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Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-
dielectric nanocomposites. Two-dimensional networks are applied when considering thin films despite the fact
that such networks correspond to the two-dimensional electrodynamics [Clerc et al., J. Phys. A 29, 4781 (1996)].
In the present work, we propose a model of two-dimensional systems with the three-dimensional Coulomb
interaction and show that this model is equivalent to the planar network with long-range capacitive links between
distant sites. In the case of a metallic film, we obtain the well-known dispersion of two-dimensional plasmons
ω ∝ √

k. We study the evolution of resonances with a decrease in the metal filling factor within the framework of
the proposed model. In the subcritical region with the metal filling p lower than the percolation threshold pc, we
observe a gap with Lifshitz tails in the spectral density of states (DOS). In the supercritical region p > pc, the
DOS demonstrates a crossover between plane-wave two-dimensional plasmons and resonances of finite clusters.
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I. INTRODUCTION

Disordered metal-dielectric films are nanocomposites
whose structure depends on the surface filling fraction of a
metal. Their geometry ranges from a dielectric surface with
isolated metallic granules to a conducting metallic layer with
dielectric holes [1]. The local scale of such inclusions is
tens of nanometers, however, they can form big metallic and
dielectric clusters having a complex structure. Such systems
have attracted great interest because of their optical properties,
which are due to surface plasmons [2]. Plasmon resonances in
disordered films form collective modes that are characterized
by a complicated structure and giant fluctuations of local elec-
tric fields [1]. These fluctuations are regions with extremely
high local fields, hot spots, which play a crucial role in the pro-
cess of surface-enhanced Raman scattering [3,4]. Other effects
also increase in such disordered systems, especially near the
percolation threshold, for example, high harmonic generation
[1,5]. Plasmon resonances modify the electromagnetic local
density of states, thus allow controlling the rate of decay for
excitations related to atoms, molecules, and other quantum
emitters by exploiting the Purcell effect [6–8].

Various effective medium approaches have been developed
[9] in order to study macroscopic properties, such as optical
absorption or electric conductivity of a film. However, these
theories do not accurately describe the local geometry of a
composite, and cannot therefore describe field fluctuations
and the local density of states. To this end, other approaches
were introduced, such as impedance network models [10]. The
latter description follows from Maxwell’s equations within the
quasistatic approximation [11–13]. This approximation can be
used since the characteristic scale of inclusions is much smaller
than the light wavelength.

*olekhnon@gmail.com

A detailed study of two-dimensional systems has been
performed within the framework of the random impedance
network model. Optical absorption has been considered in
Ref. [14]. The spectral density of resonances has been studied
for binary disordered systems [15] and fractal clusters [16].
Considerable attention was paid to localization properties of
resonances [17] and the statistics of local field fluctuations
in disordered systems. It was shown that these fluctuations
demonstrate a multifractal behavior [15]. In some cases, a map-
ping between resonances in random networks and the Ander-
son localization problem [18] has been demonstrated [19,20],
which was used to study the localization in potentials with flat
bands [21] as well as the localization of surface plasmons [19].
Various scaling laws have been established for physical quan-
tities in systems near the percolation threshold [22,23]. Reso-
nances in ordered networks were also studied in order to ex-
plore properties of metasurfaces and photonic crystals [24,25].
The model was also applied to study various properties of three-
dimensional composites: optical absorption [26,27], the spec-
tral density of resonances [28], and local field fluctuations [29].

In the mentioned papers, two-dimensional networks
with a topology of the square lattice were used to describe
properties of thin film composites. As we discuss further,
the two-dimensional network model corresponds to the
two-dimensional electrodynamics [16]. Thus, this model
should be modified in order to properly describe plasmon
resonances in thin films.

The paper is organized as follows. In Sec. II, we briefly
recall the derivation of the impedance network model from
Maxwell’s equations. Kirchoff’s rules for a network are re-
duced to a generalized eigenvalue problem, which we use to
carry out numerical simulations in the present work. In Sec. III,
we analyze field distributions of elementary metallic clusters in
a dielectric lattice and put forward a new impedance network
model of thin film composites. We show that the composite
should be replaced by the network with long-range capacitive
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links between distant sites rather than by the square lattice
of impedances. In Sec. IV, the model under consideration
is applied to resonances in thin metal films. Resonances in
the model of an infinitely thin metallic layer are shown to be
two-dimensional plasmons. Effects related to the geometrical
disorder are considered in Sec. V. It is shown that Lifshitz
tails in the DOS are present at metal fillings p lower than
the percolation threshold pc, whereas at fillings p > pc the
crossover is observed between two-dimensional plasmons and
resonances of typical clusters. We also notice the presence of a
smooth peak in the DOS of resonances in a disordered network
divided by the DOS of the two-dimensional plasmon. Such
a maximum is often found in amorphous solids and referred
as the boson peak. Section VI contains final remarks and the
discussion of results.

II. THE RANDOM IMPEDANCE NETWORK MODEL

First, we briefly recall the derivation of the network model
following the lines of works [11–13]. Since characteristic
scales of metallic and dielectric inclusions are much smaller
than the wavelength of visible and infrared radiation, the
quasistatic approximation can be applied. In this case, the
electric field is curl free (rot E = 0), and the electrostatic
potential ϕ can be introduced (E = − grad ϕ).

It is well known that Maxwell’s equations can be reduced to
the equation for an eddy current div j = 0 within the quasistatic
approach [12,13]. At a given frequency ω, the current j
and the electric field E obey constitutive relation j(ω,r) =
σ (ω,r)E(ω,r). The conductivity σ (ω,r) is related to the per-
mittivity ε(ω,r) of the same region as σ (ω,r) = iωε(ω,r)/4π

[30]. In the considered binary nanocomposite, metallic regions
with a permittivity ε(ω,r) = εm(ω) and dielectric regions with
a permittivity ε(ω,r) = εd (ω) are present.

Next, we discretize the problem on a mesh with a topology
of the simple cubic lattice with the lattice constant a. Equations
div j = 0 and rot E = 0 are transformed to Kirchhoff’s current
rule and Kirchhoff’s voltage rule, respectively. One can simul-
taneously represent both Kirchhoff’s rules as a linear system

∑
j

[σm(ω)Mij + σd (ω)Dij ]ϕj = 0 (1)

with σm,d (ω,r) = iωεm,d (ω,r)/4π . Matrices M and D are
Laplacian matrices (also known as Kirchhoff matrices) [31]
of metallic and dielectric regions, respectively. Off-diagonal
matrix elements are Mij = −1 if sites i and j are connected by
metallic impedance and Mij = 0 otherwise. Diagonal elements
of the matrix M are defined as Mii = −∑

j �=i Mij . The matrix
D has the same definition but for dielectric impedances.
The sum of these matrices L = M + D is the Laplacian
matrix of the regular simple cubic lattice. Thus, a disordered
metal-dielectric composite can be treated as a binary random
impedance network.

In the simplest case, the permittivity of metallic regions can
be described within the Drude model εm(ω) = 1 − ω2

p/ω2, and
the permittivity of dielectric regions is constant: εd (ω) = εd .
In this case, “metallic” bonds are parallel LC circuits with
parameters

Lm = 4πc2

aω2
p

, Cm = a

4π
, (2)

while “dielectric” bonds are capacitors with a capacitance

Cd = εda

4π
. (3)

One can see that the resonant frequency of a single “metallic”
bond is the plasma frequency of a metal ωp = c/

√
LmCm. The

inductance Lm is attributed to the kinetic energy of charge
carriers in a metal instead of the energy stored in a magnetic
field. Such an inductance plays a crucial role in metals at high
frequencies ω ∼ ωp and is known as the kinetic inductance.

Resonant frequencies and corresponding eigenmodes in
an arbitrary binary impedance network can be obtained as
solutions to the generalized eigenvalue problem [15], which
follows from the system of linear equations (1)∑

j

Mijϕj (λn) = λn

∑
j

(Mij + Dij )ϕj (λn). (4)

Eigenvalues λn are related to resonant frequencies ωn as

λn = σd (ωn)

σd (ωn) − σm(ωn)
= εd (ωn)

εd (ωn) − εm(ωn)
. (5)

Matrices M and D are positive semidefinite [32]. Therefore,
all of the eigenvalues satisfy the inequality 0 � λn � 1 [33].
Eigenvectors ϕj (λn) describe potentials at sites of the network.
Eigenmodes of the problem (4) correspond to dielectric reso-
nances in the model network [34], which represent plasmon
resonances in the composite. The generalized eigenvalue
problem (4) does not depend on the dielectric functions εm(ω)
and εd (ω). Thus, only Eq. (5) determines resonant frequencies
ωn, which can be obtained from known eigenvalues λn and
dielectric functions εm(ω) and εd (ω). This allows mapping of
resonances in systems with the same geometry but different
dielectric functions of constituents [35]. If the dielectric func-
tion of a metal is taken in the form εm(ω) = 1 − ω2

p/ω2, then
resonant frequencies are in the range 0 � ωn � ωp. Thus, all
of the results in the present paper can be easily generalized to
arbitrary functions εm(ω) and εd (ω).

Some results on the spectral properties of long-range one-
dimensional random networks have been obtained analytically
within the framework of the random matrix theory [36,37], but
a numerical study is still the main tool which is used to analyze
properties of resonances in random networks. In the present
work, we use the Kernel polynomial method [38,39] to resolve
the problem (4) numerically for networks with a sufficiently
large number of bonds.

III. THE REDUCED NETWORK MODEL
OF THIN FILM COMPOSITES

Two-dimensional impedance networks with a topology
of the square lattice are commonly used for a theoretical
study of plasmon resonances in thin film composites [1].
However, the vacuum in the considered quasistatic approach is
equivalent to a dielectric medium with the permittivity εd = 1
as it supports displacement currents. Thus, two-dimensional
networks correspond to the two-dimensional electrodynamics
[16], that is, to composites consisting of metallic nanowires
which are placed into a dielectric medium (Fig. 1). Indeed,
electrostatic Green’s function for the square lattice impedance
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(a) (b)

(c)

(d)

FIG. 1. (a) Sketch of a random thin film composite. (b) Example
of a composite which corresponds to a two-dimensional network.
(c) Three-dimensional random impedance network with p = 0.5.
Only the plane which contains metallic-type impedances as well as
dielectric ones is shown. Thick red (black) lines denote metallic-type
impedances, whereas thin blue (gray) lines denote dielectric-type
impedances. (d) The equivalent two-dimensional network with long-
range bonds (few of them are shown for the central site).

network has the following form [16]:

G(x) = 1

π
(2ln(x) + ln(8) + 2γ + O(1/|x|2)), (6)

where x = rij is the distance between a charge located at the
site i and an observation point at the site j , and γ = 0.57721
is Euler’s constant. This expression can be obtained within
the random walk theory [40]. The first term in the equation
above corresponds to the potential of a point charge in the two-
dimensional electrostatics, whereas omitted terms of relative
order 1/|x|2 and higher describe anisotropic corrections which
arise due to the lattice discreteness [16]. On the other hand,
Green’s function for the three-dimensional simple cubic lattice
demonstrates the asymptotic behavior G(x) ∝ 1/2πx [40] that
corresponds to the three-dimensional Coulomb interaction.

As a result, a more appropriate model for a thin film compos-
ite is an impedance network with a single layer (or, generally, a
group of adjacent layers) containing “metallic” bonds as well as

“dielectric” ones which is surrounded by the three-dimensional
lattice of “dielectric” bonds (Fig. 1). Spectral properties of
thin film composites, as well as the localization of resonances
in such systems, should be reconsidered within this network
model. The above statement doesn’t affect results related
to three-dimensional nanocomposites, e.g., those of papers
[14,26,28].

The three-dimensional lattice contains a big number of sites
with z �= 0, which form the surrounding dielectric medium.
They sufficiently increase a complexity of the eigenvalue
problem (4) but do not increase the number of nontrivial
resonances. However, the three-dimensional problem can be
reduced to the two-dimensional one with a much smaller
number of sites. Equation (4) can be formally written as∑

j

Lij ϕj = Ii, (7)

where Ii = ∑
j Mijϕj/λn. Equation (7) can be treated as an

equation for site potentials ϕj in the conductive simple cubic
lattice made of unit resistors and external currents Ii . Mij is
nonzero only if zi = 0 and zj = 0 since all metallic bonds
located in the layer z = 0. Therefore, all nonvanishing external
currents Ii located in the plane zi = 0.

In order to solve the generalized eigenvalue problem (4),
only the knowledge of potentials in the plane zi = 0 is
necessary. Therefore, one can find a linear relation between
in-plane currents and in-plane potentials. This relation can be
written as ∑

j

′
L′

ij ϕj = Ii, zi = 0, zj = 0 (8)

and should be valid for any ϕj and Ii in the plane z = 0,
which hold in the original problem (7). The matrix elements
L′

ij correspond to the bonds in the reduced two-dimensional
network. The sum

∑′
j denotes the summation over j with the

constraint zj = 0.
In the original three-dimensional problem (7), we have

the simple cubic lattice with unit bonds between the nearest
neighbors. Therefore, we can use the Fourier transform to solve
Eq. (7) and find the in-plane relation (8). The resulting reduced
network has a form of the square lattice with additional bonds

L′
ij =

∫ √
S2(kx,ky) + S(kx,ky) eikrij dkxdky, (9)

where S(kx,ky) = sin2(kxa/2) + sin2(kya/2), rij is the dis-
tance between sites i and j , and the integration is performed
over the first Brillouin zone of the square lattice. In con-
trast to the original three-dimensional problem, the reduced
two-dimensional network has nonzero elements between an
arbitrary pair of sites at a distance rij . One can show that
L′

ij ∼ r−3
ij .

Finally, the generalized eigenvalue problem (4) is reduced
to the equivalent two-dimensional problem∑

j

′
Mijϕj = λn

∑
j

′
(Mij + D′

ij )ϕj , zi = 0. (10)

The matrix elements D′
ij = L′

ij − Mij describe effective di-
electric connections between in-plane sites i and j . Therefore,
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FIG. 2. Two-dimensional plasmons in the reduced network model
of thin metallic film with filling p = 1.0. (a) In-plane potential
distribution of the eigenmode with resonant frequency ω = 0.45ωp .
(b) Dispersion plot for k in the directions [10] (blue line) and [11]
(red line) given by Eq. (12). (c) The DOS of the reduced network
obtained numerically. Inset in the panel (c) shows the DOS in the
log-log scale, with the dashed line representing asymptotics from
Eq. (14). Dashed lines in the panel (b) mark frequencies, at which
van Hove singularities are present in the DOS. Numerical evaluations
are performed with KPM for a network of 103 × 103 sites within 256
polynomials.

long-range dielectric-type impedances are present in the re-
duced network [Fig. 1(d)] with

D′
ij ∝ r−3

ij . (11)

IV. PLASMONIC EIGENMODES
IN THE REDUCED MODEL

We will first consider resonances in the reduced network
with filling fraction of “metallic” bonds p = 1.0. This model
corresponds to a very thin metallic film, whose thickness is
much smaller than the typical wavelength of the oscillations in
the medium. The latter quantity, in its turn, is defined by the
network lattice constant a. Resonances in such a system have
a form of periodic oscillations of charge density in the plane of
the resonant layer. An example of eigenmode is presented in
Fig. 2(a). These resonances form a broad spectrum, ranging
from ω = 0 to some limiting value, which we will derive
further.

We begin with the analytical derivation of the disper-
sion relation in order to shed some light on the struc-
ture of these resonances. This can be done via substitution
of the ansatz ϕ(x,y,z,t) = ϕ0exp(iωt − ikxx − ikyy − 	|z|)
into Kirchhoff’s rule 
i,j Iij = 0 for currents Iij flowing into
sites inside and outside the layer. Here kx and ky are the
components of an in-plane wave vector and 	 is an attenuation
constant in the z direction. Taking into account Ohm’s law and
doing necessary calculations, one obtains the dispersion law

ω4 = ω4
p

sin2(kxa/2) + sin2(kya/2)

1 + sin2(kxa/2) + sin2(kya/2)
. (12)

In the low-frequency domain k−1 � a this relation resem-
bles a dispersion of the two-dimensional plasmon in the local
response limit ω = ωp

√
ka/2. Indeed, a discreteness of the

system does not affect oscillations at the greater wavelengths
but plays a crucial role for the resonances with k−1 ∝ a. It
is seen from Eq. (12) that the group velocity vg = ∂ω/∂k

vanishes at the edges of the Brillouin zone k[10] = π/a and
k[11] = √

2π/a. This results in van Hove singularities, clearly
seen in the DOS [Fig. 2(c)] at frequencies ω = ωp(1/2)1/4 ≈
0.84ωp and ω = ωp(2/3)1/4 ≈ 0.9ωp. The latter frequency
defines the high-frequency edge for a resonant band in such
lattice systems.

Next, we consider the spectral density of states (DOS)

ρ(ω) = 1

N

∑
j

δ(ω − ωj ), (13)

where N is the number of sites in the reduced two-dimensional
network. Numerically calculated DOS is shown in Fig. 2(c).
The density of states for two-dimensional plasmons with the
dispersion ω ∝ √

k can be obtained as follows:

ρ(ω) =
( a

2π

)2
2πk(ω)

dk(ω)

dω
= 4

π

ω3

ω4
p

. (14)

Comparison of the obtained expression with numerical re-
sults reveals a good agreement in the low-frequency region,
see Fig. 2(c). Thus, in the framework of the new model
resonances in a metallic film represent a discrete version of
two-dimensional plasmons. At the same time, in the two-
dimensional square lattice network with the metal filling p = 1
all resonances have the same frequency ω = ωp and form the
so-called Drude peak. Indeed, in this case, all elements of
the matrix Dij = 0. Hence, all nontrivial eigenvectors of the
problem (4) correspond to the eigenvalue λ = 1. Thus, these
resonances represent a quasistatic version of bulk plasmons.

Next, we will study an influence of a geometrical disorder
on plasmon resonances in the reduced network model of thin
film composites. To do so, we consider networks with bonds
in the plane of the resonant layer being randomly chosen to
be “metallic” with the probability p or “dielectric” with the
probability 1 − p. This minimal model is commonly used in
papers cited above and corresponds to a limiting case of a
discretization lattice with the lattice constant a comparable
to the characteristic size of metallic and dielectric inclusions.
However, correlations in the local arrangements of bonds have
also been considered in Refs. [41,42].
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FIG. 3. The DOS ρ(ω) in the reduced network model of a thin film
composite for different values of the filling factor p: (a) p = pc = 0.5
(dashed line) and p = 0.6,0.7,0.8,0.9 (solid lines from left to right);
(b) p = pc = 0.5 (dashed line) and p = 0.4,0.3,0.2,0.1 (solid lines
from left to right). The DOS is calculated for a 2000 × 2000 network
by the Kernel polynomial method and averaged over 103 realizations.
Thin straight lines in the panel (a) show the DOS of two-dimensional
plasmons (16) for the corresponding values of p. Arrows indicate the
position of the crossover (a) and the gap width (b) for |p − pc| =
0.1,0.2.

V. LIFSHITZ TAILS AND A CROSSOVER BEHAVIOR
OF TWO-DIMENSIONAL PLASMONS

In the present section, we consider the DOS in the reduced
model with a metallic bonds filling p < 1. In this case, 1 − p

metallic bonds are randomly replaced by dielectric ones. If 1 −
p 	 1 there are small dielectric holes in a conductive metallic
layer. If p 	 1 there is a number of small metallic clusters. The
percolation threshold does not depend on a presence of long-
range capacitive bonds. Therefore, the percolation threshold is
pc = 0.5, which is a well-known value for the square lattice.

Figure 3(a) shows the DOS above the percolation threshold
p � pc. For p > pc, the low-frequency DOS is similar to
the DOS of two-dimensional plasmons: ρ(ω) ∝ ω3. However,
there is a crossover between the low-frequency DOS and the
high-frequency one. The crossover frequency ω∗ decreases if
p tends to pc. In the case p = pc, there is not any frequency
region with ρ(ω) ∝ ω3. Thus, the crossover is absent, and ω∗ =
0 for p = pc. In the case p − pc 	 1, the high-frequency DOS

(above the crossover) is close to the DOS for p = pc [see the
case p = 0.6 in Fig. 3(a)].

Let us consider the low-frequency DOS in detail. For p = 1,
it has the form of Eq. (14). However, in the case pc < p <

1, we should take into account that the surface inductance
Lsurf depends on the metallic bonds filling factor p, and the
effective plasma frequency is proportional to

√
Lsurf . The

surface inductance Lsurf is proportional to the inductance of
each metallic bond Lm:

Lsurf (p) = s(p)Lm. (15)

Finding an estimate of s(p) is a well-known problem in the
percolation theory since s(p) can be treated as a conductivity
of the square lattice of unit resistors, which are cut randomly.
As a result, the low-frequency DOS has a form

ρ(ω) = 4

πs2(p)

ω3

ω4
p

. (16)

In the vicinity of the percolation threshold s(p) obeys the
following scaling relation

s(p) ∝ (p − pc)t , p > pc, (17)

s(p) = 0, p < pc (18)

with the critical exponent t = 1.3 [43]. Figure 3(a) shows that
the low-frequency DOS coincides with Eq. (16) where s(p)
was obtained via an independent numerical procedure.

The crossover between the low-frequency and the high-
frequency DOS can be explained in the following manner.
There is a number of dielectric inclusions in the metallic
layer (for p > pc). Therefore, plane-wave two-dimensional
plasmons can be observed only for wavelengths much greater
than the characteristic size ξ of such inclusions. For smaller
wavelengths, which are comparable to the size of dielectric
inclusions, the structure of resonances strongly depends on a
geometry of such inclusions.

Figure 3(a) shows that ρ(ω) near the crossover exceeds
the low-frequency DOS given by Eq. (16). Therefore, we
can qualitatively determine the crossover frequency ω∗, as a
position of the maximum in the reduced DOS ρ(ω)/ω3. The
crossover frequency ω∗ is indicated by arrows in Fig. 3(a) for
small values of |p − pc|. Such an excess of the DOS over the
low-frequency trend is also known in the vibrational density
of states in glasses (the so-called boson peak). Our results
emphasize the universality of some properties of disordered
systems.

Let us point out that a correct description of resonances
requires a study of systems whose size is much larger than the
correlation length ξ which diverges at the percolation threshold
p = pc = 0.5. For instance, at filling p = 0.7 the crossover is
clearly observed in a system with N � 106 sites. In this case,
M and D′ are matrices of the size [106 × 106], with D′ being a
dense matrix. As a result, a direct numerical diagonalization of
the generalized eigenvalue problem (4) is impossible. To this
end, we apply the Kernel polynomial method (KPM) [38,39],
which allows studying the DOS in such big systems with the
help of a modern personal computer.

At fillings p < pc the dc conductivity is absent. Thus,
the system becomes a dielectric one with metallic clusters
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rather than a conductive one with dielectric inclusions. As
a result, no two-dimensional plasmons are present even at
low frequencies. Instead, a low-frequency spectral gap with
an exponentially small amount of resonances is observed, see
Fig. 3(b). The width of this gap increases with a decreasing inp.
Such a behavior of resonances in disordered systems is known
as Lifshitz tails [44]. The low-frequency resonances can be
observed only in big clusters of a specific geometry. As shown
in Ref. [15], long chains of metallic bonds in a dielectric en-
vironment, the so-called hairpin configurations and wormlike
configurations act as such clusters in random impedance net-
works. The probability of such configurations to be observed
is exponentially small in the system with a small amount of
metallic bonds. As a result, a number of corresponding resonant
frequencies is exponentially small as well. A detailed analytical
and numerical study of Lifshitz tails in random impedance
networks having a geometry of the square lattice is performed
in Ref. [15].

The gap width ωg can be obtained using a similar procedure
to the one we use for p > pc. We can qualitatively define the
gap width as the position of the maximum in the reduced DOS
ρ(ω)/ω3. The gap width is indicated by arrows in Fig. 3(b) for
small values of |p − pc|. One can see that the gap width for
p < pc is approximately the same as the crossover frequency
for p > pc for the same value of |p − pc|. We can estimate a
critical behavior of the gap width and the crossover frequency
as ω∗,ωg ∝ |p − pc|ν with ν ≈ 1.4. However, the precise
value of ν is subject to further study.

A rich structure of resonant peaks is observed at low
fillings, see Fig. 3(b) for p = 0.1. These peaks correspond to
the resonances of small typical clusters, the so-called lattice
animals, which are studied in detail in Refs. [15,16].

Let us point out that in previously studied square lattice
networks the DOS ρ(ω,p) = ρ(ω,1 − p) due to self-duality
of this lattice [15,45]. As a result, in such networks, peaks
associated with lattice animals as well as Lifshitz tails are
present both at fillings p < pc and p > pc. Thus, the reduced
model demonstrates a qualitative difference with respect to pre-
viously studied two-dimensional impedance networks, namely
the presence of low-frequency two-dimensional plasmonlike
waves.

VI. CONCLUSION

In the present paper, we introduced a random impedance
network model which describes plasmon resonances in dis-
ordered thin film materials. This model takes into account
the two-dimensional geometry of the resonant layer carrying
plasmonic inclusions as well as the three-dimensional electro-
dynamics of the interaction between them. The corresponding
network can be reduced to the two-dimensional one with
capacitive bonds connecting distant sites. The capacitance of
these bonds Cij decreases with the distance between sites i and
j as Cij ∝ 1/r3

ij .
In order to analyze the resonant spectrum of the considered

system, we applied the Kernel polynomial method. It allows
carrying out numerical studies of random networks with sev-
eral millions of sites in the resonant layer. We have considered
the simplest model, in which an arbitrary bond between nearest

neighbors in the resonant layer can be metallic with probability
p or dielectric with probability 1 − p.

The density of low-frequency resonances in the considered
model at fillings p > pc is analogous to the density of two-
dimensional plasmons. However, plane-wave two-dimensional
plasmons can be observed only at wavelengths much greater
than the characteristic size of dielectric inclusions in the
metallic layer. For higher frequencies and smaller wavelengths,
which are comparable to the size of dielectric inclusions, a
structure of resonances is controlled by the geometry of such
inclusions. The DOS near the crossover supersedes the density
of two-dimensional plasmons. This can be observed as a peak
in the reduced DOS ρ(ω)/ω3. This peak is analogous to the
boson peak, a well-known phenomenon in physics of glasses.
A more detailed study of the observed crossover is a subject
for future work.

At the same time, Lifshitz tails are present at low frequencies
for fillings p < pc, as in previously considered models with the
two-dimensional electrodynamics. Characteristic frequencies
of the crossover and of Lifshitz tail are approximately equal
for the corresponding values of |p − pc|.

We would like to stress a substantial difference between
the introduced model and those considered in the previous
contributions we are aware of. It is the presence of long-
range capacitive connections in the network, whose effect
is mathematically equivalent to the presence of the three-
dimensional cubic lattice of capacitors that surrounds the
two-dimensional resonant network. This lattice changes the
electrostatic interaction in the network in such a way that the
charge potential is ϕ ∝ 1/r2 instead of ϕ ∝ 1/r observed in
the two-dimensional square lattice network. The latter is char-
acteristic of the two-dimensional electrostatics, whereas the
first one is more typical for three-dimensional problems. Such
a difference in potentials leads to a significant modification of
key features of resonances in the model network, namely to the
different dispersion law of plasmons and the presence of new
phenomena in disordered networks, including the crossover
between two-dimensional plasmons and resonances of small
clusters, as well as the absence of symmetries associated with
the self-duality.

Our approach provides a simple model capable of a qualita-
tive description of plasmon resonances in disordered thin film
nanocomposites near the percolation threshold, as it allows
studying phenomena assisted by long-range correlations in
the composite geometry. A role of such correlations in light
emission by embedded fluorescent sources has been analyzed
in recent experiments with semicontinuous gold films and
plasmonic lithographic networks [6]. Measurements of optical
absorption in disordered gold films [46] demonstrate particular
features of our model, namely the presence of low-frequency
absorption tails at high fillings that are absent in continuous
films and in films at low fillings, the presence of the maxima
in the absorption for particular filling values as well as the
presence of the optimal filling which maximizes the absorption,
and the absence of the self-duality.

The model can be easily generalized to study materials with
arbitrary constituents. This can be done via a substitution of the
desired dielectric functions into Eq. (5) without any additional
numerical simulations [15,35]. For instance, resonances in
binary networks composed of two dissimilar metallic bonds
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have been considered [35,47], as well as properties of three-
component networks [48,49] and networks with continuously
distributed values of bonds [34,50].
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APPENDIX: LIMITATIONS AND POSSIBLE
EXTENSIONS OF THE MODEL

In the present Appendix, we discuss the approximations of
the considered network model in more details. First, the model
is based on the quasistatic approach. However, for disordered
systems composed of deeply subwavelength inclusions, this
does not lead to a sufficient difference in the general picture
with respect to the consideration that takes into account retarda-
tion effects. In particular, a corresponding generalization of the
two-dimensional network model is considered in Refs. [1,51].
It is shown that the square lattice random impedance network
is replaced by two square lattice networks. Voltages at bonds
of one network describe electric fields in the composite, and
another network describes magnetic fields in a similar manner.
In this case, strong fluctuations of the electric field remain [1].
Magnetic fields also demonstrate the presence of hot spots and
giant fluctuations [1].

Second, we considered an example of very thin systems
which can be described with a single network layer composed
of resonant bonds as well as dielectric ones. This layer is
surrounded by the three-dimensional simple cubic lattice of
dielectric bonds that corresponds to the surrounding vacuum
and carries displacement currents. As a result, we obtain
two-dimensional plasmons with the dispersion ω ∝ √

k in the
system with metal filling p = 1. However, such oscillations
are rather observed in graphene and other two-dimensional
materials [52], whereas for metal films the presence of surface
plasmon-polaritons (SPP’s) is a much more typical situation
[2]. In thin films, there are two types of surface plasmon
modes, symmetric and antisymmetric, see Figs. 4(a) and 4(b).
Also, SPP’s have a different dispersion relation, which in
the quasistatic approach reduces to the constant frequency of
the surface plasmon resonance (SPR) ω(k) = ωp/

√
1 + εd for

ω
ω

FIG. 4. Electric potential distribution in the symmetric (a) and
antisymmetric (b) plasmon modes of a metallic film. The film and
the surrounding dielectric are modelled by the network of 60 × 60
sites that represents the cross section of the system in the plane
perpendicular to the film. The metallic region consists of 20 resonant
layers and is shown with grey hatching. (c) The dispersion relation
for surface plasmons at the metal-dielectric interface. Solid line
represents the analytic result for the network model (A1), dashed
line shows the quasistatic prediction ω(k) = ωp/

√
2.

both the symmetric and the antisymmetric mode, as well as for
the surface plasmon at the metal-dielectric interface [Fig. 4(c)].
The dispersion of resonances in the random impedance net-
work that corresponds to the metal-dielectric interface can be
easily obtained in a similar way as Eq. (12) and reads as

ω2 = ω2
p

1 + εd

(
1 + sin(ka/2)√

1 + sin2(ka/2)

)
. (A1)

However, this dispersion describes only the influence of the
discreteness of the lattice, which is seen clearly at wavelengths
comparable to the lattice constant ka ≈ 1 and is almost absent
at large wavelengths ka 	 1. The construction of a reduced
model seems to be not so straightforward in this case. Thus, a
study of plasmon resonances in such “thick” disordered films
remains an open task.

We would also mention some modern papers that study plas-
mon resonances in disordered systems via full-wave numerical
simulations [53–55]. Such an approach requires significant
computational resources with respect to impedance network
models and thus does not allow studying large-scale properties
of resonances in systems near the percolation threshold. Yet,
numerical modeling seems to be the most precise method to
study local effects, e.g., hot spots in small arrangements of
nanoparticles.
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