur-
ther support for the existence of a single sixfold-symmetry-
breaking transition for each system. [Note that in Fig. 5 we plot
〈|ψ(x)|〉, but in Fig. 9 we plot |〈ψ(x)〉|. Calculating |〈ψ(x)〉|
effectively combines the thermal and spatial averages into a sin-
gle “spacetime” average, which greatly increases the effective
system size and sharpens the transitions, but a systematic finite-
size scaling analysis of |〈ψ〉| is more difficult than of 〈|ψ |〉.]

We also performed a finite-size scaling analysis on our data
by attempting to collapse the heat capacity and order parameter
curves to universal functions via the usual scaling equations

CL−α/ν = fC(tL1/ν), (12)

�Lβ/ν = f�(tL1/ν), (13)

where L is the linear size of the system and t := (T − Tc)/Tc is
the reduced temperature. If theZ2 andZ3 symmetry subgroups
were broken at separate temperatures, then we would expect
the lower transition’s critical exponents to be either the Ising
critical exponents α = 0, β = 1/8, ν = 1, or the Z3 universal-
ity class critical exponents α = 1/3, β = 1/9, and ν = 5/6
[36]. In the Ising case, (12) is replaced by

C

ln L
= fC(tL1/ν). (14)

The putative scaling collapses for these critical exponents
are plotted in Figs. 10 and 11. The order-parameter data
collapse is reasonably good for both universality classes. The
heat-capacity data collapse is fair for the in-plane system and
the Ising universality class (except very close to the transition,
where critical slowing down makes equilibration difficult),
but for the out-of-plane system it is not very good for either
universality class.

The transitions are very unlikely to be in the FZ universality
class, as the FZ transition is multicritical and our couplings are

not in any way fine-tuned. Nevertheless, we checked the data
scaling collapse for the FZ critical exponents α = ν = 2/3
[43,44], and found much worse agreement than for either the
Ising or Z3 critical exponents, as our systems’ heat capacities
diverge much more slowly than predicted by the fairly large
FZ critical exponent α = 2/3.

2. Field-theory analysis

The free energy has a minimum at each of the three inequiv-
alent M points of the Brillouin zone (Appendix A), so we need
only consider the vicinity of these points and can consider three
slowly varying order-parameter fields ϕb(q) := ϕ(k(b)

M + q),
where the valley index b labels the M point as in Sec. III
and |q| is much less than the inverse lattice spacing. A key
point (which the previous subsection’s models fail to reflect) is
that even though the spins are Heisenberg spins, the spin-orbit
coupling explicitly picks out a favored (unoriented) direction
±nb, where nb is given by (4) and (5). Since we are now
considering each M point individually, it is natural to replace
the microscopic order parameter (7) by the position-dependent
version of (6)

ϕb(x) = Sx · eiqb ·x nb = (−1)�b(x) Sx · nb,

which is a real scalar field that takes on the value (−1)p = ±1
in the two ground states corresponding to the M point b.

These coarse-grained fields have the Landau free energy
density

F =
3∑

b=1

[
1

2
(∇ϕb)2 + 1

2
r ϕ2

b + 1

4!
uϕ4

b

]

+ 1

4
v

3∑
b,b′=1

ϕ2
bϕ

2
b′ + . . . , (15)

with all scalar interactions marginal in 2D. (We have used the
Hamiltonian’s C3 and time-reversal symmetries, which take
ϕb to ϕb+1 and to −ϕb, respectively, to eliminate terms odd
in ϕb and to reduce the number of independent couplings). If
we collect the three scalar fields ϕb into an abstract Euclidean
3-vector �ϕ in “valley space,” we can rewrite the free energy
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FIG. 10. Heat capacity and order parameter collapses for the Ising critical exponents β = 1/8, ν = 1 via (14) and (13) for the clean system
in the [(a) and (b)] in-plane and [(c) and (d)] out-of-plane phases.

density as

F = 1

2
(∇ �ϕ)2 + 1

2
r �ϕ2 + 1

4!
u ( �ϕ2)2

+ 1

4

(
v − 1

3
u

) 3∑
b,b′=1

ϕ2
bϕ

2
b′ + . . . .

If v = u/3 (and the higher couplings are tuned similarly), then
the theory’s S3 × (Z2)3 symmetry is enlarged to a continuous
O(3) symmetry. Our numerical simulations indicate that only
one component ϕb acquires a nonzero expectation value as
we tune r ∝ T − Tc below zero, and that this transition is
continuous. These two results indicate that v > u/3 and u > 0,
respectively.

The free energy (15) describes three coupled Ising models.
We would like to know whether at the transition, the couplings
between the Ising models flow to weak or to strong coupling un-
der RG, which would affect the transition’s universality class.
Unfortunately, this question is difficult to study analytically, as
there are infinitely many marginal couplings and the IR fixed
point of the 2D scalar field theory describing a single critical
Ising model is already strongly coupled. [The strong coupling
between the three Ising models with coupling constant v > u/3
prevents us from using the standard mapping from a massless
2D real scalar field to a massless free Majorana-fermion field,

which would map the action (15) to a much more analytically
tractable SO(3)1 Wess-Zumino-Witten model [47].]

Reference [48] studied a discretized version of (15) and
concluded that the transition between the symmetric and fully
ordered phases is always first-order. The authors’ choice of
discretization effectively only captured ϕ4 interactions; it is
possible (though unlikely) that higher-order interactions could
be marginally relevant under RG and change the nature of
the phase diagram. Unfortunately, this possibility is difficult
to study analytically, as it would dependent sensitively on
the higher-order coupling constants and therefore on the
microscopic details of the model. Putting aside this subtlety, the
field-theory analysis seems to predict a first-order transition,
which is difficult to square with the numerical results described
above. The transitions’ universality class therefore remains an
open question.

V. FINITE-TEMPERATURE BEHAVIOR
OF DISORDERED SYSTEMS

Experimental samples of YbMgGaO4 are believed to have
significant random mixing of the nonmagnetic Mg2+ and Ga3+

ions, which may strongly effect the effective pseudospin g

factors, and potentially the magnetic couplings as well [49].
Reference [23] used DMRG on small clusters to study a
disorder pattern in a model similar to (1) in which the signs
of the (fixed-magnitude) J±± couplings are chosen randomly
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FIG. 11. Heat capacity and order parameter collapses for the Z3 universality class critical exponents α = 1/3, β = 1/9, ν = 5/6 via (12)
and (13) for the clean system in the [(a) and (b)] in-plane and [(c) and (d)] out-of-plane phases.

on each bond. The authors found that in certain regimes, the
ground state of the disordered model breaks into essentially
classical domains with different stripe orientations, while in
other regimes, it forms domains which are collective superpo-
sitions of two different stripe-ordered states. While they were
unable to reach large enough system sizes to conclusively
determine whether single domains could grow extensively,
they proposed that the disordered model’s ground state lacks
long-range order.

We take a similar line of approach, but with a less drastic
disorder model. Rather than flipping the sign of any couplings,
we chose a model in which we randomly and independently
multiply each bond strength by a number uniformly distributed
on the interval [1 − �,1 + �] for some non-negative param-
eter � that quantifies the disorder strength. The case � = 0
corresponds to no disorder, and if � � 1 (the only regime that
we consider), then none of the bonds change between being
anti- and ferromagnetic. Like Ref. [23], we do not present
any precise physical argument to support this model, but we
believe that the results should not depend sensitively on the
details of the disorder—however, we emphasize the important
point that our disorder model does not introduce any random
fields, and so preserves exact time-reversal symmetry (like
Ref. [23]’s model). The effect of bond disorder on the standard
Potts model has been studied extensively via renormalization-
group methods and numerics [50], but to our knowledge, bond
disorder in spin-orbit-coupled models has only come under

theoretical study very recently [23,51–54]. As we discuss
below, we expect the effects of disorder to manifest themselves
very differently in the SO case.

Figure 12 shows the heat capacity in the presence of fairly
weak disorder. Each system is averaged over ten disorder real-
izations. (The systems are large enough and the disorder weak
enough that the disorder self-averages well, and converged
thermodynamic quantities show very little variation between
realizations. However, even the light disorder significantly
increases the thermal equilibration times, so the thermal rather
than the disorder averaging is the numerical bottleneck that
makes the curves in Fig. 12 less smooth than the clean sys-
tems’ in Fig. 4. The parallel-tempering Monte Carlo sampling
algorithm is typically more effective in strongly disordered
systems than the Metropolis algorithm that we used, and may
be able to overcome these thermalization barriers; we leave this
possibility for future work.) Finite-size effects are important
over a much broader temperature range than in the clean case
(e.g., the curves for the 46 × 46 systems are noticeably shifted
to the right relative to the larger systems’), suggesting that
even light disorder greatly increases the connected correlation
length.

The diverging peak at the critical temperature has com-
pletely vanished, and the heat capacity curve appears to have
reached a smooth thermodynamic limit, suggesting the absence
of any phase transition at this disorder level. Measuring the or-
der parameter in the disordered system is challenging because
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FIG. 12. Disorder-averaged heat capacity per site for (a) the in-plane-phase system at disorder strength � = 0.3 and (b) the out-of-plane-
phase system at disorder strength � = 0.2.

it takes an extremely large number of sweeps to equilibrate.
For both systems, the order parameter is non-neglible at low
temperatures at the system sizes that we were able to reach,
but its magnitude decreases sharply with increasing system size
and appears to vanish in the thermodynamic limit. Together,
these results suggest that these disordered systems do not
display long-range order at any positive temperature.

The curves remain similar for lower disorder strengths, with
the peak in the heat capacity greatly diminished relative to
the clean case. As we explain below, we conjecture that for
any positive disorder strength, the heat capacity of very large
systems will eventually saturate at a finite value and there will
be no phase transition, although we were unable to reach that
saturation size in the case of very weak disorder.

Part of the destruction of long-range order in the disordered
system is straightforward to understand via a generalization
of the argument given by Imry and Ma for the ground state of
the classical random-field Ising model (RFIM) in d dimensions
[55]. In this model, large domains of linear size L have random
net field imbalances that scale as Ld/2, so by locally ordering
into a domain aligned with the nearby field imbalance, the
system can gain an energy of o(Ld/2), at the cost of a domain
wall whose energy scales as Ld−1. For d > 2, the domain
wall cost dominates and the ground state remains long-range
ordered, but for d � 2 the ground state fractures into multiple
large domains for arbitrarily weak disorder. This argument was
later made completely rigorous [56].

Reference [56] also demonstrates that the finite-temperature
ordering transition of the two-dimensional classical random-
bond Potts model (RBPM) does survive at weak disorder
(although for n > 4, when the clean system’s transition is
first-order, the bond disorder “rounds” it to a second-order
transition [57]). The RBPM might initially seem to be a better
analogy than the RFIM is for our bond-disordered model (1),
but the presence of spin-orbit coupling in our model actually
makes it more closely analogous to the RFIM: the key point
is that in both our model (1) and the RFIM, the disorder
couples directly to the order parameter and explicitly breaks
the Hamiltonian symmetry that is spontaneously broken in
the clean case [53,58]. This is not the case in the RBPM,
where the bond disorder preserves the exact Zn spin-space
symmetry.

We therefore understand why our model probably cannot
display long-range stripe order at any temperature. For any
given disorder realization, there are large domains in which
the bonds parallel to one of the a1, a2, or a3 directions happen
to be significantly stronger than the bonds parallel to the other
two directions. (In the terminology of Sec. III, each domain
has a preferred value of b or color in Fig. 3.) The system
locally orders into stripes running along that domain’s favored
direction, but since different domains have different favored
directions, long-range stripe order is not possible. Since these
locally favored directions are determined by the quenched
disorder realization, which explicitly breaks the Hamiltonian’s
symmetry, each domain’s value of b does not fluctuate over
time, nor do the domain wall locations fluctuate very much.
The disorder strength sets the scale of the domain sizes, and
the system must contain many domains in order for the heat
capacity to saturate and the order parameter to vanish. In
Fig. 13, we show representative snapshots of parts of the
in-plane-phase system, with all three domain types clearly
visible in the displayed region. Note that even at the quite strong
disorder strength � = 0.8, the domains are still very large,
which explains why we need an appreciable disorder strength
to observe the destruction of long-range order in our systems.

As mentioned above, our disorder model preserves exact
time-reversal (TR) symmetry, just as the bond disorder in
the RBIM preserves exact Zn symmetry. A given disorder
realization will create domains which favor an unoriented
direction for the stripes to run, but no favored orientation
of spins within each stripe. (In the terminology of Sec. III,
a given domain does not have a preferred value of p.) The
Imry-Ma argument therefore still allows for the possibility of
a (potentially rounded) phase transition in which TR symmetry
is spontaneously and globally broken, just as the RBPM still
has a finite-temperature transition in the presence of bond
disorder that does not couple directly to the order parameter.
The simplest global TR-symmetry-breaking pattern would be
one in which the system spontaneously chooses a single value
of p for all the domains—in other words, it locally aligns into
either the three ground states indicated by circles in Fig. 3,
or the three indicated by squares. The local order parameter
corresponding to this TR symmetry breaking would be the
quantity 〈ψ(x)3〉 introduced in (11) in the context of the clean
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FIG. 13. Snapshots of part of the in-plane-phase system at temperature T = 1.0 in the case of (a) no disorder and (b) strong disorder
� = 0.8. (a) displays visible long-range order with stripes running parallel to the a3 direction. (b) shows the intersection of three domains
whose stripes run parallel to the a1 (right), a2 (bottom left), and a3 directions (top left), with the domain walls indicated by red dashed lines.

system’s ground state manifold’s Z2 symmetry being broken
at a strictly higher temperature than a Z6 → Z2 transition, as
cubing the order parameter removes the dependence on the
domain type b.

Nevertheless, we see no sign of such a TR-symmetry
breaking transition in our data. Figure 12 does not show
any sharp peak in the heat capacity, and the putative order
parameter 〈ψ(x)3〉 appears to go to zero with increasing system
size just as quickly as 〈�〉 ≡ 〈ψ(x)〉, which the Imry-Ma
argument guarantees will vanish in the thermodynamic limit
of a disordered system.

We believe that the fragmentation of the ground state into
domains is the explanation for this lack of homogeneous TR-
symmetry breaking. In the case of the weakly bond-disordered
Potts model, it is generically possible to connect any two spins
by a chain of ferromagnetic bonds, even if some are weak,
so faraway spins can always indirectly influence each other.
But in our system, two faraway a1-type domains are typically
completely separated by a “wall” of a2 and a3 type domains, so
there is no way for them to coordinate their local TR-symmetry
ordering and establish long-range order. [Indeed, a calculation
shows that in our model, unlike the clock model, domain
walls that run parallel to the principal axes have equal energy
whether they separate two partially aligned domains (whose
order paramers differ by 60◦) or two partially anti-aligned do-
mains (whose order parameters differ by 120◦). Since adjacent
domain types have little reason to consistently prefer either
partial alignment or partial antialignment, two domains of the
same type b effectively cannot “communicate,” even indirectly,
across domains of a different type b′.] So even though our dis-
order model does not directly break TR-symmetry as it does the
sixfold symmetry, the spin-orbit coupling causes it to indirectly

destroy the possibility of spontaneous long-range TR-breaking
order via the same mechanism of domain fragmentation—a
phenomenon that does not occur in the RBPM.

The Imry-Ma argument only rules out long-range stripe
order, but does not rule out the possibility of inhomogeneous
local frozen ordering, i.e., a cluster-spin-glass (CSG) phase. A
rough physical picture for a state in this phase would have each
domain independently freezing into a local value of p, which
would not fluctuate over time. A transition to such a phase
would not be captured by either of our choices of homogeneous
order parameter 〈ψ(x)〉 or 〈ψ(x)3〉. Such a transition would
not be visible in our heat capacity measurements either,
because the heat capacity per site does not diverge. However,
while the issue is not completely settled, short-ranged two-
dimensional disordered classical magnets do not appear to
support finite-temperature CSG phases [59,60], so in our model
the value of p probably does fluctuate over time within each
domain. However, recent work has studied the possibility of
both CSG and more exotic “valence-bond-glass” order in the
quantum ground state of YbMgGaO4 [54] and closely related
materials [61]. Other recent work has considered a similar
bond-disordered spin-orbit-coupled model with six degenerate
classical ground states on the 3D pyrochlore lattice, and found
a CSG phase over a quite wide range of intermediate disorder
strength, surrounded by a long-range-ordered phase at weak
(but positive) disorder and a completely unordered paramagnet
at strong disorder [53].

VI. CONCLUSION

Our Monte Carlo simulations of the classical version of the
model (1) for YbMgGaO4 on quite large systems indicate a
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single ordering transition from each spin-orbit-coupled phase,
at which the sixfold symmetry is spontaneously broken into
stripe order—although the correlation lengths and correspond-
ingly the finite-size effects are very large—in agreement with
DMRG simulations indicating that the quantum ground state
of the clean system is also stripe-ordered [23]. The ordering
is clearly reflected in the spin structure factors and should
be detectable by scattering experiments. The single-peaked
energy distributions and slow divergences of the heat capacity
suggest that the transitions are continuous but not smooth
(i.e., they are finite-order rather than Kosterlitz-Thouless-like).
But we do not know of any nonmulticritical 2D CFT that could
describe the systems’ apparent single critical point, and a field-
theory argument seems to indicate that the transitions should
be first-order, so we are unable to identify the transitions’
universality class.

Adding weak time-reversal-symmetry-preserving bond dis-
order removes any finite-temperature ordering transition, again
in agreement with DMRG results for the quantum ground state
(which considered much stronger disorder) [23]. The Imry-
Ma argument shows that infinitesimal bond disorder destroys
the possibility of spontaneous long-range stripe order by
fragmenting the ground state into (extremely large) domains.
We extend the argument to claim that in the spin-orbit-coupled
case, the same domain fragmentation mechanism also indi-
rectly prevents the possibility of spontaneously breaking the
remaining time-reversal symmetry which survives the addition
of disorder. This result supports both the validity of our disorder
model for the material YbMgGaO4, and Ref. [23]’s case that
disorder effects rather than spin-liquid physics may explain the
observed lack of ordering in the material.
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APPENDIX A: CLASSICAL GROUND STATE

The Luttinger-Tisza theorem can be used to solve certain
classical spin systems of the form

H =
∑
i,j

∑
μ,ν

J
μν

ij S
μ

i Sν
j , (A1)

where i and j range over lattice sites 1, . . . ,N , μ and ν over
the {x,y,z} directions in spin space, and J

μν

ij ≡ Jμν(i − j )
is translationally invariant. The idea is to relax the extensive
number of normalization constraints Si · Si = 1 (no sum on i)
to the weaker single constraint that the spin norms average to
1, i.e.,

1

N

N∑
i=1

Si · Si = 1, (A2)

and minimize the Hamiltonian subject to this looser constraint.
If each spin in the resulting formal spin configuration happens
to be correctly normalized (which is sometimes but not always
the case), then the configuration is the exact ground state of
the original problem.

Extremizing the Hamiltonian (A1) subject to the constraint
(A2) gives the eigenvalue equation∑

j,ν

J
μν

ij Sν
j = λS

μ

i (A3)

(where λ is a Lagrange multiplier), which is still nontrivial
to solve in general. Typically, one makes the Luttinger-Tisza
ansatz

Sμ
r = Aμ cos(k · r − δμ). (A4)

If the lattice is a Bravais lattice (one site per unit cell), then
under this ansatz, (A3) reduces to the nonlinear equation∑

ν

J̃ μν(k)Aν cos(k · r i − δν) = λ

N
Aμ cos(k · r i − δμ), (A5)

where

J̃ μν(k) := 1

N

∑
j

J
μν

ij e−ik·rj

is the Fourier transform of J
μν

ij . If the Hamiltonian has a
U(1) spin-space symmetry, then for directions μ and ν in the
isotropic subspace, Jμν(k) = J (k)δμν and λ = NJ̃μν(k) and
we can always find phase offsets δν that normalize all the Si .
Another tractable special case is when δμ ≡ δ, in which case
(A5) reduces to the eigenvalue equation for Jμν(k). However,
in this case, the ansatz (A4) is only correctly normalized if
the lowest eigenvalue of J̃ μν is minimized at a commensurate
point in the Brillouin zone.

For our system, at the XXZ point on the phase diagram
with the SO couplings set to zero, J̃ (k) is minimized at the
K points at the corners of the Brillouin zone, corresponding
to 120◦ order, with a continuous degree of freedom in the
relative phases between the δμ corresponding to the U(1)
symmetry. Slightly away from the XXZ point, the wave
vector k that minimizes the lowest eigenvalue of J̃ μν becomes
incommensurate and the Luttinger-Tisza theorem fails.

However, for sufficiently large SO couplings (slightly
outside the phase boundaries illustrated in Fig. 2), the low
symmetry of the strong SO interactions “locks” the ground-
state wave vector into the commensurate M points at the
centers of the Brillouin zone edges, corresponding to stripe
order. The lowest eigenvalues of J̃ (kM ) cross at the transition
between the two SO phases. For the ground state of the
in-plane SO phase, the bonds within each stripe (with energy
2J±± + 2J±) are stronger than the bonds between stripes
(with energy J±± − 2J±). For the ground state of the out-
of-plane SO phase, the polar angle θ begins at a value less
than π − (1/2) arccos(1/3) = 144.7◦ at the phase boundary
J±± ≈ −Jz±/(2

√
2) and decreases monotonically to π/2 with

increasing J±±. The bonds within stripes are stronger for small
Jz±, but the bonds between stripes are stronger for large Jz±.

The approximate phase boundaries in Fig. 2 represent the
crossings of the three phases’ classical ground-state energies.
The transitions are all first-order. Table I of Ref. [22] gives the
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exact closed-form expressions for the classical ground-state
energies, phase boundaries, and (for the out-of-plane SO phase)
the canting angle out of the plane.

APPENDIX B: ORDER PARAMETERS

The formal complex vector field {Cr} defined by the inner
sum in (8) depends only on which sublattice the site r belongs
to. In the in-plane SO phase, is it given by

CA = 3

2
(1,i,0), CB =

(
1

2
, − 3

2
i,0

)
,

CC =
(
−1 −

√
3

2
i, −

√
3

2
,0

)
, CD =

(
−1+

√
3

2
i,

√
3

2
,0

)
,

and in the out-of-plane SO phase, by

CA = 3

2
sin(θ )(−i,1,0),

CB =
(

3

2
i sin θ,

1

2
sin θ,2 cos θ

)
,

CC =
(√

3

2
sin θ,

(
−1 −

√
3

2
i

)
sin θ,(−1 + i

√
3) cos θ

)
,

CD =
(

−
√

3

2
sin θ,

(
−1 +

√
3

2
i

)
sin θ,(−1 −

√
3i) cos θ

)
,

where θ is defined in (2).
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