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Dielectric magnetic microparticles as photomagnonic cavities: Enhancing the modulation
of near-infrared light by spin waves
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The coupling between spin waves and optical Mie resonances inside a dielectric magnetic spherical particle,
which acts simultaneously as a photonic and magnonic (photomagnonic) cavity, is investigated by means of
numerical calculations accurate to arbitrary order in the magnetooptical coupling coefficient. Isolated dielectric
magnetic particles with diameters of just a few microns support high-Q optical Mie resonances at near-infrared
frequencies and localized spin waves, providing an ultrasmall and compact platform in the emerging field of
cavity optomagnonics. Our results predict the occurrence of strong interaction effects, beyond the linear-response
approximation, which lead to enhanced modulation of near-infrared light by spin waves through multimagnon
absorption and emission mechanisms.
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I. INTRODUCTION

Controlling the interaction of light with magnetization
dynamics provides impressive opportunities in the develop-
ment of contemporary, fast and energy-efficient magnetic
recording and signal-processing technologies [1,2]. Photons
have already been considered as a forthcoming alternative
to electrons through the development of photonic circuits
[3–5] while magnons (the quanta of spin waves) are very
promising candidates as information agents for low-energy-
cost computing and data storage [6–8], and their precise and
efficient control becomes feasible with the use of the so called
magnonic crystals [7,8] and magnonic metamaterials [9,10].
Obviously, combing the desirable properties of both photons
and magnons and controlling their mutual interaction by the
utilization of hybrid photonic-magnonic nanostructures could
be the key for the development of novel devices.

The fact that microwave photons interact efficiently with
magnons inside appropriately designed cavities, has paved
the way to the emergence of cavity spintronics [11] field. In
the general concept, a magnetic resonator is placed inside a
microwave cavity resulting in a strong coupling between the
magnons supported by the resonator and the cavity photons
[12–24]. This can lead to a plethora of intriguing phenomena
such as strong coupling in the quantum limit [12,13], high
and ultra-high cooperativity interactions [20,21] and mag-
netostriction [19]. At microwave frequencies, the formation
of cavity-magnon-polaritons [15,16] inside millimeter-sized
dielectric magnetic particles becomes also possible. Generally,
a magnetic insulating material that attracts most of the interest
and is commonly used in such applications is yttrium iron
garnet (YIG). YIG combines optical transparency with gyro-
magnetic behavior at microwave frequencies [16,22–24] and
sustains long-lifetime magnonic excitations, which is crucial
for spintronics applications. In all of the above-mentioned
microwave-cavity setups there is a direct conversion between
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microwave photons and magnons, due to the matching of their
frequencies. However, as it will be discussed later, this is not the
case when we refer to the interaction of visible/near-infrared
photons with magnons, where coupling originates from the
change in the dielectric permittivity tensor of the material
induced by the dynamic evolution of the magnetization and
the aforementioned strong-coupling effects do not take place.

Scattering of visible/near-infrared light by magnons, has
long been the subject of Raman and Brillouin light scattering
(BLS) spectroscopy [25–39] for the detection of spin-wave
excitations in materials while, also, Bragg diffraction by mag-
netostatic waves finds applications in optical signal-processing
[40–42]. More recently, BLS spectroscopy acquired renewed
interest in the detection and/or probing of spin waves down
to the micro/nano-scale [37]. In this context, there has been a
significant very recent activity on BLS studies in the so-called
optomagnonic or photomagnonic cavities [43–54] that act
simultaneously as cavities for visible/near-infrared photons
and magnons, increasing their corresponding lifetimes, and
thus enhancing their inherently weak interaction. A ubiquitous
concept is the utilization of spherical magneto-optical (MO)
whispering gallery mode resonators, where enhanced inelastic
scattering of light by spin waves takes place [44–46]. The
above-mentioned photomagnonic coupling is based on the
gyroelectric properties of a magnetized garnet material, such
as YIG. More recently, planar photomagnonic nanocavities
for triggering multimagnon absorption and emission processes
by a photon have also been proposed [51]. Nevertheless, a
thorough study of such interaction processes in particle-type
photomagnonic micro/nano-cavities is still lacking.

In the present work we examine the case of such a spher-
ical photomagnonic cavity, with diameter of a few microns,
which manifests multimagnon scattering processes with near-
infrared light. A homogeneous sphere of a dielectric magnetic
material that sustains simultaneously localized spin waves
and optical Mie resonances is considered. Due to the huge
frequency mismatch between the frequencies of the magnons
(1 ∼ 100 GHz) and photons (200 ∼ 400 THz) involved, a
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quasistatic approximation is applied for a precise calculation
of the dynamical photomagnonic interaction.

II. THEORY

A. Mie resonances of a dielectric magnetic sphere

At first, we assume a harmonic, monochromatic, plane
electromagnetic (EM) wave, of angular frequency ω and wave
vector q0, propagating in air. The associated electric field
component has the general form E0(r,t) = Re[êE0 exp[i(q0 ·
r − ωt)]] = Re[E0(r) exp(−iωt)], where for ê = ê1 or ê = ê2

the wave is termed as p- or s-linear polarized, with ê1 and ê2

being the polar and azimuthal unit vectors, respectively, which
are perpendicular to q0. The above-mentioned plane wave can
be expanded into regular vector spherical waves, about a given
origin of coordinates, as follows

E0(r)=
∑
�m

[
a0

1�mj�(qr)X�m(r̂)+ i

q0
a0

2�m∇ × j�(qr)X�m(r̂)

]
,

(1)

where j� are spherical Bessel functions and X�m vector
spherical harmonics, which are defined in terms of the
usual (scalar) spherical harmonics, Y�m, through the equa-
tion

√
�(� + 1)X�m(r̂) = −ir × ∇Y�m(r̂), for � � 1, while

X00(r̂) = 0. The spherical-wave amplitudes, a0
P�m, P = 1

(magnetic polarization mode), 2 (electric polarization mode),
� = 1,2, . . . and m = −�, − � + 1, . . . �, can be written in the
form [55]

a0
P�m = A0

P�m(q̂0) · êE0, (2)

with

A0
1�m(q̂0) = 4πi�(−1)m+1

√
�(� + 1)

{[
αm

� cos θeiφY�−m−1(q̂0)

+m sin θY�−m(q̂0)+α−m
� cos θe−iφY�−m+1(q̂0)

]
ê1

+ i
[
αm

� eiφY�−m−1(q̂0) − α−m
� e−iφY�−m+1(q̂0)

]
ê2

}
(3)

and

A0
2�m(q̂0) = 4πi�(−1)m+1

√
�(� + 1)

{
i
[
αm

� eiφY�−m−1(q̂0)

−α−m
� e−iφY�−m+1(q̂0)

]
ê1

− [
αm

� cos θeiφY�−m−1(q̂0) + m sin θY�−m(q̂0)

+α−m
� cos θe−iφY�−m+1(q̂0)

]
ê2

}
, (4)

where αm
� = 1

2 [(� − m)(� + m + 1)]1/2; θ and φ denote the
angular variables of q0 in the chosen system of spherical
coordinates.

Let us now assume a homogeneous magnetically saturated
sphere located at the origin of the coordinate system. In
general, the optical response of static magnetic materials,
in the visible and near-infrared parts of the spectrum, is
described by a relative magnetic permeability μ = 1 and a
relative electric permittivity tensor [56], ε(M), which depends
on the magnetization M = (Mx,My,Mz). To first order in the

TABLE I. Character table for the C∞h point group.

C∞h E Cφ I ICφ

Ag 1 1 1 1
Au 1 1 −1 −1
Emg 1 eimφ 1 eimφ

Emu 1 eimφ −1 −eimφ

magnetization, the relative electric permittivity tensor is given
by [51]

ε(M) =

⎛
⎜⎝ ε if

Mz

Ms
−if

My

Ms

−if
Mz

Ms
ε if Mx

Ms

if
My

Ms
−if Mx

Ms
ε

⎞
⎟⎠ (5)

with Ms being the saturation magnetization and f the dimen-
sionless Faraday coefficient [57]. If the material is magneti-
cally saturated along the z axis, Eq. (5) takes the simple form

ε =
⎛
⎝ ε if 0

−if ε 0
0 0 ε

⎞
⎠ . (6)

When a plane EM wave is incident on the spherical particle,
it is scattered by it and the scattered field can also be expressed
into vector spherical waves, as follows

Esc(r) =
∑
�m

[
a+

1�mh+
� (q0r)X�m(r̂)

+ i

q0
a+

2�m∇ × h+
� (q0r)X�m(r̂)

]
, (7)

where h+
� are spherical Hankel functions of the first kind. The

amplitudes of the scattered spherical waves, a+
P lm, are linearly

related to their counterparts of the incident field, a0
P lm, through

the so-called scattering T matrix, which can be evaluated
by requiring the boundary conditions at the surface of the
sphere to be satisfied by the EM field. For an unmagnetized
homogeneous sphere, the T matrix is diagonal in P�m and
independent of m because of the spherical symmetry of the
scatterer. However, this is not the case for a magnetized
(gyrotropic) sphere where its dielectric permittivity tensor is
given by Eq. (6). Explicit forms of the T-matrix elements
for such a sphere can be found elsewhere [58] and several
T-matrix studies of single gyrotropic scatterers or collections
of such have been reported [59–61]. We just note here that,
for a sphere magnetized along the z direction, the T matrix
has a block diagonal form: TP�m;P ′�′m′ = T

(m)
P�;P ′�′δmm′ , where

T
(m)
P�;P ′�′ vanish identically if the magnetic/electric multipoles

corresponding to P� and P ′�′ do not have the same parity, even
or odd. This means that the T matrix in a given subspace is
further reduced into two submatrices with different symmetry,
also termed as gerade (even) and ungerade (odd). Given
these considerations, a group-theory [62] methodology can
be applied to elucidate the symmetry properties of the Mie
resonances of such a magnetized sphere, saturated along the z

axis. The symmetry transformations of a gyrotropic sphere
form the C∞h point group, as described in Table I. Each gerade
and ungerade submatrix corresponds to a one-dimensional
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TABLE II. Projection of a plane EM wave propagating at an angle
θ with respect to the z axis, of s or p polarization, on the basis of
irreducible representations of C∞h.

Angle of
incidence Polarization C∞h

θ = 0,π s or p E±1g,E±1u

θ �= 0,π/2,π s Au,Ag,E±1g,E±1u,E±2g,E±2u, . . .

p Au,Ag,E±1g,E±1u,E±2g,E±2u, . . .

θ = π/2 s Au,E±1g,E±2u,E±3g,E±4u, . . .

p Ag,E±1u,E±2g,,E±3u,E±4g , . . .

irreducible representation Ag,Emg or Au,Emu, respectively.
Representations Ag,Au refer to m = 0, while Emg,Emu to m =
±1, ± 2, . . .. In order to excite a specific optical resonance,
the symmetry of the incident field should be compatible to
that of the resonant mode, as listed in Table II and detailed
below. Similarly to the case of a nonspherical axisymmetric
scatterer [63], for incidence along the axis of magnetization
(θ = 0,π ) it results from Eqs. (3) and (4) that |A0

P�m · ê|2 =
(2� + 1)πδ|m|1 and thus s- or p-polarized waves can only
excite states of E±1g or E±1u symmetry. For θ = π/2, an
s-polarized wave excites only modes with P + � + m: even
while a p-polarized wave excites only modes with P + � + m:
odd, because only in these cases we have |A0

P�m · ê|2 �= 0. On
the contrary, for θ �= 0,π/2,π both polarizations are able to
excite all, i.e. Au,Ag,Emg,Emu, modes, although to a different
degree, depending on the specific mode profile.

We note that, if the magnetization direction of the mag-
netized sphere does not coincide with the z axis of the
laboratory frame, an appropriate transformation of the T matrix
is needed. In general, if α,β,γ are the Euler angles [64]
transforming an arbitrarily chosen coordinate system in which
the magnetization is oriented along the z axis, the T matrix is
given by

TP�m;P ′�′m′ =
∑
m′′

D
(�)
mm′′ (α,β,γ )T (m′′)

P�;P ′�′D
(�′)
m′′m′(−γ,−β,−α),

(8)

where D
(�)
mm′(α,β,γ ) are the appropriate transformation matri-

ces associated with the � irreducible representation of the O(3)
group [62]. However, in such a case the T matrix no longer
has a block-diagonal form. For the sake of completeness, we
note here that a similar Mie-scattering formalism has also
been developed for gyromagnetic scatterers characterized by
an appropriate magnetic permeability tensor [16,65,66] which
is relevant to microwave frequencies. However, in the visible
and near-infrared part of the spectrum that we consider here,
the magnetized scatterer has only gyroelectric response.

B. Inelastic light scattering by the homogeneous
precession spin wave

So far, we considered statically magnetized particles, where
the magnetization is oriented along a given axis. The excitation
of a spin wave in such a particle corresponds to a dynamic
magnetization field, which induces a spatiotemporal pertur-
bation in the electric permittivity tensor. In the present work

we shall be concerned with the uniform precession spin mode
[42] in a magnetic dielectric sphere, and we will be restricted to
small spin-wave amplitudes. Since this, so-called Kittel, mode
is equivalent to a homogeneous periodic variation, with period
�, of the magnetization vector, when the precession is about the
z axis, the corresponding magnetization field has the form [51]

M(t)/Ms = mx(t )̂x + my(t )̂y + ẑ

= η cos(�t )̂x + η sin(�t )̂y + ẑ, (9)

where η is the amplitude of the spin wave. This field profile,
at any particular time snapshot, describes a sphere homoge-
neously magnetized along an axis which is different from z.
The new axis, at a given time t , can be expressed in terms of the
Euler angles α, β, and γ , where we have α = �t , sin β = η,
and γ = 0. The total electric permittivity tensor in the presence
of the spin wave is written as ε + δε(z,t), with ε given by
Eq. (6) and

δε(t) =
⎛
⎝ 0 0 −if η sin(�t)

0 0 if η cos(�t)
if η sin(�t) −if η cos(�t) 0

⎞
⎠

≡ 1

2
[e−i�t δε + ei�t δε

†
] , (10)

with

δε = f η

⎛
⎝ 0 0 1

0 0 i

−1 −i 0

⎞
⎠ , (11)

where we restricted ourselves to leading order, i.e., to first order
in the spin-wave amplitude and neglected the small Cotton-
Mouton contributions.

Since the periodic variation of the magnetization is rel-
atively slow we can introduce time-dependent coefficients
a+

P�m(t) for the scattered field [67] that result from a time-
dependent T matrix, and assume them to be constant over a
period of the EM wave (quasistatic approximation). In this
regime, the dynamic evolution of the problem is described at
a sequence of snapshots of the magnetization precession, by
the corresponding T matrix given by Eq. (8) if we substitute
the appropriate Euler angles at each time snapshot. Hence, the
scattering cross section is calculated as

σsc(t) = 1

q2
0 |E0|2

∑
P�m

|a+
P�m(t)|2. (12)

Since the time variation of σsc(t) is periodic, with constant
frequency �, it can be expanded into a Fourier series

σsc(t) = σsc(t + 2π/�) =
∑

n=0,±1,...

σ̄ (n)
sc e−in�t . (13)

Consequently, for a monochromatic incident optical wave
of angular frequency ω, the scattered field consists of an
infinite number of beams with angular frequencies ω + n�,

n = 0,±1,±2, . . ., where σ̄ (n)
sc corresponds to the elastic (n =

0) and inelastic (n �= 0) scattering intensities, respectively.
When strong inelastic scattering processes take place, there
will be significant probabilities for absorption and/or emission
of multiple magnons by a photon. On the other hand, when the
photomagnonic interaction is weak, the corresponding Fourier
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FIG. 1. (a) Normalized scattering cross section spectrum of
an unmagnetized Bi:YIG sphere, with radius R, in the proximity
of the TE11 Mie resonance, for linearly polarized incident light.
(b) Corresponding electric field profile on a plane parallel to the
polarization plane, cutting through the center of the sphere, at the
TE11 resonance frequency. (c) Schematic view of a Bi:YIG sphere
with radius R magnetized along the z axis, where light impinges
along the magnetization axis. (d) Normalized scattering cross section
spectrum for linearly polarized incident light on the magnetically
saturated Bi:YIG sphere shown in (c). The two nondegenerate modes
that correspond to m = ±1 are marked with vertical dashed lines.

spectrum is essentially dominated by the first-order terms
which correspond to one-magnon exchange processes. We note
that we are working in the linear spin-wave regime neglecting
magnon-magnon interactions since such effects have not been
observed or considered in garnet particles [43–46,48,50,52–
54].

III. RESULTS AND DISCUSSION

A. Optical response of a statically magnetized garnet sphere

In the present work we consider a dielectric magnetic sphere
of radius R, in air, which will serve as a photomagnonic cavity.
Dielectric magnetic particles of rare-earth iron garnets with
sizes ranging from millimeters to nanometers can be fabri-
cated in the laboratory by various techniques [43,68–70]. Our
calculations were performed for a bismuth-substituted yttrium
iron garnet (Bi:YIG) spherical particle in the near-infrared part
of the spectrum, where the relative magnetic permeability is
equal to unity and the values of dielectric permittivity tensor
of Eq. (6) are ε = 5.5 and f = −0.01 [71]. Our results are
presented in scaled wavelength units λ/R, where the radius
R of the sphere can vary roughly from 800 to 1500 nm to
adjust the optical mode under consideration in the near-infrared
region. Such an unmagnetized sphere (f = 0) supports high-
Q, spectrally separated, multipole (2�-pole) Mie resonances of
transverse magnetic (P = 1) and transverse electric (P = 2)
type, which confine the field inside the particle. The optical
response in the proximity of the transverse electric mode with
� = 11 (TE11) which is manifested as a peak in the scatter-
ing cross section, is shown in Fig. 1(a). The corresponding

electric-field profile in the plane of polarization is displayed in
Fig. 1(b). This particular resonance has a 23-fold degeneracy
which corresponds to 2� + 1 values of the m angular momen-
tum index. In the case of such a magnetically saturated sphere,
the (2� + 1)-fold degeneracy is lifted with the frequency shift
depending on the strength of the MO interaction. However, for
light incident along the direction of magnetization, as shown in
Fig. 1(c), only 2 out of the 23 modes can be excited according
to group theory, namely those with symmetry E±1u. This is
clearly illustrated in Fig. 1(d), where only two resonances
appear in the scattering cross-section spectrum. The lower
frequency (higher λ/R) mode has the E−1u symmetry since
it originates from the corresponding T

(m=−1)
P�;P ′�′ submatrix, with

P + � and P ′ + �′ being odd (ungerade). Similarly, the higher
frequency (lower λ/R) mode has the E1u symmetry since
it originates from the corresponding T

(m=1)
P�;P ′�′ submatrix. In

the given configuration, these two modes are excited by
right-circularly polarized (RCP) (m = −1) and left-circularly
polarized (LCP) (m = 1) incident light, respectively. Since
an incident linearly polarized light beam is a superposition
of a RCP and a LCP wave, it excites both eigenmodes.
The splitting of the nondegenerate modes depends on the
strength of the MO interaction. By increasing the MO coupling
coefficient f , the splitting between the modes becomes more
pronounced. However, in this work we assume a magnetically
saturated sphere, and thus the coefficient f cannot be further
increased by the external magnetic field. Consequently, any
further increase of the splitting could only be achieved from an
increase of the mode lifetime (higher-Q) which is possible for
higher multipole modes (higher-�). Alternatively, an increase
in the mode splitting would be possible by choosing a different
magnetic material exhibiting higher refractive index and/or
MO coefficient. The mode splitting will play an important
role in the analysis of the photomagnonic interaction which
follows and for this reason we chose a reasonable compromise
between mode lifetime and particle radius, given that all other
parameters originate from the material properties.

Although an incident light wave along the direction of mag-
netization can couple only to the modes than correspond tom =
±1, this is not the case for different angles of incidence. When
light impinges at an angle, θ �= 0,π/2,π , any mode could be
excited, to a certain degree, depending on the corresponding
field profile, the angle of incidence and polarization of the
incoming wave, as discussed in the theory section. Hence,
to get a better understanding of the static MO interaction, it
would be useful to study the θ �= 0 cases as well. For this
purpose, in Fig. 2 we show the scattering cross section for
both s and p polarizations for different values of θ angle, in the
configuration shown in the inset picture. It can be clearly seen
that, apart from the two major resonances of E±1u symmetry,
excited efficiently at θ = 0o, another resonance appears with
significant scattering magnitude for θ 	 10o, which has the
Au symmetry and is efficiently excited by s-polarized incident
light. Besides this, the signature of modes which correspond
to higher values of |m| can be identified in both spectra of
Fig. 2. For the sake of convenience we have not shown all
the 23 modes in Fig. 2, but roughly half of them. It is worth
noting that each mode is dispersionless in frequency (it is
located at the same λ/R), but there are differences between
the scattering efficiency for each particular mode depending on
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FIG. 2. Normalized scattering cross section spectrum of a mag-
netically saturated Bi:YIG sphere with radius R, for s (upper panel)
and p (lower panel) polarized light incident at an angle θ with respect
to the z axis, as shown in the margin. The central vertical line indicates
the position of the mode with Au symmetry (m = 0), which is excited
only if θ �= 0,2π , while the other two vertical lines indicate the
positions of E±1u (m = ±1) modes shown in Fig. 1(d).

the angle θ and polarization, as shown in Fig. 2. The different
coupling degree between incident radiation and eigenmodes of
the magnetized sphere is due to field-profile symmetry reasons,
but a further investigation of each particular case is beyond the
scope of the present paper. Finally, even though in the present
work we shall only focus in a narrow spectral region about
the central mode Au symmetry (m = 0), our analysis can be
directly applied to any mode.

B. Photon-magnon interaction

We now consider excitation of the uniform precession
(Kittel) mode in the magnetized Bi:YIG sphere. This is the
fundamental magnon mode which corresponds to a dynamic
macrospin precession, as depicted in Fig. 3(a). Here we assume
precession angle β = 5o which corresponds to a spin-wave
amplitude η 	 0.09. The uniform precession mode is, in
general, efficiently excited in small particles of magnetic
dielectrics such as iron garnets [15,17–23,43–46,72,73], and
the frequency of such magnons is usually several GHz. In our
case, we can apply the quasistatic approximation to calculate
precisely the time variation of the scattering cross section since
the period of the spin wave is much longer than that of the
light wave. We first assume incidence of light along the z axis
(θ = 0), as shown in Fig. 3(a). The dynamical magnetization
precession of the Kittel mode induces a periodic variation
of the permittivity tensor according to Eq. (10), resulting in
a periodically time-varying σsc(t) with frequency �. When
inelastic photon-magnon scattering processes take place, the
Fourier expansion of σsc(t) involves also nonnegligible orders
with n > 0 which correspond to absorption and emission
probabilities of n magnons by a photon. In Fig. 3(b) we show
the temporal variation of σsc for the optical resonance with
wavelength λ/R = 0.990885 (symmetry Au) at incidence of
light with θ = 0, within the period of the spin wave. The

FIG. 3. (a) A schematic of the Kittel magnon mode. Magnetiza-
tion undergoes a periodic uniform precession about the z axis, with
angular frequency �. (b) Time variation of the scattering cross-section
amplitude at the frequency of the Au optical mode induced by the
Kittel magnon. (c) Relative intensities of the elastically (n = 0) and
inelastically (n �= 0) scattered light beams.

scattering cross section undergoes a sinusoidal variation with
period π/�, reaching a maximum (minimum) magnitude
when the magnetization component in the xy plane is per-
pendicular (parallel) to the polarization, which happens twice
within a full precession of the magnetization vector. This is
reflected on the corresponding Fourier spectrum of Fig. 3(c)
where, apart from the elastic scattering component (n = 0), the
spectrum involves only two-magnon exchange contributions
(n = 2). Obviously, the σsc(t) for p-polarized incident light,
i.e., polarization perpendicular to that of Fig. 3, will be simply
shifted by π/2, while the corresponding Fourier spectrum
will be unaffected. The absence of the one-magnon processes
indicates that a selection rule is imposed by the symmetry of
the respective fields involved, similarly to the selection rules in
planar geometries [51,74]. To first-order Born approximation,
the scattering intensity of a photon by a single magnon is
proportional to the overlap integral 〈Eog(r)| δε |Eig(r)〉, where
Eog(r) and Eig(r) are the outgoing and ingoing electric fields
inside a statically magnetized sphere along the z axis. By
substituting the tensor δε from Eq. (11) we obtain

〈Eog(r)| δε |Eig(r)〉 ∝ −
∫

Vsph

d3r
[
Eig

x (r) + iEig
y (r)

]
Eog

z (r)

+
∫

Vsph

d3r
[
Eog

x (r) + iEog
y (r)

]
Eig

z (r),

(14)

where Vsph is the volume of the spherical particle. The
general form of the electric field inside a statically magnetized
spherical scatterer, expanded into vector spherical harmonic
waves is given in Ref. [58]. After some straightforward algebra
we conclude that [Eig(og)

x (r) + iE
ig(og)
y (r)] and E

og(ig)
z (r) belong

to different-m irreducible representations of the C∞h group.
Therefore, since for light incident along the magnetization axis,
m is a conserved quantity, each integral vanishes identically
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FIG. 4. Upper panels: Time variation of the normalized scattering
cross section at the frequency of the Au optical mode, induced by
the Kittel magnon mode, for s (left-hand panel) and p (right-hand
panel) polarized light incident at an angle θ = 5◦, as shown in the
inset graphic. Lower panels: Corresponding relative intensities of the
elastically (n = 0) and inelastically (n �= 0) scattered light beams.

leading to 〈Eog(r)| δε |Eig(r)〉 = 0. This is the reason why
first-order terms are absent in the Fourier spectrum of Fig. 3(c).
This is valid for any nondegenerate photonic mode of the
particle, if light is incident along the z axis.

The above-mentioned selection rule though, breaks when
incidence of light is not along the z axis (i.e., the plane defined
by the two orthogonal polarizations is no longer parallel to the
magnetization precession plane xy), and as a result we expect
nonzero intensities for one-magnon exchange processes. Such
dynamical optical response, associated with inelastic scattering
involving n = 1,2,3, . . . magnons, is shown in Fig. 4 for
linearly polarized light incident at an angle θ = 5◦ with respect
to the z axis, and an azimuthal angle φ = 180◦, which means
that the wave vector lies in the xz plane. In the left (right) hand
panels of Fig. 4 we display the time variation of the scattering
cross section and the corresponding Fourier components for an
s-(p-)polarized incident wave, as shown in the inset graphic.
Since we are working in the frame of the quasistatic approxi-
mation, it would be helpful to see some aspects of our results
from the prism of the static picture discussed in the previous
sections. At �t = 0 the magnetization vector has my(0) = 0
and mx(0) = η = sin 5◦, and consequently the configuration
is equivalent to light incident at an angle 10◦ with respect
to the magnetization axis. In this case, according to Fig. 2
(at θ = 10◦), we expect a maximum scattering magnitude
for s-polarized light, and a minimum scattering efficiency for
p-polarized light, as indeed can be observed in Fig. 4. More-
over, not only the two scattering cross sections start from a
different value (at t = 0) but their whole temporal evolution
is different since the symmetry of the configuration of Fig. 3

is now broken and the simple geometrical justification of a
constant phase shift between the two time variations is no
longer valid. On the whole, we should keep in mind that the
scattering cross section in both cases undergoes abrupt changes
and such a behavior can also be explained in the corpuscular
picture. In particular, the Fourier components in Fig. 4 indicate
that an s-polarized incident beam is inelastically scattered
primarily by one-magnon- and to a lesser degree by two-
and three-magnon-absorption and emission processes. On the
other hand, a p-polarized light beam is scattered inelastically
to almost the same extend through one- and two-magnon-
absorption and emission processes, while a weaker contribu-
tion of three-magnon absorption and emission processes is
also present. We additionally note here that if the m-mode
splitting was not large enough, then we could not expect such
abrupt changes in the scattering cross section since there would
be significant contribution from other optical m modes at the
same frequency resulting in a roughly constant magnitude of
the scattering cross section irrespective of the angle of light
incidence. As a result, strong inelastic light scattering by spin
waves is expected only in cavities that induce sufficiently
large mode splitting in the static MO case. This requirement
can be generalized to include nonspherical particles as well.
In that case, the scattering cross section of a Mie scatterer
with nonspherical shape could be computed numerically at
each time snapshot within one magnonic period, and thereafter
substituted into Eq. (13) to obtain the corresponding Fourier
intensities for the photomagnonic interaction.

IV. CONCLUSION

To conclude, we have carried out thorough calculations
of the photon-magnon interaction in Bi:YIG spherical par-
ticles of only a few microns diameter. The photomagnonic
coupling has been studied in the frame of the quasistatic
approximation which is valid due to the significant frequency
mismatch between light (200 ∼ 400 THz) and spin waves
(1 ∼ 100 GHz). Our results show that in the presence of a
spin wave, namely the homogeneous precession mode, the
time-dependent optical response of the particle at a Mie
resonance undergoes abrupt changes which are translated into
n-magnon (n = 1,2,3 . . .) absorption and emission processes
in the Fourier spectrum. In fact, the simultaneous concentration
of both the EM field and the spin wave for a long period of time
inside the particle enhances their inherently weak interaction
leading to strong inelastic scattering of photons by magnons.
Furthermore, this enhanced interaction can be controlled by
symmetry-dependent parameters as it has been indicated from
the photon-magnon overlap integral. Our work moves a step
towards the miniaturization of photomagnonic cavities since
until now the studies focused on dielectric magnetic particles
at the millimeter scale. Hence, such ultra-small particle-type
photomagnonic cavities can provide an efficient and versatile
platform for tailoring the optomagnonic interaction and con-
trolling photons with magnons.
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