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Phase dynamics of oscillating magnetizations coupled via spin pumping
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A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two
ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion
of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase
synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation
around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current
region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on
the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the
oscillation direction, clockwise or counterclockwise, of the magnetizations.
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I. INTRODUCTION

Coupled dynamics of magnetizations [1–6] in a magnetic
multilayer via spin pumping [7–11] has provided new insight
of the relaxation mechanism in nanostructured ferromagnets.
The spin pumping has been investigated by measuring the
linewidth of the power spectrum of ferromagnetic resonance
(FMR). For example, in a magnetic trilayer consisting of two
ferromagnets separated by a thin nonmagnet, an appreciable
increase in the linewidth was found when the resonance fields
of two ferromagnets were well separated, whereas a reduction
of the linewidth was observed when the resonant fields were
close to each other [3]. This is because the in-phase processions
of the magnetizations result in the cancellation of the spin
pumping. A giant enhancement of the damping for an antiphase
precession mode was also theoretically predicted in the trilayer
system [5]. These results indicate that the phases of the mag-
netizations, or strictly speaking phase difference, play a key
role in the coupled magnetization dynamics via spin pumping.

Recently, the coupled dynamics of the magnetizations
has attracted much attention from viewpoints of nonlinear
science and practical applications [12–15]. An assemblage of
spin torque oscillators (STOs) coupled through the magnetic
[16–20] and/or electric [21–26] interactions, or a forced and
self-interacted STO, is an interesting example of a synchro-
nized system [27–31]. In an array of STOs connected to each
other proposed in Ref. [14], for example, the spin pumping
may be another and unavoidable mechanism of the coupling
because the STOs inject spin currents to each other through a
common electrode via spin pumping, as in the case of FMR
experiments. Therefore, we are motivated to investigate what
kind of phase dynamics is induced in STOs as a result of the
coupling via spin pumping. Note that there is an important
difference between FMR in a ferromagnetic multilayer and the
synchronization of STOs. The FMR is a harmonic oscillation
of the magnetization excited by an oscillating magnetic field.
Importantly, in principle, the phases of the magnetizations in
a multilayer can be independently controlled by tuning those
of the microwaves applied to each layer. On the other hand, an
STO is a nonlinear oscillator excited by a direct current. In a

mutual synchronization of STOs, the phases of the oscillators
are determined as a result of the interaction among the STOs.
The phase dynamics in STOs caused by spin pumping however
has not been studied yet.

In this paper, we develop a theoretical formalism to simul-
taneously solve equation of motion of the magnetizations in
two ferromagnets and the spin transport equation originated
from spin pumping. Applying the formalism to an in-plane
self-oscillation of the STO around the easy axis, the spin
pumping is found to induce an in-phase synchronization of the
magnetizations. On the other hand, for an out-of-plane self-
oscillation around the hard axis, the spin pumping leads to an
in-phase synchronization in a small current region, whereas an
antiphase synchronization is excited in a large current region.
An analytical theory based on the Landau-Lifshitz-Gilbert
(LLG) equation indicates that the phase difference stabilized
by the spin pumping is related to the oscillation direction of
the magnetization.

The paper is organized as follows. In Sec. II, we develop a
general formalism to solve the LLG equation in the presence of
spin pumping. Section III shows the results of the numerical
simulation for the phase synchronizations oscillating around
an easy and hard axis. The phase difference in a steady state is
discussed in Sec. IV based on an analytical theory of the LLG
equation. Section V shows the summary of this work.

II. LLG EQUATIONS IN THE PRESENCE
OF SPIN PUMPING

In this section, we show a formalism to solve the LLG
equation in the presence of spin pumping.

A. LLG equation

Let us imagine two ferromagnets Fk (k = 1,2) connected by
a nonmagnet N having the spin diffusion length longer than the
distance between the ferromagnets. We use the suffixes such
as k, Fk , and N to distinguish the quantities related to the ferro-
magnet Fk , nonmagnet N, and /or their interface Fk/N. At this
point, we will not specify any properties of the ferromagnets,
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FIG. 1. Schematic view of a possible situation in this study. The
STO consists of the free (Fk) layer, pinned layer, and external voltage.
The electric current excites the self-oscillation of the magnetization
in the free layer through spin-transfer effect. Simultaneously, the spin
currents generated by the spin pumping flow in the nonmagnetic
connector N, and lead to a coupled motion of the magnetizations.
Note that electric current does not flow in the nonmagnetic connector
because the electric potentials at the top surfaces of the free layers are
the same.

such as the anisotropy and the shape, for generality. We denote
the unit vector pointing in the magnetization direction of the
Fk layer as mk . The magnetization dynamics in the Fk layer is
described by the LLG equation,

ṁk = −γ mk × Hk + α0mk × ṁk + τ STT
k + τ SP

k , (1)

where γ and α0 are the gyromagnetic ratio and the intrinsic
Gilbert damping constant, respectively. Here, the intrinsic
damping is the damping in the absence of the spin pumping.
The explicit forms of the magnetic field Hk will be given
in Sec. III when we study the coupled dynamics of the
magnetization for several systems.

Since the spin pumping occurs as a result of magnetiza-
tion dynamics, an external torque should be applied to the
ferromagnet. As mentioned in Sec. I, we are interested in
the coupled dynamics of STOs. Therefore, we assume that
the magnetization dynamics is excited by a spin torque τ STT

k .
Figure 1 shows a possible situation, where each STO consists
of a free (Fk) layer, a pinned layer, and an external voltage.
The electric current supplied from the voltage excites the spin
torque on the magnetization in the free layer. The top surfaces
of the free layers are connected by the nonmagnet N. Since
the electric potentials of the free layers at their surfaces are the
same, we can assume that the electric current does not flow
in the nonmagnet N. The spin current generated by the spin
pumping can, however, flow in the nonmagnet, as in the case of
FMR experiments [3]. The spin torque formula is given by [32]

τ STT
k = − γ h̄ηj

2eMd
mk × (p × mk), (2)

where η is the spin polarization of the current density j

injected into the Fk layer. The positive current is defined
as the electrons flowing from the free to pinned layer. The
direction of the spin polarization is denoted as p (|p| = 1). The
saturation magnetization and thickness of the ferromagnet are
denoted as M and d, respectively.

When the magnetization dynamics is excited by τ STT
k , the

spin pumping excites another spin torque given by [1]

τ SP
k = γ

MV
mk × [(

Ipump(k)
s + IFk→N

s

) × mk

]
, (3)

where Ipump(k)
s is the spin current pumped from the Fk layer

[10], whereas −IFk→N
s is the backflow [11,33] originated from

the spin accumulation μN in the nonmagnet. The volume of
the ferromagnet is denoted as V . The explicit forms of Ipump(k)

s

and IFk→N
s are given by

Ipump(k)
s = h̄

4π
gr(k)mk × ṁk, (4)

IFk→N
s = −1

4π
[g∗

k (mk · μN)mk + gr(k)mk × (μN × mk)], (5)

where gr(k) is the real part of mixing conductance at the Fk/N
interface [33]. We neglect the imaginary part of the mixing
conductance because it is usually much smaller than the real
part [34]. Another dimensionless conductance g∗

k is related
to the interface resistance r at the Fk/N interface, as well as
the relaxation of the longitudinal spin current inside the ferro-
magnet; see Appendix A. We assume that the spin-relaxation
scattering in the nonmagnet is weak and, therefore, the spin
current inside the nonmagnetic connector is conserved, i.e.,∑

k=1,2

[
Ipump(k)

s + IFk→N
s

] = 0. (6)

The spin accumulation in the nonmagnet is determined by
solving Eq. (6) with Eqs. (4) and (5). The explicit form of μN
is given by Eq. (B3), or equivalently Eq. (B4), in Appendix B.
We should note here that μN is spatially uniform due to
the assumption of the weak spin-relaxation scattering in the
nonmagnet. Substituting Eq. (6) into Eq. (3), we can calculate
the spin torque τ SP

k due to the spin pumping.
Solving Eq. (6) with Eqs. (4) and (5) with respect to μN,

and substituting its solution to Eq. (3), Eq. (1) becomes

L
(

ṁ1

ṁ2

)
=

(−γ m1 × H1 + τ STT
1

−γ m2 × H2 + τ STT
2

)
, (7)

where L is a 6 × 6 matrix. The components of L depend on
the conductances g∗

k and gr(k) characterizing the amount of
spin current in the nonmagnetic connector and are explicitly
given in Appendix B for general systems. When the material
parameters of two ferromagnets are identical, the matrix L is
given by

L = Î + α0

(
M1 03

03 M2

)
+ α′

(
M1 03

03 M2

)

+α′
(

N(1) − N′
(1,1) N(2) − N′

(1,2)
N(1) − N′

(2,1) N(2) − N′
(2,2)

)
, (8)

where Î is the 6 × 6 unit matrix, and α′ is defined as

α′ = γ h̄gr

4πMV
. (9)

A 3 × 3 matrix Mk (k = 1,2) is defined as

Mk =
⎛
⎝ 0 mkz −mky

−mkz 0 mkx

mky −mkx 0

⎞
⎠, (10)

whereas 03 is the 3 × 3 zero matrix. The first and second terms
on the right hand side of Eq. (8) correspond to the term 1 −
α0mk× in Eq. (1). The third term in Eq. (8) corresponds to the
term related to Ipump(k)

s in Eq. (3) and is the enhancement of the
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Gilbert damping constant due to the spin pumping for a single
ferromagnet [10]. On the other hand, the last term in Eq. (8)
comes from the term related to IFk→N

s in Eq. (3). The (a,b)
(a,b = 1,2,3 or x,y,z) components of 3 × 3 matrices N(�) and
N′

(k,�) are given by

N(�)ab = grεbcdK
−1
ac m�d, (11)

N ′
(k,�)ab =

∑
c=x,y,z

mkcmkaN(�)cb, (12)

where εabc is the Levi-Civita asymmetric symbol (ε123 or
εxyz = +1), whereas K−1

ab is the (a,b) component of a 3 × 3
matrix K−1 given by (see also Appendix B)

K−1
ab = (1 − ν2)δab + (1 + ν)ν(m1am1b + m2am2b)

2gr[1 − ν2(m1 · m2)2]

+ ν2ea · (m1 × m2)eb · (m1 × m2)

2gr[1 − ν2(m1 · m2)2]
. (13)

Here, ea (a = x,y,z) is the unit vector pointing in the a

direction, whereas ν = (gr − g∗)/(gr + g∗) [1]. Note that the
off-diagonal components, N(2) − N′

(1,2) and N(1) − N′
(2,1) in

Eq. (8), lead to a coupled motion of the magnetizations. In
Sec. III, we solve Eq. (7) for the coupled STOs to investigate
the role of spin pumping on the phase dynamics of the
magnetizations.

B. Approximated formula of torque due to spin pumping

We should note here that the explicit forms of τ SP
k have been

obtained for specific cases [1,5,35,36]. For example, when
magnetizations oscillate around a common z axis with a small
amplitude and gr(1) = gr(2), mkamkb (a,b = x,y) in Eq. (13) is
the higher order term of the small amplitude, and m1 × m2 �
0. This means that the off-diagonal components of Kab are
negligible and K−1

11 = K−1
22 � 1/(2gr). Then, we find that

μN � h̄

2
(m1 × ṁ1 + m2 × ṁ2). (14)

Since m1,m2 � +ez, we can also assume that mk · μN � 0
up to the first orders of mkx and mky . We then notice that τ SP

k

is approximated as

τ SP
k � α′

2
(mk × ṁk − mk′ × ṁk′), (15)

where (k,k′) = (1,2) or (2,1). Equation (15) is the spin torque
due to the spin pumping obtained in Ref. [2]. The first term on
the right hand side of Eq. (15) can be regarded as an enhance-
ment of the Gilbert damping constant. On the other hand, the
second term induces the coupled motion of the magnetizations.

We emphasize that these analytical formulas are obtained
by assuming specific alignments of the magnetizations. For
example, Eq. (15) is valid only for the small amplitude
oscillations around a common axis. It was shown for a different
situation that the spin pumping affects not only the damping
but also the frequency [35], implying that τ SP

k has a projection
to the direction of ṁk . On the other hand, we are interested
in the magnetization alignment after the spin pumping has
induced the coupled motion of magnetizations. Therefore, we
do not use any assumption of the magnetization alignment nor

analytical expression of τ SP
k in the numerical simulation shown

in Sec. III. We, simultaneously however, note that Eq. (15) is
useful to understand analytically the phase synchronization
shown below; see Sec. IV.

We also note that Eq. (15) is an approximated solution
of the torque when m1,m2 � +ez, and must not be used
directly in the numerical simulation of the LLG equation. The
LLG equation assumes that the norm of the magnetization,
|mk| = 1, is conserved, indicating that all torques in the LLG
equation should be orthogonal to the direction of mk . In
general, however, the second term of Eq. (15) has a finite
projection to the direction of mk , i.e., mk · (mk′ × ṁk′) �= 0,
and as a result, the norm of the magnetization is not conserved
in Eq. (15). Therefore, even for the situation in which Eq. (14) is
valid, the second term on the right hand side of Eq. (15) should
be replaced by −(α′/2)mk × [(mk′ × ṁk′) × mk] when it is
applied to the numerical simulation.

III. NUMERICAL SIMULATION OF THE LLG EQUATION

In this section, we solve Eq. (7) numerically and investigate
the coupled motion of the magnetizations. We should note that
the STOs are typically classified into two types, where the
magnetization oscillates around its easy [37] or hard axis [38].
Therefore, we study the phase synchronization for these two
cases.

We assume that the material parameters of two STOs are
identical, for simplicity. The values of the parameters are
derived from typical ferromagnets, such as NiFe [39] and
CoFeB [40], used in STOs and the first-principle calculations
[34] (see also Appendix A): ρ = 300 � nm, β = 0.75, λsd =
5.0 nm, r = 0.25 k� nm2, and pg = 0.50. The thickness of
the ferromagnet is d = 2.0 nm. Then, g∗/S given by Eq. (A5)
is 1.38 nm−2, where S is the cross section area of the F/N
interface. On the other hand, the real part of the mixing
conductance is set to be gr/S = 15 nm−2. Then, ν is calculated
as 0.83. The saturation magnetization M , the gyromagnetic
ratio γ , and the intrinsic Gilbert damping constant α0 are
assumed as 1500 emu/c.c., 1.764 × 107 rad/(Oe s), and 0.010,
respectively. Then, α′ becomes 0.0074. The spin polarization
η is set to be 0.50, whereas the in-plane anisotropy field HK

for the oscillation around the easy axis is 200 Oe.
The results shown in the main text are obtained for the

initial conditions of m1(0) = (cos 5◦, sin 5◦,0) and m2(0) =
(cos 10◦, sin 10◦,0) for both the oscillations around the easy
and hard axes. The phase difference in the steady state is, how-
ever, independent of the initial states. The role of the angular
dependence of the spin torque is discussed in Appendix C.

A. Oscillation around easy axis

First, let us study the coupled dynamics in the STOs in which
the magnetizations oscillate around the easy axis. Figure 2(a)
is a schematic view of the system, where the free layers of two
STOs are connected by the nonmagnet and interact each other
via spin pumping. We assume an in-plane magnetized free
layer, as in the case of an experiment in Ref. [37], where the
magnetic field consists of the in-plane anisotropy field HK and
the shape anisotropy field along the perpendicular direction,
i.e.,

Hk = HKmkxex − 4πMmkzez, (16)
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FIG. 2. (a) Schematic view of the self-oscillation excited in an in-plane magnetized ferromagnet. The magnetizations oscillate around the
easy axis along the x direction. When these ferromagnets are connected by a nonmagnet, the spin currents due to spin pumping are injected
into each other. Examples of the oscillations of mky (k = 1,2) for (b) small (j = 18.0 MA/cm2) and (c) large (21.0 MA/cm2) currents, where
the red solid (blue dotted) line corresponds to m1y (m2y).

where the in-plane easy axis is parallel to the x axis. We note
that this type of the free layer has two energetically stable
states at mk = ±ex . For the sake of convention, we assume that
the magnetizations initially locate near mk = +ex . The spin
polarization is parallel to the easy axis direction, p = +ex .
In the absence of the coupling, this type of free layer shows
self-oscillation when the current density j is in the range of
Jc < j < J ∗, where Jc and J ∗ are given by [41,42]

Jc = 2α0eMd

h̄η
(HK + 2πM), (17)

J ∗ = 4α0eMd

πh̄η

√
4πM(HK + 4πM). (18)

The values of Jc and J ∗ in the present calculations are 17.5
and 22.0 MA/cm2, respectively. In this type of STO, the
oscillation orbit around the easy axis becomes large with
increasing current magnitude. Figures 2(b) and 2(c) show
the dynamics of mky(t) (k = 1,2) for relatively small (j =
18.0 MA/cm2 � Jc) and large (j = 21.0 MA/cm2 � J ∗)
current regions. Starting from different initial conditions, we
find that m1 and m2 finally show an in-phase synchronization
[m1(t) = m2(t)] for both the small and large current regions.

B. Oscillation around hard axis

Next, let us consider the coupled dynamics in the STOs
when the magnetizations oscillate around the hard axis.
Figure 3(a) is a schematic view of the system. The STOs show

out-of-plane oscillations, as in the case of an experiment in
Ref. [38]. The magnetic field consists of the shape anisotropy
field along the perpendicular axis,

Hk = −4πMmkzez, (19)

while p = +ez. The positive (negative) current moves the
magnetization toward the negative (positive) z direction and
excites an out-of-plane self-oscillation around the z axis. In the
absence of the coupling via spin pumping, the self-oscillation
appears when the current density is in the range of [43]

0 < |j | <
2α0eMd

h̄η
4πM, (20)

where the upper boundary is approximately
[2α0eMd/(h̄η)]4πM � 34.4 MA/cm2. In this type of STO,
the spin torque tries to switch the magnetization to the direction
of the z axis. As a result, the oscillation amplitude becomes
small by increasing the current magnitude. Figures 3(b)
and 3(c) show the dynamics of mky(t) in relatively small
(j = 10.0 MA/cm2) and large (j = 33.0 MA/cm2) current
regions. It is found that the in-phase synchronization is
excited in the small current region, whereas an antiphase
synchronization appears in the large current region.

Figure 4 summarizes the current dependence of the phase
difference (�ϕ) between the STOs showing the out-of-plane
oscillations, where �ϕ = 0 and �ϕ = 0.5 correspond to the
in-phase and antiphase, respectively [26]. For the present
system, the in-phase synchronization appears for 0 < |j | �
25 MA/cm2, whereas the antiphase synchronization is excited
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FIG. 3. (a) Schematic view of an out-of-plane self-oscillation of the magnetization. The magnetizations oscillate around the hard axis along
the z direction. Examples of the oscillations of mky (k = 1,2) for (b) small (j = 10.0 MA/cm2) and (c) large (33.0 MA/cm2) currents, where
the red solid (blue dotted) line corresponds to m1y (m2y). Note that the time scales in the horizontal axes of (b) and (c) are different from those
in Fig. 2.
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FIG. 4. Dependence of the phase difference �ϕ between the
magnetizations in a steady state on the current density j for the out-
of-plane self-oscillation. The in-phase (IP, yellow) and antiphase (AP,
blue) states correspond to �ϕ = 0 and �ϕ = 0.5, respectively. The
phase difference in the intermediate region, 25 � j � 30 MA/cm2,
shown by pink, is not well defined.

for |j | � 30 MA/cm2. We should emphasize here that these
phase differences are stable, i.e., once the phase difference
is saturated to one of these values, it does not change any
more. On the other hand, the phase difference which appears
in the intermediate region, 25 � |j | � 30 MA/cm2, is not well
defined due to the following reason.

To define the phase difference, the oscillators should os-
cillate with the same frequency [27–29]. Figure 5(a) shows
the time evolutions of the phase difference �ϕ for j =
10.0 MA/cm2. It can be seen from the figure that the phase

differences monotonically saturate to a stable value (in-phase,
�ϕ = 0). The Fourier spectrum of the oscillating component
[my(t)] after the phase difference is fixed shows a sharp
peak at a certain frequency, as shown in Fig. 5(b). The same
results are obtained for the other stable (antiphase) state. As
shown in Fig. 5(c), the phase difference for j = 33.0 MA/cm2

monotonically saturates to a stable value. The Fourier spectrum
for this current also shows a sharp peak at the oscillation
frequency, as shown in Fig. 5(d). We emphasize that the phase
differences in these cases are well defined because two mag-
netizations always oscillate with the same single frequency.
On the other hand, at the intermediate region, the oscillation
frequency of the magnetizations is not fixed to a certain value.
Figures 6(a)–6(c) show the oscillations of m1y(t) and m2y(t)
in the intermediate region, where the current density j is
29.0 MA/cm2. For example, for the time range of 149.9 � t �
150 ns, the phase of m1y is preceded by that of m2y . For 169.9 �
t � 170 ns, however, the sequential order of m1y and m2y is
inversed. Furthermore, when 179.9 � t � 180, m1y is again
preceded by m2y . These results indicate that the oscillation
frequencies of m1y and m2y are not locked. This argument is
also confirmed from the fact that the Fourier spectrum has
several peaks, as shown in Fig. 6(d). Therefore, the phase
difference in the intermediate region is not well defined.

IV. ANALYTICAL APPROACH

In this section, we show the derivation of the phase equation
from the LLG equation and discuss analytically the phase
difference.
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FIG. 5. (a) Time evolutions of �ϕ for j = 10.0 MA/cm2 and (b) the Fourier transformation of m1y(t) for the same current. (c) The time
evolutions of �ϕ for j = 33.0 MA/cm2 and (d) the Fourier transformation of m1y(t) for the same current.
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FIG. 6. (a)–(c) Oscillations of m1y and m2y at the different time ranges and (d) the Fourier transformation of m1y for j = 29.0 MA/cm2.
The red solid (blue dotted) line in (a)–(c) corresponds to m1y (m2y).

A. LLG equation in spherical coordinate

We start by showing the LLG equation in the absence of the
spin pumping. Since we are interested in the phase dynamics
of the magnetizations, it is convenient to describe the magne-
tization dynamics in terms of the phase. Therefore, by using
spherical coordinates, we introduce the zenith and azimuth an-
gles (θk,ϕk) as mk = (sin θk cos ϕk, sin θk sin ϕk, cos θk). The
LLG equation in the absence of the spin pumping is given by

dθk

dt
= − γ

M sin θk

∂E

∂ϕk

− γ h̄ηj

2eMd

∂

∂θk

mk · p − α0 sin θk

dϕk

dt
,

(21)

sin θk

dϕk

dt
= γ

M

∂E

∂θk

− 1

sin θk

γ h̄ηj

2eMd

∂

∂ϕk

mk · p + α0
dθk

dt
,

(22)

where E is the magnetic energy density of the ferromagnet
related to the magnetic field H via E = −M

∫
dm · H. The

first terms of Eqs. (21) and (22) determine the oscillation
frequency of the magnetization in the self-oscillation state.
On the other hand, the second and third terms, which are the
spin torque by the electric current and the intrinsic damping
torque, cancel each other in the self-oscillation state to sustain
the oscillation [44].

It is necessary to find the relation between the phase of the
oscillator commonly used in nonlinear science [27–30] and
the angles (θk,ϕk) describing the magnetization dynamics. It
should be emphasized that the choice of the direction of the axis

in the Cartesian coordinate here is arbitrary. Let us consider a
small-amplitude oscillation of the magnetization and define a
Cartesian coordinate XYZ, where the Z axis is parallel to the
precession axis of the magnetization. For example, the Z axis
corresponds to the x axis for the oscillation around the easy
axis shown in Fig. 2(a), whereas the Z axis is the z axis for
the oscillation around the hard axis shown in Fig. 3(a). The
zenith angle θk is a tilted angle of the magnetization from the
precession axis. Then, in the small-amplitude limit, θk(→ 0,π )
can be regarded as a constant, whereas ϕk can be regarded as
the phase in the oscillators [27–30]. In this manner, we can
study the phase difference in a steady state from Eq. (22).
The small-amplitude assumption works relatively well to the
oscillation around the in-plane easy axis because the large
demagnetization field suppresses the oscillation amplitude. On
the other hand, for the out-of-plane oscillation, it is applicable
only for the oscillation near the z axis, which corresponds to
the large current limit.

B. Phase equation in the presence of spin pumping

In this section, we investigate the phase equation for both the
in-plane and out-of-plane oscillations. We use Eq. (15) as an
approximated formula of the spin torque due to spin pumping
because we focus on the small amplitude limit.

First, we consider the oscillation around the easy axis, as
shown in Fig. 2(a). Therefore, the Z axis mentioned above
corresponds to the x axis in Fig. 2(a). Since we are interested
in the role of the coupling on the phase, let us focus on the
coupling term in the following discussion. We note that the
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)b()a( easy axis
damping torque

m1

m2

damping
torque
on m2

coupling torque on m1

)d()c( hard axis

damping torque
m1

m2

damping torque on m2 

coupling torque on m1

FIG. 7. (a) Schematic view of the magnetization oscillation around the easy axis. The black arrow is the magnetization, whereas the red
arrow indicates the direction of the damping torque. The dotted arrow indicates the direction of the oscillation. (b) The top view of the oscillations
of two magnetizations around the easy axis. The directions of the damping torque on m2 and the coupling torque on m1 are shown by the red
and blue arrows, respectively. (c) Schematic view of the magnetization oscillation around the hard axis. (d) The top view of the oscillations of
two magnetizations around the hard axis.

second term of Eq. (15) becomes

− α′

2
mk′ × ṁk′ � α′

2
ϕ̇k′

⎛
⎝sin θk′ cos θk′ cos ϕk′

sin θk′ cos θk′ sin ϕk′

0

⎞
⎠. (23)

Then, adding Eq. (15) to Eq. (22), the phase ϕk of the
magnetization mk obeys the following equation,

dϕk

dt
∼ ω − α′

2
ϕ̇k′ cos θk′ sin(ϕk − ϕk′), (24)

where ω is the angular velocity of the oscillation. Let us
define the phase difference as �ϕ = ϕk − ϕk′ . Note that the
direction of the oscillation viewed from the positive x direction
is counterclockwise, ϕ̇k > 0 (clockwise, ϕ̇k < 0), when the
magnetization oscillates near the θk � 0 (θk � π ) direction.
This means that ϕ̇k′ cos θ ′ in Eq. (24) is approximated to +|ω|.
Then, we obtain the following equation from Eq. (24):

d�ϕ

dt
∼ −α′|ω| sin �ϕ. (25)

It is known that the in-phase state, �ϕ = 0, is the stable
fixed point of Eq. (25), whereas the antiphase state, �ϕ =
π , is an unstable fixed point [27]. Therefore, the in-phase
synchronization is excited for the oscillation around the easy
axis, as shown in Figs. 2(b) and 2(c).

Next, let us consider the oscillation around the hard axis
shown in Fig. 3(a). Note that the direction of the oscillation
in this case is clockwise (counterclockwise) when the mag-
netization oscillates near the +ez (−ez) direction, contrary to
the oscillation around the easy axis, where the direction of
the oscillation is opposite. This difference originates from the

negative sign in the demagnetization field. As a result, ϕ̇k′ cos θ ′
in Eq. (24) is approximated to −|ω|. Therefore, the phase
difference obeys

d�ϕ

dt
∼ α′|ω| sin �ϕ. (26)

The stable fixed point of Eq. (26) is the antiphase state,
whereas the in-phase state corresponds to an unstable fixed
point. Therefore, the antiphase synchronization is excited for
the oscillation around the hard axis in the small amplitude
(large current) limit, as shown in Fig. 3(c).

Regarding these discussions, the reason why the phase
difference between STOs becomes in-phase for the oscillation
around the easy axis, whereas it becomes antiphase for the
oscillation around the hard axis in the small amplitude limit,
is related to the difference of the oscillation directions around
the easy and hard axes.

C. Another approach to phase relation from schematic picture

The above conclusions may be understood in a different
manner. Figure 7(a) is a schematic view of the magnetization
precession around the easy axis. As mentioned above, the
direction of the oscillation viewed from the positive x direc-
tion is counterclockwise (clockwise) when the magnetization
oscillates near the +ex (−ex) direction. For both cases, the
relative direction between the easy axis, the magnetization,
and the oscillation direction is given by Fig. 7(a). Figure 7(a)
also shows the direction of the damping torque, which points
to the direction of the easy axis. Figure 7(b) shows a top view
of the oscillation trajectories of two magnetizations. Since the
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coupling torque acting on mk due to the spin pumping points
to the opposite direction to the damping torque acting on mk′

(k′ �= k), as described in Eq. (15), the direction of the coupling
torque acting on m1 is given by the blue arrow in Fig. 7(b).
We note that the direction of the coupling torque forces m1

to move to the parallel direction of m2. A similar discussion
holds for the coupling torque acting on m2. As a result, the
coupling torques lead to the in-phase synchronization.

On the other hand, when the magnetization oscillates around
the hard axis, the relative direction between the hard axis,
the magnetization, and the oscillation direction is given by
Fig. 7(c). Note that the damping torque points to the opposite
direction to the hard axis. The direction of the coupling torque
in this case is schematically shown in Fig. 7(d). As mentioned
earlier, the coupling torque acting on m1 points to the opposite
direction to the damping torque of m2. Then, the coupling
torque forces the magnetization to move to the opposite
direction of m2, as can be seen from Fig. 7(d). Therefore, the
coupling torques lead to the antiphase synchronization.

V. SUMMARY

In conclusion, a theoretical formalism was developed to
self-consistently solve the LLG equation in two ferromagnets
and the spin transport equation originated from spin pumping.
Based on the formalism, the coupled magnetization dynamics
in the STOs were studied for the oscillations around the easy
and hard axes. It was found that the spin pumping leads to
an in-phase synchronization of the magnetizations for the
oscillation around the easy axis. For an out-of-plane self-
oscillation, on the other hand, the spin pumping results in an
in-phase synchronization for a small current region, whereas an
antiphase synchronization is excited for a large current region.
An analytical theory based on the phase equation indicated
that the phase difference in a steady state is related to the
oscillation direction, clockwise or counterclockwise, of the
magnetizations.
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APPENDIX A: DEFINITION OF THE LONGITUDINAL
CONDUCTANCE g∗

k

In this section, we show the examples of the longitudinal
conductance g∗

k in the main text. We note that the spin current
at the Fk/N interface due to the spin accumulation is given by
[33]

IFk→N
s = 1

4π

[(
1 − p2

g

)
gk

2
mk · (

μFk
− μN

)
mk (A1)

−gr(k)mk × (μN × mk)

]
. (A2)

The interface conductance, gk = g↑ + g↓, is the sum of the
conductances of the spin-up and spin-down electrons and is
related to the interface resistance rk via gk = (h/e2)S/rk . The
spin polarization of the conductance gk is denoted as pg =
(g↑ − g↓)/(g↑ + g↓). The spin accumulation in the Fk and N
layers are denoted as μFk

and μN, respectively. For simplicity,
we assume that the penetration depth of the transverse spin
current in the ferromagnet is sufficiently short compared with
the thickness of the ferromagnet and, therefore, the spin ac-
cumulation in the ferromagnet is parallel to the magnetization
[32,45–47].

When the ferromagnet is an insulator, i.e., rk → ∞, the
spin accumulation is not generated inside the ferromagnet.
In this case, g∗

k → 0. When the ferromagnet is a metal, on
the other hand, g∗

k includes the terms related to the diffusion
of the longitudinal spin accumulation inside the ferromagnet.
For example, in the ferromagnetic/nonmagnetic/ferromagnetic
trilayer, the spin accumulation in the ferromagnet Fk is given
by

μFk
= − 4π

gsd(k) sinh(d/λsd)

(
mk · Itotal

s

)
cosh

(
z

λsd

)
mk, (A3)

where d and λsd are the thickness and the spin diffusion length
of the ferromagnet, respectively. Here, we introduce

gsd(k)

S
= h(1 − β2)

2e2ρλsd
, (A4)

where ρ is the resistivity of the ferromagnet and β is its spin
polarization. In Eq. (A3), we assume that the ferromagnet
Fk lies in the region of 0 � z � d and is connected to the
nonmagnet at z = d. The spin current at z = 0 is zero, whereas
Itotal

s = Ipump(k)
s + IFk→N

s is the total spin current at the Fk/N
interface (z = d). The fact that a term (mk · Itotal

s )mk appears in
Eq. (A3) is due to the assumption that the transverse component
of the spin current is absorbed by the ferromagnet at the
interface. Using Eqs. (A2) and (A3), g∗

k in the trilayer is given
by [1]

1

g∗
k

= 2(
1 − p2

g

)
gk

+ 1

gsd(k) tanh(d/λsd)
. (A5)

We note that the spin accumulations in the ferromagnet
and nonmagnet at the Fk/N interface are discontinuous, i.e.,
μFk

− μN is nonzero. In the present model, where the spin
accumulation in the nonmagnet is assumed to be spatially
uniform, the solution of μN is given by Eq. (B4). On the other
hand, the solution of μFk

is given by Eq. (A3), where the total
spin current at the Fk/N interface is obtained from Eqs. (A2)
and (B4). The discontinuity of the spin accumulations μFk

and
μN originates from the spin pumping, interface resistance, and
absorption of the transverse spin current by the ferromagnet.

As can be seen in the above discussions, the explicit
form of g∗

k depends on the boundary condition of the spin
accumulation. When two ferromagnets are replaced by STOs,
the explicit form of g∗

k will be complex because additional
nonmagnets and ferromagnets are attached to the oscillating
layers. The role of such additional layers is, however, only
the renormalization of g∗

k and gr(k). The conventional STO
usually consists of a metallic free layer. In addition, when the
STO consists of a magnetic tunnel junction (MTJ), the trilayer
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model consisting of the oscillating free layers and nonmagnetic
connector is expected to work well due to the presence of the
tunneling barriers. Therefore, in the main text, we use Eq. (A5)
as a definition of g∗

k , for simplicity.

APPENDIX B: EXPLICIT FORM OF THE MATRIX L

In this section, we show the explicit forms of the compo-
nents of the matrix L.

Derivation of the matrix L

Equation (6) in the Cartesian coordinate can be rewritten
as

KμN = h̄
∑
k=1,2

gr(k)mk × ṁk, (B1)

where the 3 × 3 matrix K is given by

K =
∑
k=1,2

⎛
⎝gr(k) − (gr(k) − g∗

k )m2
kx −(gr(k) − g∗

k )mkxmky −(gr(k) − g∗
k )mkxmkz

−(gr(k) − g∗
k )mkymkx gr(k) − (gr(k) − g∗

k )m2
ky −(gr(k) − g∗

k )mkymkz

−(gr(k) − g∗
k )mkzmkx −(gr(k) − g∗

k )mkzmky gr(k) − (gr(k) − g∗
k )m2

kz

⎞
⎠. (B2)

Therefore, the spin accumulation μN in the nonmagnet is obtained as

μN = h̄K−1
∑
k=1,2

gr(k)mk × ṁk

[5pt] = h̄
∑
k=1,2

gr(k)

⎛
⎜⎜⎝

(
K−1

12 mkz − K−1
13 mky

)
ṁkx + (

K−1
13 mkx − K−1

11 mkz

)
ṁky + (

K−1
11 mky − K−1

12 mkx

)
ṁkz(

K−1
22 mkz − K−1

23 mky

)
ṁkx + (

K−1
23 mkx − K−1

21 mkz

)
ṁky + (

K−1
21 mky − K−1

22 mkx

)
ṁkz(

K−1
32 mkz − K−1

33 mky

)
ṁkx + (

K−1
33 mkx − K−1

31 mkz

)
ṁky + (

K−1
31 mky − K−1

32 mkx

)
ṁkz

⎞
⎟⎟⎠,

(B3)

where K−1
ab (a,b = 1, 2, 3 or x, y, z) is a component of a

3 × 3 matrix K−1, which is the inverse matrix of K. When
two ferromagnets have an identical property, i.e., g∗

1 = g∗
2 and

gr(1) = gr(2), the explicit form of K−1
ab is given by Eq. (13).

Equation (B3) can be generally rewritten as

μN = h̄
∑
�=1,2

N(�)ṁ�, (B4)

where N(�) is a 3 × 3 matrix given by

N(�)ab = gr(�)εbcdK
−1
ac m�d . (B5)

Equation (11) is reproduced by assuming that the value of
the mixing conductance is the same for both F1/N and F2/N
interface. The components of the 3 × 3 matrix N′

(k.�) are given
by Eq. (12). Using N′

(k,�), we find that

(mk · μN)mk = h̄
∑
�=1,2

N′
(k,�)ṁ�. (B6)

We should remind the reader that the spin torque due to the
spin pumping,

τ SP
k = γ

MV
mk × [(

Ipump(k)
s + IFk→N

s

) × mk

]
, (B7)

consists of two terms. The first contribution,

γ

MV
mk × (

Ipump(k)
s × mk

) = γ h̄gr(k)

4πMV
mk × ṁk, (B8)

gives an additional damping α′
k given by

α′
k = γ h̄gr(k)

4πMV
. (B9)

On the other hand, the second contribution,

γ

MV
mk × (

IFk→N
s × mk

) = − γgr(k)

4πMV
mk × (μN × mk)

= − γgr(k)

4πMV
[μN − (mk · μN)mk],

(B10)

can be rewritten as
γ

MV
mk × (

IFk→N
s × mk

) = −α′
k

∑
�=1,2

[N(�) − N′
(k,�)]ṁ�,

(B11)
where we use Eqs. (B4) and (B6).

In summary, the LLG equation, Eq. (1), can be rewritten as

L
(

ṁ1

ṁ2

)
=

(−γ m1 × H1 + τ STT
1

−γ m2 × H2 + τ STT
2

)
, (B12)

where the explicit form of the 6 × 6 matrix L is given by

L = Î + (α0 + α′
1)

⎛
⎜⎜⎜⎜⎜⎝

0 m1z −m1y 0 0 0
−m1z 0 m1x 0 0 0
m1y −m1x 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+ (α0 + α′
2)

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 m2z −m2y

0 0 0 −m2z 0 m2x

0 0 0 m2y −m2x 0

⎞
⎟⎟⎟⎟⎟⎠

+
(

α′
1[N(1) − N′

(1,1)] α′
1[N(2) − N′

(1,2)]
α′

2[N(1) − N′
(2,1)] α′

2[N(2) − N′
(2,2)]

)
,

(B13)
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where Î is the 6 × 6 unit matrix. The readers are to be reminded
that N(�) and N(k,�) are the 3 × 3 matrices. In the main text,
we assume that the material parameters of two ferromagnets
are identical and remove the suffix k(= 1,2) from g∗

k , gr(k),
and α′

k .

APPENDIX C: ROLE OF ANGULAR DEPENDENCE
OF SPIN TORQUE

In the numerical simulation, we use Eq. (2) as a spin torque.
In general, however, the angular dependence of the spin torque
is described by a more complex function. For example, in a
symmetric MTJ, the spin torque is given by [48]

τ STT
k = − γ h̄ηj

2e(1 + λmk · p)Md
mk × (p × mk), (C1)

where λ = η2 is a dimensionless parameter. Two dimension-
less parameters, η and λ, in Eq. (C1) characterize the spin
polarization of the ferromagnet and the angular dependence of

the magnetoresistance [48]. It has been known that the term
λmk · p affects, for example, the threshold current of the self-
oscillation [43]. For example, Jc given by Eq. (17) is changed
to (1 + λ)Jc � 22 MA/cm2 when a finite λ = η2 is taken
into account. We confirm this change of the threshold current
from the numerical simulation. Simultaneously, however, we
confirmed that the phase difference in the synchronized state
is unchanged by adding the factor λmk · p, i.e., the phase
difference is zero for the in-plane oscillation around the easy
axis, whereas the phase difference is changed from in-phase
to antiphase by increasing the current for the out-of-plane
oscillation around the hard axis.

The angular dependence of the spin torque in a typical
ferromagnetic nanostructure is generally described by four
dimensionless parameters [49], which correspond toη andλ for
the free and pinned layers. A different kind of synchronization
may appear if we change the four parameters in the wide ranges
of their values. However, such investigation is beyond the scope
of this paper.
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