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Theory of magnetoelastic resonance in a monoaxial chiral helimagnet
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We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal
crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how
hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed
for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase
exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior.
We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to
convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave
chirality.
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I. INTRODUCTION

Many recent studies have focused on physical properties
of chiral helimagnets (CHMs). It is widely recognized that
coupling of lattice degrees of freedom with magnetism plays
a significant role in this class of materials. For example, the
cubic chiral helimagnet MnSi [1,2] exhibits anomalies in the
thermal expansion coefficient and similarly MnGe [3] exhibits
magnetic peculiarities connected with distortion of the B20
structure upon heating.

Magnetoelastic interaction may contribute either to dy-
namic elastic deformations that affect significantly the dy-
namics of magnetic moments or to static strains, which in
turn influence the dispersion and band gaps of the coupled
magnetoelastic waves. This coupling was argued in relation
to a possible structural transition in Mn1−xFexGe solid so-
lutions [4–6]. Early theoretical studies of the magnetoelastic
interaction in cubic helimagnets with B20 structure predicted
an appearance of nonanalytical wave-vector dependence for
the static susceptibility as a result of magnetization-induced
inhomogeneous strains [7,8]; it was demonstrated that this
interaction tends to disrupt the assumed helical structure [9].

One of the powerful tools to investigate specific features
of the magnetoelastic coupling is ultrasound measurement,
where characteristics of propagation of high-frequency elastic
waves are indicated by a dependence of the velocity and
attenuation of the ultrasonic waves on magnetic properties
of the solid. Ultrasound measurements are reputed to be a
valuable probe to investigate magnetic phase transitions in
MnSi due to high sensitivity and accuracy [10,11]. Sound
velocities measured in these studies are highly sensitive to local
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values of elastic constants and their evaluation does not involve
any sophisticated experimental technique.

One of the most important reasons for the keen interest in
chiral helimagnets is driven by the unique solitonlike forms
of magnetic order revealed in these materials: the chiral
soliton lattice actually observed in CrNb3S6 [12] and the
skyrmion lattice found, for example, in MnSi, (Fe,Co)Si, and
Cu2OSeO3 [13–16]. Ultrasonic measurements being compared
with magnetic and electric ones demonstrate clear advantages
for exploring these topological objects: they are not restricted
by electric conductivity of a material; due to magnetoelastic
interaction, they provide insight into anisotropic properties of
the magnetic lattices by comparing different elastic modes;
lastly, they make it possible to determine directly elasticity
and viscosity of these lattices as a result of the magnetoelastic
coupling. Mechanical control of the skyrmion lattice phase
demonstrated in a bulk MnSi single crystal is of considerable
interest; it is achieved with a mechanical stress and a low-
energy cost [17]. Deep understanding of the issue is vital for
potential applications in technology.

A growing interest in the nontrivial topological phases of
the chiral helimagnets dictates an urgent need to elaborate
an appropriate formalism of the magnetoelastic interaction
of these materials. The seminal theory of magnetoelastic
waves in ferromagnetic crystals, originally suggested by Kittel
[18], has been expanded into the class of helimagnets with
the Dzyaloshinskii-Moriya (DM) exchange coupling a few
decades ago [19,20]. However, spontaneous deformations in
a ground state were ignored in these treatments. The theory
developed in Ref. [21] overcame this drawback; a pertinent
investigation for the conical phase of the relativistic spiral was
later reported [22,23]. Recently this problem has been under
new scrutiny in the light of of magnetoelectric hexaferrites,
where the magnetoelastic resonance is largely the same as for
the phase of forced ferromagnetism in the monoaxial CHM
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[24]. We also point out a remarkable feature of spin-wave
propagation in the conical phase in chiral helimagnets. A
preferable spin-wave helicity (left-handed or right-handed)
is fixed by the DM interaction. Consequently, nonreciprocal
magnon transport is realized [25,26].

The coupling between acoustic phonons and magnons
was incorporated to explore the effects of the spin-lattice
coupling in the topologically nontrivial skyrmion lattice in
MnSi and MnGe [27]. The magnetoelastic interaction results
from expanding the strengths of both Heisenberg exchange
interaction and the Dzyaloshinskii-Moriya interaction up to
the linear order of phonon degrees of freedom. Efficiency of
such a form of the magnetoelastic coupling was experimentally
demonstrated for the skyrmion lattice in MnGe, where the
elastic response is an order of magnitude larger than the
conventional case (for example, in MnSi) [28]. To calculate
ultrasonic responses in MnSi the thermodynamical model was
used [29], which incorporates a magnetoelastic functional with
necessary high-order interactions allowed by group theory.
Unfortunately, progress in this direction is severely hampered
by lack of a generally accepted theoretical model for the
skyrmion lattice phase [30].

In this paper, we fill a gap coming from, to the best of
our knowledge, an absence of a theory of magnetoelastic
interactions in the chiral soliton lattice. This case is certainly
of a special interest: a control of the period of the soliton lattice
by means of an external magnetic field enables governing
a resonant frequency in a substantial way. Our analysis is
intended for crystals of the hexagonal symmetry which the
real prototype compound CrNb3S6 belongs to. Until now, only
the case of the exchange spiral has been investigated for this
symmetry [23]. A spiral magnetic order owing to the DM
interaction was previously analyzed for a media with isotropic
elastic and magnetoelastic properties [31] that can be applied
to the chiral magnetic materials of cubic symmetry, MnSi
and FeGe. The aim of our investigation is to find out specific
features of magnetoelastic resonance in the magnetic soliton
lattice and to provide insight into factors that affect the process
significantly. In addition, we revisit a case of the conical
phase to discuss salient nonreciprocity effects in propagation
of magnetoelastic waves.

The paper is organized as follows. In Sec. II, the model of
the interaction between the magnetic and the elastic degrees
of freedom is formulated. Section III provides a treatment
of the magnetostriction problem, i.e., a calculation of elastic
deformations caused by magnetization of the soliton lattice.
In Sec. IV, the coupled system of dynamical equations for the
lattice and the spin variables is solved; the spectrum of the
magnetoelastic waves is analyzed. For the sake of simplicity,
we consider the waves traveling along a principal axis of the
crystal. In Sec. V, the conclusions are presented.

II. THE MODEL

We consider a hexagonal chiral helimagnet, where a mod-
ulated magnetic ordering characterized by the magnetization
M(z,t) is stabilized along the symmetry direction taken further
as the z axis. In hexagonal crystals, the total energy density,
which takes into account interaction with elastic deformations,
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FIG. 1. (a) The coordinate system for a hexagonal crystal with
a magnetic spiral inside used throughout the paper. (b, c) Schematic
pictures of the magnetic ordering for the conical phase (b) and the
soliton lattice phase (c).

can be expressed in the following form:

F = J

2
(∂z M)2 + Dẑ · [M × ∂z M] − H · M + FME + FE,

(1)
where the first term is that of the Heisenberg model with the
ferromagnetic exchange coupling J , the second term is the
DM interaction of the strength D, and the third one describes
the interaction of the magnetization with the external magnetic
field H . The last two terms stand for the magnetoelastic and
elastic energy densities, respectively, the explicit form of which
for the hexagonal crystal structure is given by [32]

FE = c11

2

(
u2

xx + u2
yy

)+ c33

2
u2

zz + (c11 − c12)u2
xy

+ c12uxxuyy + 2c44
(
u2

xz + u2
yz

)+ c13(uxx + uyy)uzz,

(2)

FME = (b11 − b12)
(
uxxM

2
x + 2uxyMxMy + uyyM

2
y

)
+ (b13 − b12)(uxx + uyy)M2

z + (b33 − b31)uzzM
2
z

+ 2b44(uxzMxMz + uyzMyMz), (3)

where uij is the deformation tensor defined in terms of elastic
deformations si :

uij = 1

2

(
∂si

∂xj

+ ∂sj

∂xi

)
, (4)

where i,j = x,y,z indicate directions schematically shown in
Fig. 1(a), and bij and cij are correspondingly the magnetoelas-
tic and the elastic stiffness modulus constants.

To study the magnetoelastic resonance, we consider the
coupled equations of motion for M and uij :

ρ
∂2si

∂t2
= ∂σij

∂xj

, (5)

∂ M
∂t

= −γ M × Heff , (6)
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where both the effective field Heff = −δF/δM and the stress
tensor σij = (1 + δij )/2(∂F/∂uij ) [33] are defined by the
energy density in Eq. (1), ρ is the crystal mass density, and
γ denotes the gyromagnetic ratio. For numerical estimations
later on, we use the crystallographic data for the CrNb3S6

compound, which contains 20 atoms per unit cell: twelve S
atoms, six Nb atoms, and two intercalated Cr atoms. The
unit-cell parameters are a = 5.741 Å and c = 12.101 Å and
yield ρ = 5.029 g/cm3 [34]. For a numerical value of the
magnetization M0, we use the result 3.2 μB/Cr and the nearest
Cr-Cr distance in the ab plane (5.741 Å) and along the c axis
(6.847 Å) [34]. This gives M0 = 131.5 kA/m = 1649 Gs.

At present, it is hard to give any precise numerical values
for the coefficients bij and cij in the prototype compound chiral
helimagnet CrNb3S6. Instead, the values of the stiffness moduli
for the parent matrix NbS2 of the same hexagonal structure are
used: c11 = 148 GPa, c12 = 51 GPa, c13 = 1 GPa, and c33 =
c44 = 2 GPa [35]. The constants bijM

2
0 of the order 1–10 MPa

are used for estimations whenever it is necessary.
We emphasize that in order to develop a linear theory

of magnetoelastic resonance in systems with inhomogeneous
magnetization profile it is important to take into account the
magnetostrictive effect from the magnetization background
[21], which results in the inhomogeneous deformation field
u

(0)
ij (r) in the ground state induced by the spontaneous magne-

tization M0(r). Interestingly, as it was pointed out in Ref. [21],
this effect of spontaneous symmetry breaking caused by mag-
netic ordering in a system of the two coupled fields is analogous
to the Higgs effect in the theory of elementary particles [36].
The spatial dependence of the background magnetization also
requires modification of methods used in previous studies
of ferromagnetic materials. For example, nonuniform strains
can make all the magnetoelastic waves massless Goldstone
modes; i.e., in contrast to ferromagnets, no magnetoelastic gap
appears [22].

III. MAGNETOELASTIC EFFECT

Previous studies of magnetoelastic waves in crystals with
helicoidal magnetic order, motivated mostly by available at that
time experimental data on ultrasound excitations in rare-earth
metals [37] where the spiral ordering originates from the
competition between the exchange couplings, demonstrated
that the modulated magnetization of the ground state results
in nonuniform equilibrium deformations of the crystal [22].
The results for the cubic crystals with a relativistic spiral
structure stabilized by the DM interaction were addressed in
Ref. [31]. Below, we summarize the results for the hexagonal
chiral crystals, which demonstrate substantial difference from
the cubic case.

At first, we briefly review different modulated magnetic
phases realized in chiral helimagnets of hexagonal symmetry
under the external static magnetic field. For this purpose,
we use classical representation of the magnetization M0 =
M0(sin θ0 cos ϕ0, sin θ0 sin ϕ0, cos θ0) parametrized by the az-
imuthal (ϕ) and polar (θ ) angles. When the magnetic field
in Eq. (1) is applied along the ẑ direction, the conical phase
characterized by 0 < θ0 < π/2 and ϕ0 = qz is stabilized for
Hz < Hz

c , as schematically shown in Fig. 1(b), where q =

−D/J is the helical pitch, Hz
c = M0D

2/J is the critical field
for the conical phase, and cos θ0 = Hz/Hz

c . For Hz > Hz
c the

forced ferromagnetic state along ẑ axis appears. The situation
is completely different when H is applied perpendicular to the
chiral axis [see Fig. 1(c)]. In this case, the periodic nonlinear
structure called the magnetic soliton lattice corresponds to
the minimum of magnetic energy for any nonzero Hx and is
determined by the solution of the sine-Gordon equation with
θ0 = π/2 and

ϕ0(z) = π + 2am
(mz

κ

)
, (7)

where am(. . .) is the Jacobi amplitude function with the el-
liptic modulus κ , 0 � κ2 < 1. The parameter m2 = Hx/JM0

plays the role of the first breather mass in the context of
the sine-Gordon model and determines the period of the
soliton lattice. The modulus κ is determined by the relation
(κ/E)2 = Hx/Hx

c , where Hx
c = JM0(πq/4)2 is the critical

field for the soliton lattice phase at which the incommensurate-
commensurate phase transition occurs; E is the elliptic integral
of the second kind. At zero magnetic field, both the soliton
lattice and the conical phases degenerate into the simple spiral
with ϕ0 = qz.

Having determined the magnetic background, we are in a
position to study magnetostriction effects. At this point, the ap-
proximate character of our treatment should be highlighted. We
imply that the magnetic ordering is determined independently
from the elastic subsystem by minimizing only the magnetic
part of the total energy density in Eq. (1). This approach, which
is justified when magnetoelastic interaction is much weaker
that magnetic interactions, allows us to determine inhomo-
geneous deformations induced by magnetic background, but
ignores the backward effect of the elastic subsystem on mag-
netic ordering. The accurate treatment should minimize the
total energy simultaneously with respect to the magnetization
and elastic deformations, which eventually leads to the double
sine-Gordon model, also known as the sine-Gordon model with
crystalline anisotropy of the second order [38].

In order to find the induced deformation field u
(0)
ij , we apply

the Saint-Venant compatibility condition for the infinitesimal
strain components, which ensures that the strain is the sym-
metric derivative of some vector field [39]:

∂2
ij ukl + ∂2

kluij − ∂2
ikujl − ∂2

j luik = 0, (8)

where ijkl = 1212,1313,2323,1213,2123,3132. In the
present case of one-dimensional modulation uij = uij (z), it
reduces to

∂2
z uxx = ∂2

z uyy = ∂2
z uxy = 0, (9)

which yields constant uxx = u(0)
xx , uyy = u(0)

yy , and uxy = u(0)
xy

under the the requirement of finiteness of the deformations.
Inserting these displacements into Eqs. (2) and (3) and mini-
mizing the total energy with respect to uzz, uxz, and uyz, we
find the remaining components of the deformation tensor:

u(0)
zz = − (b33 − b31)

c33
M2

0z − c13

c33

(
u(0)

xx + u(0)
yy

)
, (10)

u(0)
xz (z) = − b44

2c44
M0zM0x(z), (11)

u(0)
yz (z) = − b44

2c44
M0zM0y(z). (12)
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Substituting Eqs.(10)–(12) back into Eqs. (2) and (3), we obtain
the energy density that depends only on uxx , uyy , and uxy .
These values are obtained by minimization of F per period L,
L−1
∫ L

0 Fdz, which eventually leads to the results u(0)
xy = 0 and

u(0)
xx = u(0)

yy = M2
0

�

[
c13(b33 − b31) cos2 θ0

− c33(b13 − b12) cos2 θ0 − c33

2
(b11 − b12) sin2 θ0

]
,

(13)

where � = c33(c11 + c12) − 2c2
13.

The equations above demonstrate that in hexagonal crystals
the helical magnetic ordering triggers the screw deformations
u(0)

xz and u(0)
yz whereas the shear and the normal strains remain

uniform, in agreement with previous results for hexagonal
crystals with the exchange spiral ordering [22]. The presence
of the screw deformations is a remarkable feature of the
monoaxial crystal classes, whereas it is absent in the cubic
classes [31]. Such type of hybridization between the spin
modulations and the elastic deformations supports an idea that
spin chirality is connected to the torsion deformations. This
correspondence has been proved experimentally in Ho metal,
where the left-screw domain population excess was reached
after exertion of the torsion elastic deformation [40]. However,
similar experiments were found unsuccessful in cubic chiral
magnets, such as Fe1−xCoxSi and Mn1−xFexSi [41,42].

IV. MAGNETOELASTIC RESONANCE

The theory of linear magnetoelastic resonance follows from
Eqs. (5) and (6) by expanding them near the equilibrium
magnetization M = M0(z) + δm(z,t) and deformation fields
uij = u

(0)
ij (z) + δuij (z,t) and keeping only linear contributions

in terms of small perturbations δm(z,t) and δuij (z,t). For the
elastic deformations, the explicit expression are as follows:
uxx = uyy = u(0)

xx , uxy = u(0)
xy = 0, and

uiz = u
(0)
iz + 1

2

(
∂si

∂x3
+ ∂s3

∂xi

)
, i = 1,2,3, (14)

where (x1,x2,x3) = (x,y,z).
Below, we consider magnetoelastic waves in two modulated

magnetic phases of the chiral helimagnet: the conical one that
appears when the static magnetic field is applied along the
chiral axis, H = Hzez, and the soliton lattice phase arising
when the field is perpendicular to the axis, H = Hxex .

A. Conical phase

The conical phase is specified by the finite cone
angle 0 < θ0 < π/2, and harmonic magnetic modulation

with the helical pitch q = −D/J . For the following
discussion it is convenient to introduce circular ampli-
tudes for the magnetic and elastic waves, M±(z,t) =
Mx(z,t) ± iMy(z,t) and s±(z,t) = sx(z,t) ± isy(z,t), respec-
tively. In these notations, the dynamical part of the
magnetization becomes δm±(z,t) = M0 cos θ0e

±iqzδθ (z,t) ±
iM0 sin θ0e

±iqzδϕ(z,t), and δmz(z,t) = −M0 sin θ0δθ (z,t),
which after the substitution into Eqs. (5) and (6), together
with Eq. (14), gives after some algebra the following coupled
equations of motion for the elastic displacements and the
magnetization:

∂2sz

∂t2
= v2

l

∂2sz

∂z2
− β3 sin 2θ0

∂δθ

∂z
, (15)

∂2s±
∂t2

= v2
t

∂2s±
∂z2

+ β1 cos 2θ0
∂

∂z
(e±iqzδθ )

± i

2
β1 sin 2θ0

∂

∂z
(e±iqzδϕ), (16)

∂δθ

∂t
= JM0γ sin θ0

∂2δϕ

∂z2
− γ

b2
44

c44
M3

0 sin θ0 cos2 θ0δϕ

+ iβ2

2
cos θ0

(
e−iqz ∂s+

∂z
− eiqz ∂s−

∂z

)
, (17)

sin θ0
∂δϕ

∂t
= −JM0γ

∂2δθ

∂z2
+ γf (θ0)δθ

+ β2

2
cos 2θ0

(
e−iqz ∂s+

∂z
+ eiqz ∂s−

∂z

)

−β4 sin 2θ0
∂sz

∂z
, (18)

where a shorthand notation was introduced:

f (θ0) = −Jq2M0 cos 2θ0 + Hz cos θ0

+ 4
b2

44

c44
M3

0 sin2 θ0 cos2 θ0

+ 2M0u
(0)
xx (b11 − 2b13 + b12) cos 2θ0 − 2(b33 − b31)

× u(0)
zz M0 cos 2θ0, (19)

together with the parameters β1 = M2
0 b44/ρ, β2 = γM0b44,

β3 = M2
0 (b33 − b31)/ρ, β4 = γM0(b33 − b31), v2

t = c44/ρ,
and v2

l = c33/ρ. Equations (16)–(18) can be simplified by
transforming into the rotating frame s̃+ = s+e−iqz and s̃− =
s−eiqz that lead to the system with constant coefficients. The
dispersion relations for the coupled magnetoelastic waves
can be readily obtained after substituting eikz−iωt , that yields
at once the secular equation for the spectrum of coupled
magnetoelastic waves:

[
(ω2 − ε1kε2k)

(
ω2 − v2

l k
2
)− β3β4k

2ε1k sin2 2θ0
][

ω2 − v2
t (k + q)2

][
ω2 − v2

t (k − q)2
]

+β1β2
(
ω2 − v2

l k
2
){

4kqω3 cos θ0 cos 2θ0 − [ε1k cos2 2θ0 + ε2k cos2 θ0]
[
ω2(k2 + q2) − v2

t (k2 − q2)2
]}

−β1β2 cos2 θ0
{
β1β2 cos2 2θ0

(
ω2 − v2

l k
2)(k2 − q2)2 + β3β4k

2 sin2 2θ0
[
ω2(k2 + q2) − v2

t (k2 − q2)2]} = 0, (20)
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FIG. 2. (a) Spectrum of magnetoelastic waves in the conical phase for θ0 = π/5 showing four magnetoelastic bands originating from one
helimagnon mode and three acoustic modes—longitudinal and left- and right-polarized transverse modes. Different energy bands are highlighted
by colors. Note a gap opening between each pair of adjacent bands. (b) Magnified image of a gap opening between III and IV bands shifted from
the k = 0 point. (c) Band-gap asymmetry, As = (�ωR − �ωL)/(�ωR + �ωL), between the left (�ωL) and right (�ωR) gap values centered
near −kres,1 and kres,1 for the hybridized low-energy bands I and II as a function of θ0. (d) Low-energy sector of the spectrum showing a detailed
picture of hybridization between I and II bands.

where

ε1k = γ JM0k
2 + γ

b2
44

c44
M3

0 cos2 θ0, (21)

ε2k = γ JM0k
2 + γf (θ0). (22)

Apparently, the result for a simple spiral is restored for θ0 =
π/2. In this case, the equation above splits into the dispersion
relation for the longitudinal sound wave, ω = vlk, decoupled
from the rest of the spectrum for interacting magnetic and
transverse sound waves:

(ω2 − ε1kε2k)
[
ω2 − v2

t (k + q)2
][

ω2 − v2
t (k − q)2

]
−β1β2ε1k

[
ω2(k2 + q2) − v2

t (k2 − q2)2
] = 0. (23)

1. Magnetoelastic spectrum in the conical phase

Figure 2 demonstrates the magnetoelastic spectrum in the
conical phase calculated numerically from Eq. (20), which
shows four magnetoelastic bands originating from one heli-
magnon mode and three acoustic modes. The origin of these
four bands is intuitively clear—the lowest-energy mode, I,
is a helimagnonlike band except the resonant regions where
it becomes hybridized with right- and left-polarized acoustic
bands. Here, we note a pronounced asymmetry in the degree of
hybridization which is discussed below in detail [see Fig. 2(c)].
An important point to note is the absence of a magnetoelastic
gap at k = 0, the Higgs effect, owing to the nonuniform
equilibrium strains. The remaining branches II, III, and IV are
acousticlike bands originating from longitudinal and transverse
acoustic bands hybridized due to the interaction with magnetic
excitations. This interaction generates a gap between each pair
of adjacent bands. For example, a small gap opening between
III and IV bands, which corresponds to the hybridized left- and
right-polarized acoustic bands, is shown in Fig. 2(b). Note that
the avoided band crossing is shifted from k = 0, which can be
ascribed to the acoustic activity in the conical phase. In what

follows, we will mainly concentrate on the low-energy part of
the spectrum [Fig. 2(c)], where the magnetization dynamics is
coupled to the elastic subsystem in the most explicit way.

Let us discuss the magnetoelastic resonance between I and
II bands. The momentum points of the first resonance in the
vicinity of ±q [see Fig. 2(d)] result from the equations

v2
t (kres ± q)2 = (γ JM0)2k2

res

(
k2

res + q2 sin2 θ0
)
. (24)

By using the values γ = 2πg × 1.4 MHz Gs−1 (g = 2) and
q = −0.13 × 107cm−1, that correspond to the period 48 nm,
M0 = 1649 Gs, and JM2

0 ∼ kBTc/a|| = 0.26 × 10−6 erg/cm,
where Tc = 127 K is the Curie-Weiss temperature and a|| =
6.847 Å is the nearest Cr-Cr distance along the z axis in
CrNb3S6 [34], one may find that the pair of resonance
points is given by kres,1 = 0.12 × 107cm−1 and kres,2 = 0.14 ×
107cm−1, where we suppose θ0 = π/2. Then the resonance
frequency ωres = √

c44/ρ|kres + q| takes the values 5.93 and
7.59 GHz at these points, respectively.

2. Band-gap asymmetry in the conical phase

As anticipated, there is the asymmetry between the left
and right gap values, �ωL and �ωR , centered near −kres and
kres, respectively, which occurs due to broken parity symmetry
along the z axis in the conical phase. Taking the notation for
the left-hand side of Eq. (20) as f (ω), the gap in the resonant
point of the frequency ωres may be evaluated:

�ω = 2

⎧⎨
⎩
[

f
′
(ωres)

f
′′ (ωres)

]2

− 2
f (ωres)

f
′′(ωres)

⎫⎬
⎭

1
2

. (25)

The asymmetry between the gaps, defined as As =
(�ωR − �ωL)/(�ωR + �ωL) calculated both numerically
and with the aid of the formula (25), is shown in Fig. 2(c). It is
clear that with decreasing θ0 the asymmetry gradually increases
to some maximum value around θ0 = π/3 and drops down
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(a)

(b)

L L

LR

FIG. 3. (a) When the linearly polarized elastic wave is injected
into the forced-ferromagnetic state along the chiral axis, it is decom-
posed into left- and right-handed circularly polarized waves. Then
only one of them can resonantly hybridize with the spin wave which
has the definite helicity due to the DM interaction and consequently
attenuates. (b) The circularly polarized elastic wave with the chi-
rality opposite to the spin wave can penetrate without attenuation.
(c) Mechanical bolt-nut analog of the effect. The screw bolt and the
nut correspond to the spin-wave and circularly polarized elastic wave.
The nut can couple (hybridize) only when the chirality of the bolt
matches the chirality of the nut. This situation is an analog of the case
shown in (a).

afterwards to the minimum value at zero that corresponds to
the forced ferromagnetic state. Mathematically, the asymmetry
in the conical phase results from the k-linear term in Eq. (20).
It includes the factor cos θ0 cos 2θ0 that reaches the maximum
absolute value at θ0 = 0 and cos−1 (1/

√
6), and zero at π/4

and π/2. This fact explains the absence of the asymmetry at
the last particular points. The symmetry breaking of the disper-
sion spectrum admits nonreciprocal elastic wave propagation
controlled by the external magnetic field directed along the
chiral axis.

It should be emphasized that the asymmetry indicates
involvement of elastic waves of different polarizations in the
hybridization. To illustrate this fact, let us, at first, have a
look at the well-known result for the forced ferromagnetic
phase, where only the left-polarized transverse acoustic wave
(s− �= 0), propagating along the magnetic ordering direction,
is hybridized to the magnon band [43]. This fact is a direct
consequence of the rotations symmetry along the magne-
tization direction, which makes polarization of the wave a
good quantum number. Since ferromagnetic magnons are only
left-polarized, they are able to couple only to the sound wave
that matches their handedness.

In Fig. 3, we schematically depict how the left-polarized
acoustic wave selectively hybridizes the spin wave in a non-
reciprocal manner, when the linearly polarized elastic wave is
injected into the forced-ferromagnetic state along the chiral
axis. In Fig. 3(a) we show that only either the left- or right-
handed circularly polarized counterpart can hybridize with
the spin wave which has the definite helicity due to the
DM interaction. In this case, the corresponding counterpart
attenuates. On the other hand, as in Fig. 3(b) the circularly
polarized elastic wave with the chirality opposite to the spin

(            )

(G
H

z)

FIG. 4. Spectrum of magnetoelastic waves at θ0 = 0, where the
conical phase collapses to the forced ferromagnetic phase, calculated
in the two-wave approximation [see Eq. (26)], which merges perfectly
with the exact result given by Eq. (20). The dashed lines show
the longitudinal and right-polarized acoustic waves decoupled from
magnetic excitations. The band gap on the left-hand side shows
remaining hybridization between the parabolic ferromagnetic magnon
spectrum and left-polarized acoustic wave.

wave can penetrate without attenuation. This mechanism may
be captured through the “chiral bolt-nut”analog as shown in
Fig. 3(c). In the case of conical phase with θ0 �= π/2, left-
and right-handed spin waves are mixed and consequently the
linearly polarized elastic waves are decomposed into left- and
right-handed circularly polarized counterparts depending on
the magnitude of θ0.

The same argument is applicable to the conical phase at
Hz = Hz

c (θ0 = 0) where rotation symmetry is restored (see
Fig. 4). However, for Hz < Hz

c the finite component of the
magnetization appears perpendicular to the chiral axis, which
breaks the rotation symmetry giving rise to the direct hybridiza-
tion between the right-polarized (s+ �= 0) acoustic band and the
helimagnon band. Therefore, the asymmetry factor, As, can
be related to the difference between the contributions from the
left- and right-polarized acoustic waves to the hybridization.

To summarize this section, we would like to note that the
measurements of the band gaps in the spectrum of magnetoe-
lastic excitations can be useful for experimental estimation of
magnetoelastic constants. As an example, we demonstrate how
the constant b44 responsible for hybridization between I and
II bands may be determined from the experimental value for
the band gap at θ0 = 0 of the phase transition from the conical
phase to the induced ferromagnetic phase (see Fig. 4).

The choice of this specific point is motivated by the absence
of contribution of other magnetoelastic constants to the gap
value. For illustration, we restrict our analysis to two-wave
approximation [44], where coupling of the amplitudes s̃−(k),
δϕ(k), and δθ (k) is only retained in the vicinity of the
momentum q. Then the frequencies may be found from the
determinant of the matrix⎛
⎜⎝

ω2 − v2
t (k − q)2 β1(k − q) iβ1(k − q)

1
2β2(k − q) −ε1k iω
i
2β2(k − q) iω ε2k

⎞
⎟⎠. (26)
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It can be observed from Eqs. (21) and (22) that

ε1k = ε2k = γ JM0k
2 + β1β2

v2
t

, (27)

and, as a consequence, only the constant b44 controls interac-
tion between the magnetic and the elastic subsystems.

Straightforward calculation results in the dispersion relation
(see Fig. 4)

(
ω2 − v2

t (k − q)2
)
(ω − γ JM0k

2) = β1β2
ω2

v2
t

. (28)

By adapting the resonance condition in Eq. (24) and us-
ing the expansion ω = ω0 + δω, where ω0 = γ JM0k

2
res is

the frequency of the resonance, we find eventually the gap
value

δω ≈ γM2
0 b44

√
Jk2

res

2c44
. (29)

Consequently, the nontransmission band in the spectrum of the
coupled oscillations enables a convenient way to find the mag-
netoelastic constant b44 associated with torsion deformations
around the z axis.

B. Soliton lattice phase

In this section, we consider the case when the static mag-
netic field is applied perpendicular to the chiral axis. For Hx <

Hx
c , the magnetic chiral soliton lattice phase is realized, which

is characterized by the following spatial dependence of the
equilibrium background magnetization, M0±(z) = M0e

±iϕ0(z),
and M0z = 0, where ϕ0(z) is given by Eq. (7). At Hx = 0, the
Taylor series of ϕ0 has only one term, qz, which corresponds
to the simple spiral with one harmonic. For any nonzero Hx ,
Jacobi’s amplitude function in ϕ0(z) has nontrivial power series
giving origin to the multiharmonic nature of the resulting
soliton lattice.

In order to obtain the spectrum of magnetoelastic excitations
for the soliton lattice phase, we expand the total magne-
tization up to the linear order in fluctuations, δm±(z,t) =
±iM0e

±iϕ0(z)δϕ(z,t) and δmz(z,t) = −M0δθ (z,t). The dy-
namical equations can be found straightforwardly from Eqs. (5)
and (6) by linearizing them in δϕ and δθ , which gives the
following expressions after some algebra:

∂2s±
∂t2

= v2
t

∂2s±
∂z2

− β1
∂

∂z
(e±iϕ0δθ ), (30)

∂δθ

∂t
= −JM0γ L̂ δϕ, (31)

∂δϕ

∂t
= JM0γ

[
L̂−
(

dϕ0

dz
− q

)2
]
δθ + γf

(π
2

)
δθ

− β2

2

(
e−iϕ0

∂s+
∂z

+ eiϕ0
∂s−
∂z

)
, (32)

where L̂ = −∂2
z + m2 cos ϕ0 denotes the Lamé operator, and

the sine-Gordon equation, providing the phase modulation in
the soliton lattice, ∂2

z ϕ0 = m2 sin ϕ0, was accounted for. The
equation of motion for sz is totally decoupled from these
equations and corresponds to the acoustic band with the trivial
dispersion relation ω = vlk.

It is natural to assume that some generalized Fourier series
for s±, δθ , and δϕ in terms of the Lamé operator’s eigenfunction
can provide the solution of the eigenvalue problem when the
magnetoelastic coupling is fairly small. However, in realizing
this approach one is faced with a problem, since it turns out
that, in practice, it is not possible to treat this infinite series as
being explicitly controlled by any small parameter whatsoever.

To tackle this problem, let us note the case for the conical
phase, where the gauge transformation for s± was applied to
remove the periodic terms in the equations of motion, which
appeared owing to the basic harmonics, sin θ0e

±iqz, of the
underlying magnetic structure. Unfortunately, this special trick
cannot be directly implemented for Eqs. (30)–(32) because
of the multiharmonic character of the soliton lattice phase.
Nevertheless, we found that the expansion of the periodic terms
with respect to the small parameter κ2, which is controlled by
Hx , with subsequent Fourier transformation of the dynamical
equations turns out to be effective.

Indeed, the coefficients on the right-hand side of
Eqs. (30)–(32) can be expanded in power series of κ:

cos ϕ0 = κ2

8
− cos qz − κ2

8
cos 2qz + O(κ4), (33)

e±iϕ0 = κ2

8
− e±iqz − κ2

8
e±2iqz + O(κ4), (34)

dϕ0

dz
= q + κ2

4
q cos qz + O(κ4), (35)

where κ is determined by applied magnetic field.
One particular advantage of the present formulation is

evident for small and intermediate magnetic fields, when Hx

is far below Hx
c ; because these expansions involve the small

factor κ2, the series can be terminated at low order. The method
is also sufficiently simple algebraically to enable us to obtain
a magnetoelastic spectrum in the soliton lattice phase with a
given accuracy.

Inserting the expansions (33)–(35) into the system (30)–
(32) and holding terms up to the κ2 order, we get

(
ω2 − v2

t k
2
)
s±(k,ω) = ikβ1

[
κ2

8
δθ (k,ω) − δθ (k ∓ q,ω) − κ2

8
δθ (k ∓ 2q,ω)

]
, (36)

−iωδθ (k,ω) = −JM0γ k2

{
δϕ(k,ω) − q2κ2

8k2
[δϕ(k + q,ω) + δϕ(k − q,ω)]

}
, (37)

−iωδϕ(k,ω) = JM0γ k2

{
δθ (k,ω) − q2κ2

8k2
[δθ (k + q,ω) + δθ (k − q,ω)]

}
+ γf
(π

2

)
δθ (k,ω)
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− iβ2κ
2

16
[ks+(k,ω) + ks−(k,ω) − (k + 2q)s+(k + 2q,ω) − (k − 2q)s−(k − 2q,ω)]

+ iβ2

2
[(k + q)s+(k + q,ω) + (k − q)s−(k − q,ω)]. (38)

To obtain a closed set of dynamical equations, we sup-
plemented Eqs. (36)–(38) by similar equations of motion for
higher-order harmonic amplitudes keeping only the terms with
k ± q and k ± 2q. The resulting set of 20 coupled equations
was solved numerically to obtain the magnetoelastic band
structure shown in Fig. 5.

The resulting band structure in Fig. 5 can be qualitatively
understood if we note that the periodic nature of the magnetic
soliton lattice gives origin to the magnetic Brillouin zone
determined by the soliton lattice period and controlled by ex-
ternal magnetic field. Magnetic excitation can directly feel this
periodic background which naturally results in the helimagnon
Bloch bands, where different branches are separated from each
other due to the Bragg reflection from periodic potential of
the underlying magnetic superlattice. These helimagnon Bloch
bands hybridize with acoustic bands due to the magnetoelastic
coupling resulting in the energy spectrum shown in Fig. 5(b).

To gain further insight concerning the excitation spectrum,
it may be useful to decompose the background magnetization
of the soliton lattice into the harmonic series [45]

Mx0

M0
= 2(K − E)

κ2K
− 1 − π2

κ2K2

∑
n�=0

neinGz

sinh
(
nπ K ′

K

) , (39)

My0

M0
= iπ2

κ2K2

∑
n

neinGz

cosh
(
nπ K ′

K

) , (40)

where

G = π2q/(4KE) = q

[
1 − κ4

32
+ O(κ6)

]
(41)

is the wave vector of the soliton lattice, and K (K ′) denotes
the first-order elliptic integral with the modulus κ [(κ ′2)1/2]. In
contrast to the conical phase, the additional contributions einGz,

(            )

(G
H

z)

(            )

(G
H

z)

(a)                                                                               (b)

FIG. 5. Spectrum of magnetoelastic waves in the soliton lattice
phase in the extended (a) and reduced (b) zone schemes. The colors
indicate different excitation bands separated from each other by
hybridization gaps.

|n| � 2, appear in the spatial distribution of the nonuniform
magnetic background along with the basic ones, e±iGz.

Inspection of Fig. 5(a) indicates that we can assign differ-
ent coordinate systems related to each harmonic, where the
points nq are used as the coordinate system origin, and, as a
consequence, the excitation branches of the elastic excitations
are replicated. Similarly to the simple spiral, the resonance
at kres,α (α = 1,2) points near the nq values occurs, which is
determined by the following condition:

v2
t (kres,α ± nq)2 = ε1kε2k, (42)

giving resonant frequencies ω(n)
res,α = √

c44/ρ|kres,α ± nq|. By
neglecting the magnetoelastic contributions to the energies
ε1k,2k , we recover the result of Eq. (24).

Proceeding similarly to the analysis of the conical phase,
one may observe that the first gap in the excitation spectrum
in the vicinity of k = q originates from hybridization of the
amplitudes s−(k − q), δθ (k), and δϕ(k). The system (36)–(38)
lends support to the coupling

[
ω2 − v2

t (k − q)2]s−(k − q) + iβ1(k − q)δθ (k) = 0, (43)

iωδθ (k) − ε1kδϕ(k) = 0, (44)

iωδϕ(k) + ε2kδθ (k) + iβ2

2
(k − q)s−(k − q) = 0, (45)

which brings about the result for the first hybridization gap
between the magnetic and acoustic band:

�ω|k=q ≈ γM2
0 b44

√
Jq2

2c44
. (46)

The extension of this approach to calculation of the second-
order gap seems obvious. Apparently, keeping only the ampli-
tudes s−(k − 2q), δθ (k), and δϕ(k) in Eqs (36)–(38), one finds
the gap near the resonant point k = 2q:

�ω|k=2q ≈ γM2
0 b44

κ2

4

√
Jq2

2c44
= κ2

4
�ω|k=q . (47)

It may be further proved that the width of the nth gap decreases
exponentially, �ω|k=nq ∼ κ2n−2, similar to the result for the
spin-wave spectrum of the relativistic spiral [46].

Apart from hybridization between the spin and elastic
waves, there is a pure magnetic band gap originating from the
Bragg reflection of the helimagnons from the periodic potential
of the soliton lattice. It can be regarded as the splitting �ωsp =
a3M0H

x/(2h̄) between the acoustic and optic branches of spin
fluctuations at the boundary of the magnetic Brillouin zone
[45], which is visible in Fig. 5(a) as lifted degeneracies at the
points nG/2 ≈ nq/2. In contrast to Eq. (46), the magnetic
gap is directly controlled by the magnetic field rather than a
strength of the magnetoelastic coupling.

184303-8



THEORY OF MAGNETOELASTIC RESONANCE IN A … PHYSICAL REVIEW B 97, 184303 (2018)

V. DISCUSSIONS

A salient peculiarity of the conical phase is the conspicuous
asymmetry between the left and right band gaps in the spectrum
of the coupled magnetoelastic waves. In practice, it is the
phonon mode that is of major importance after hybridization,
because the elastic stiffness is measured experimentally at
different external magnetic fields as the ultrasonic response.
The tunable nonreciprocity governed by the magnetic field is
potentially applicable in the construction of ultrasound devices
using chiral helimagnets.

In contrast to the conical magnetic structure, time-reversal
symmetry for elastic wave propagation is kept for the soliton
lattice and for the simple spiral, particularly. Another notable
difference in comparison with the conical phase, the magne-
toelastic resonance in the soliton lattice has the multiresonance
behavior. This result confirms the intuitive expectation that the
resonance occurs whenever the wave vector of a spreading
elastic wave matches a modulation of the nonuniform magnetic
background. In contrast to the conical magnetic structure,
the soliton lattice consists of higher-order harmonics indexed
by integer, and each of the components contributes to the
resonance separately. We emphasize that an assessment of the
hybridization constant b44 at the point where the conical phase
is collapsed in favor of the forced ferromagnetic phase may
successfully be combined with measurements of multireso-
nance ultrasound absorption in the soliton lattice. The scheme
provides a promising tool for an experimental probe of the
soliton lattice phase. Regarding potential applications of the
theory, it is useful to highlight that while lattice and elastic
properties of MnSi and related compounds are well known
[47,48] there remains a considerable need for experimental
information on the phonon dispersion and the phonon density
of states in CrNb3S6.

While our treatment is designed for crystals of hexagonal
symmetry it nonetheless provides the framework for studies
of magnetoelastic effects in chiral helimagnets of other crys-
tal classes. For example, the tetragonal insulating materials
CuB2O4 [49] and Ba2CuGe2O7 [50], and the trigonal metallic
compound Yb(Ni1−xCux)3Al9 [51], may be named, where
ample evidences for the formation of a chiral magnetic soliton
lattice state, an anticipated outcome of a monoaxial chiral
helimagnet, were reported.

Some limitations of our analysis should be mentioned. In
the equilibrium configuration M0, the magnetoelastic terms
were discarded. These effects may be described by the double
sine-Gordon model, also known as the sine-Gordon model
with crystalline anisotropy of the second order [38]. This
specific issue will be addressed in future work. Here, it is
worth noting that the enhanced anisotropic change in shape
both for skyrmion lattice and individual skyrmions was re-
vealed in FeGe by Lorentz transmission electron microscopy
under uniaxial tensile stress deformation. It was ascribed
to the strain-induced anisotropic modulation of DM inter-
action [52]. In contrast, the stress-driven topological phase
transition in MnSi from the skyrmion lattice phase to the
conical phase was interpreted by strain-induced magnetic
anisotropy on the basis of the Ginzburg-Landau phenomenol-
ogy with an account of magnetoelastic contribution to the free
energy [17].

Another difficulty of possible application of the paper may
arise owing to the magnetoelastic correlations in CrNb3S6 [53].
The diffuse scattering measurements of the crystal structure of
CrNb3S6 demonstrate that there is a bias towards a disorder
in the Cr sublattice [54]. This suggests that the disorder
occurs due to clustering of Cr ions in hexagonal fragments
within the layers. It was found that such a specific correlated
disorder strongly affects the magnetic ordering temperature.
A follow-up work designed to evaluate an interplay between
the correlated disorder and magnetic properties would be
useful.

Measurements on thin films of CrNb3S6 showed that the
chiral soliton lattice exhibits interesting phenomena due to
confinement from the presence of magnetic domains extended
for approximately 1 μm in helix direction [55,56]. An impor-
tant question for future studies is to determine an effect of
the domain structure on the ultrasound wave propagation. We
believe that our theoretical analysis may serve as an appropriate
starting point to touch on these issues.

VI. CONCLUSIONS

In summary, we have investigated the spectrum of coupled
magnetoelastic waves propagating along the helicoidal axis in
crystals of hexagonal symmetry having spiral magnetic order
due to DM interaction. Based on the example of spin and elastic
waves we elucidate how torsion deformations are related with
spin chirality. We clarified the peculiar nature of magnetoe-
lastic resonance for particular phases of the monoaxial chiral
axis: the conical phase and the soliton lattice phase. To the best
of our knowledge, the effect of magnetoelastic coupling for the
latter has not been studied before.

So far some kinds of multiresonance phenomena associated
with the soliton lattice have been predicted, including an
appearance of higher-order satellites in the neutron-diffraction
patterns [38,45], a spikelike behavior of magnetoresistance
originated from scattering of electrons by the magnetic su-
perlattice by the chiral solitons [57,58], and multiple spin
resonance of the chiral soliton lattice [59]. We expect the
present paper on magnetoelastic coupling may expand the
scope of these multiresonance or scattering phenomena. In
particular, we show that the nonreciprocal spin wave around the
forced-ferromagnetic state has potential capability to convert
the linearly polarized elastic wave to a circularly polarized one
with the chirality (helicity) opposite to the spin-wave chirality.
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