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Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
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We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and
two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that
the solution to the self-consistency equations based on two-point correlation functions does not produce any
unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common
approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation
functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations
obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D.
The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D.
In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by
high-order 1/T expansions.

DOI: 10.1103/PhysRevB.97.180403

Interest in low-dimensional quantum antiferromagnets has
been revived in the last decades by the discovery of high-
Tc superconductors, where the physics of the quantum spin
fluctuations on a square lattice was suggested to be the main
mechanism behind superconductivity [1]. More recently, the
magnetic properties of insulators such as Cs2CuCl4 [2,3],
CsNiCl3 [4], and Cs2CuBr4 [5], where at low temperatures
a moderate degree of anisotropy (about 0.3–0.4) makes their
dimensionality intermediate between one and two, have caused
a new resurgence of activity in this problem. In both cases the
dimensionality is smaller than three, where the classical long-
range order in the ground state was rigorously proven [6,7],
but is bigger than strictly one, making the exact Bethe ansatz
solution [8] inapplicable. Thus, a more accurate description of
the effect of quantum fluctuations is required, which become
strong in reduced dimensions, and for the quantum spin
S = 1/2.

A popular method to deal with low-dimensional quantum
spin systems is Takahashi’s modified spin-wave theory that was
quite successful, especially for ferromagnets, where it, for in-
stance, at low temperature, reproduces correctly the subleading
terms of the free energy [9] obtained using the thermodynamic
Bethe ansatz approach [10,11]. Generally, this and other
predictions of Takahashi’s theory are almost equivalent to the
Schwinger-boson mean-field theory formulated by Arovas and
Auerbach [12] and to the one-loop renormalization group cal-
culations [13]. However, at high temperatures, the spin-wave
result for the free energy is divergent [9], disagreeing entirely
with the high-temperature expansion in its limit of validity. In
the antiferromagnetic case, predictions of the modified spin-
wave theory are not as good for S = 1/2. In one dimension
(1D), they lead to a gapful ground state and an exponential
two-point correlation function at zero temperature that deviates
strongly from the known Bethe ansatz gapless ground state [8]
and algebraic correlations [14–17] at zero temperature. Also,
in both 1D and 2D, there is a spurious finite-temperature phase

transition within the spin-wave approach, which is explicitly
forbidden in these dimensions by the Mermin-Wagner theorem
[18]. The latter problem stems from the need of introducing two
sublattices in the construction of the spin-wave theory in the
antiferromagnetic case [12,19], which is based on the simplest
mean-field approximation using the sublattice magnetization
(a one-point correlation function) as the order parameter and
causes an order-disorder phase transition in all dimensions that
is not washed out by spin waves.

In this Rapid Communication, we construct an alternative
mean-field approach for the spin-1/2 antiferromagnet in 1D
and 2D based on the decoupling of the four-point correlation
functions. The corresponding self-consistency equations are
derived using the Hartree-Fock decoupling for the Heisenberg
interactions and assuming the exclusive statistics of free
magnons. It recovers almost all effects of the strong renormal-
ization of the classical spin picture in 1D at low temperatures
established by the Bethe ansatz, including the heat capacity and
the static correlation functions, with the most notable exception
of the logarithmic contribution to the magnetic susceptibility
that is driven by the low-energy physics of the Luttinger liquid
and requires taking into account even higher-order correlation
functions. At high temperatures, our method recreates the 1/T

expansion and produces no phase transition at intermediate
temperatures. In 2D, the same approach recovers only a small
renormalization of the classical antiferromagnetic state [20] in
the next-neighbor spin-spin correlation function and the high-
temperature expansion, producing again no finite-temperature
phase transition. The height of a smooth peak (instead of a
transition) at an intermediate temperature, for instance, in the
heat capacity, is reduced in 2D with respect to its value in 1D
that is still accessible via a high-order 1/T expansion in 2D
[21,22] and is already captured qualitatively on the level of
the two-point correlation functions. The biggest quantitative
discrepancy of ignoring three- and higher-point correlation
functions occurs at intermediate temperatures and is of the
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order of 20% in 1D, where the thermodynamic quantities
can be calculated at arbitrary temperatures [23–26] using the
thermodynamic Bethe ansatz [10,11].

We study the Heisenberg model for spin-1/2 in the presence
of an external magnetic field B, in one (D = 1) and two
(D = 2) dimensions,

H = B
∑

r

Sz
r + J

2

∑
r,δ

Sr · Sr+δ, (1)

where J is the exchange energy, Sz
r ,S

±
r = Sx

r ± iS
y
r are the

spin-1/2 operators at site r, the sum over r runs over an
equidistant (square) lattice consisting of N = LD spins in
1D (2D), and the sum over δ runs over two or four nearest
neighbors in the corresponding dimension. Below, we impose
periodic boundary conditions, Sr+x(y)L = Sr, restrict ourselves
to the antiferromagnetic exchange energy J > 0, and use the
units where gμB = 1.

Before proceeding with solving the model in Eq. (1), we
reduce the number of the spin components in it by utilizing the
following spin-1/2 identity, Sz

r = S+
r S−

r − 1/2. This turns the
Zeeman term in the Hamiltonian into a quadratic form and the z

component of the scalar product into a quartic form, expressing
Eq. (1) in terms of only S±

r operators.
In the Fourier domain,S±

r = N−1/2 ∑
k S±

k e±ik·r, the result-
ing Hamiltonian becomes a sum of a quadratic and a quartic
form in the single spin operators,

H =
∑

k

(B − DJ + εk)S+
k S−

k

+ 1

N

∑
k1k2k3k4

δk1+k3,k2+k4εk3−k4S
+
k1

S−
k2

S+
k3

S−
k4

, (2)

where the dispersion is εk = J
∑

α cos kα , the sum
∑

α con-
tains only one term α = x in 1D and it runs over two spatial
dimensions,

∑
α=x,y , in 2D, and the sum over momentum

∑
k

also runs over one (k) or two (kx,ky) components of the wave
vector in the corresponding dimension.

In order to analyze the model in Eq. (2) we assume that its
eigenstates factorize in the momentum domain, i.e., they can be
approximated by product states of single magnon excitations
in the thermodynamic limit [27]. At a finite temperature this
approach corresponds to writing down the following product
density matrix, ρ = ∏

k [mk|k〉〈k| + (1 − mk)], where |k〉 is
a single magnon state at a given k, exclusive statistics for the
states with different k is implied [30], mk are scalar parameters,
and the normalization is chosen as Tr ρ = 1. We believe that
this density matrix gives a close enough approximation to the
many-magnon states. The expectation value of the Hamiltonian
in Eq. (2) with respect to this ρ gives the energy of the system
E = 〈H 〉 as a function of parameters mk,

E =
∑

k

(B − DJ + εk)mk − 1

N

∑
k1k2

εk1−k2mk1mk2 , (3)

where the contribution of the terms with k1 = k2 in the
second line vanishes in the N → ∞ limit and the aver-
age of an operator is 〈· · · 〉 = Tr(ρ · · · ). The second term
in Eq. (3) is equivalent to the Hartree-Fock approximation
to the quartic interaction term in Eq. (2), 〈S+

k1
S−

k2
S+

k3
S−

k4
〉 ≈

mk1mk3δk1,k2δk3,k4 + mk1 (1 − mk2 )δk1,k4δk2,k3 , where the first

term is the direct and the second is the exchange part. The av-
erage of the operator S+

k S−
k in the first term in Eq. (2) gives the

scalar parameter 〈S+
k S−

k 〉 = mk that can be interpreted as a two-
point correlation function. The inverse Fourier transform gives
the correlation function

∑
k e−ik·rmk/N = 〈S+

r S−
0 〉, where 0

is a reference point on the lattice in 1D and 2D and the
translational invariance of the model in Eq. (1) was used.

The values of the mean-field parameters mk at a fi-
nite temperature T can be found in the usual way by
minimizing the free energy, F = E − T S, with respect
to them. The energy E is given by Eq. (3) and the
von Neumann entropy, S = −kB Tr(ρ ln ρ), is given by
−kB

∑
k [mk ln mk + (1 − mk) ln (1 − mk)], where kB is the

Boltzmann constant. Solving ∂F/∂mk = 0, we obtain the
mean-field self-consistency equations as

mk = 1

eβ(B−DJ+εk− 2
N

∑
k′ εk−k′mk′ ) + 1

, (4)

where β = 1/(kBT ) is the inverse temperature. The above
is a large set of N nonlinear equations for the mean-field
parameters mk. However, the mk enter in the exponential
function only under a sum. Thus, the number of independent
nonlinear equations can be reduced greatly. We introduce
1 + D extensive variables as s = ∑

k mk/N − 1/2 and uα =
−∑

k mk cos kα/N + 1/2, where uα = u is a scalar in 1D and
uα = (ux,uy) is a vector in 2D. Substituting these definitions
into Eq. (4), we express its right-hand side in terms of only s

and uα , and then substituting the resulting expressions for mk
back into the definitions for s and uα , we rewrite Eq. (4) as a
set of only 1 + D independent equations,

s =
∫

dDk

(2π )D
1

eβ(B+2DJs+2J
∑

α uα cos kα) + 1
− 1

2
, (5)

uα = 1

2
−

∫
dDk

(2π )D
cos kα

eβ(B+2DJs+2J
∑

α uα cos kα) + 1
, (6)

where the sum over k was turned into an integral in the
thermodynamic limit as

∑
k /N → ∫

dDk/(2π )D [31]. Here,
the parameter s gives the average magnetization per spin as∑

r 〈Sz
r 〉/N = s and the parameter uα is related to the kinetic

energy of magnons.
There is only one nontrivial solution of Eqs. (5) and

(6). Let us analyze it at B = 0. At zero temperature the
integrands are proportional to the Heaviside step function
limβ→∞ [exp (βx) + 1]−1 = 	(−x), then the integrals can be
calculated explicitly, and we obtain s = 0 (unpolarized ground
state) and ux = uy = 1/2 + D/πD . On the other hand, at high
temperatures, the exponential expands into a Taylor series in
β � 1 up to the leading order as [exp (βx) + 1]−1 = 1/2 +
O(β) and we get s = 0 and ux = uy = 1/2. At intermediate
temperatures, the equations can be solved numerically.

The thermodynamic quantities can be expressed through
solutions of Eqs. (5) and (6) at different temperatures and
magnetic fields. The energy in Eq. (3) can be written as a
function of s and uα using their definitions in terms of mk,
E = N (Bs + DJs2 − J

∑
u2

α), from which, using the basic
definition of the heat capacity, we obtain

C

N
= 1

N

∂E

∂T
= (B + 2DJs)

∂s

∂T
− 2J

∑
α

uα

∂uα

∂T
. (7)
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FIG. 1. Specific heat as a function of temperature at B = 0 in 1D
and 2D. The solid black and the blue dashed lines are obtained by
solving the self-consistency Eqs. (5) and (6) and the heat capacity by
means of Eq. (7). The red dashed-dotted line is the exact result of the
thermodynamic Bethe ansatz calculation in 1D from Ref. [26].

The temperature dependence of C in 1D and in 2D (at B = 0) is
plotted in Fig. 1. In 1D we can compare our result with the full
quantum mechanical result obtained via the thermodynamic
Bethe ansatz machinery [10,11] in Refs. [23,24,26]. Up to
the intermediate temperatures, Eqs. (5) and (6) agree quite
well with it, including the linear dependence of C at low
temperatures. Equations (5) and (6) also reproduce correctly
the coefficient of the leading term of the 1/T expansion at
high temperatures. However, in the intermediate-temperature
region, from T � J/2, the difference (see the black solid and
the red dashed-dotted lines in Fig. 1) is still appreciable, up to
20%. In 2D, Eqs. (5) and (6) produce no phase transition at
any finite temperature, in agreement with the Mermin-Wagner
theorem [35], and that has already been seen in a quantum
Monte Carlo study [36]. Also, the high-order 1/T expansion
[21] covers a significant temperature range down to the peak,
whose amplitude is reduced with respect to the 1D case. The
result of solving Eqs. (5) and (6) (the blue dashed line in Fig. 1)
gives about the same discrepancy of up to 20% with Ref. [21]
in the intermediate-temperature region.

This discrepancy can be understood in terms of improving
the approximate description of the Heisenberg model by
taking into account higher-order correlation functions. The
usual way of introducing the mean-field approximation to the
model in Eq. (1) is by retaining only the one-point correlation
functions 〈Sz

r 〉 = ±m, where m is the order (a single mean-
field) parameter and ± describes the even/odd sublattice of the
antiferromagnet. Neglecting the quadratic terms in fluctuations
around 〈Sz

r 〉 (and assuming that 〈S±
r 〉 = 0) in Eq. (1), the usual

self-consistency equations are the same for each sublattice for
B = 0,

2m = tanh (βDJm). (8)

This equation does predict the antiferromagnetic order at
T = 0, but it also introduces an erroneous phase transition
at a finite T in low dimensions, which is explicitly forbidden
by the Mermin-Wagner theorem [18]. In the present work, we
take into account the two-point correlation function solving
the self-consistency equations in Eq. (4) for N mean-field pa-
rameters mk. This approach contains more information about

the quantum fluctuations, which play a stronger role in low
dimensions, improving the approximation qualitatively, i.e.,
not introducing a finite-T phase transition, and quantitatively,
as illustrated in 1D by comparison with the Bethe ansatz in
Fig. 1. An approach that accounts for higher than two-point
correlation functions would improve the accuracy even further.

Another thermodynamic quantity that is of interest in
magnets is the magnetic susceptibility χ = ∂(

∑
r 〈Sz

r 〉)/∂B.
Using as before the identity Sz

r = S+
r S−

r − 1/2 and the def-
inition of s in terms of mk, we obtain χ = N∂s/∂B. The
temperature dependence of this result at B = 0 shows a better
[in comparison with the more crude approximation in Eq. (8)]
agreement with the full Bethe ansatz calculation [25,26],
both quantitatively and qualitatively. However, there are larger
deviations at small temperatures, unlike for the heat capacity,
due to the logarithmic corrections [25]. They are essentially an
effect of Luttinger physics manifesting hydrodynamic modes
which are not captured on the level of the two-point correlation
functions in Eq. (4).

The static correlation functions can also be calculated in
terms of the solutions of Eqs. (5) and (6). Expressing the
operator S0 · Sr in the Fourier domain and evaluating its
finite-temperature average using ρ in the same way as in the
calculation of the energy of the system in Eq. (3), we obtain

〈S0 · Sr〉 = s2 + I (r)[1 − I (r)], (9)

where

I (r) =
∫

dDk

(2π )D
cos (k · r)

eβ(B+2DJs+2J
∑

α uα cos kα) + 1
. (10)

Here, mk were expressed through s and uα using their defi-
nitions above. For the next-neighbor correlation function the
integral in Eq. (10) simplifies even further using Eq. (6), I (1) =
1/2 − u and I (x) = 1/2 − ux in the corresponding dimension.
At zero temperature we can substitute the already obtained so-
lutions of Eqs. (5) and (6), s = 0 and ux = uy = 1/2 + D/πD ,
directly. In 1D, where quantum fluctuations play a significant
role, we obtain 〈S0 · S1〉 = −0.4196 . . . that is close to the
full Bethe ansatz result 〈S0 · S1〉 = −0.4431 . . . [37]. In two
dimensions we obtain 〈S0 · Sx〉 = −0.2437 . . . that is close to
the value of −1/4 for the classical antiferromagnet, with only
a small reduction due to quantum fluctuations [20].

Beyond the next neighbor the integral in Eq. (10) needs to be
calculated explicitly. At T = 0 it gives I (r) = sin (πr/2)/(πr)
in 1D, resulting in the correlation function 〈S0 · Sr〉 =
sin (πr/2)/(πr) at r 	 1. This 1/r behavior coincides with
the prediction of a Gaussian conformal field theory [14,38]
that was confirmed by a direct Bethe ansatz calculation of the
corresponding form factors [15–17]. At a finite T > 0, a nu-
merical solution of Eqs. (5) and (6) and a numerical evaluation
of the integral in Eq. (10) reproduce the expected exponential
behavior |〈S0 · Sr〉| ∝ exp (−r/ξ ) at large distances (see the fit
in the inset in Fig. 2), where the correlation length in 1D also
obtained by fitting is an algebraic function of temperature,

ξ = J

2T
(11)

(see the main part in Fig. 2). This coincides with the 1/T

behavior obtained using the thermodynamic Bethe ansatz
approach [24]. The exponential behavior crosses over into
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FIG. 2. The static correlation function 〈S0 · Sr〉 in 1D evaluated
by solving the self-consistency equation in Eqs. (5) and (6) and using
Eqs. (9) and (10). The main plot is the temperature dependence of
the correlation length ξ in the exponential regime r > r∗ obtained
numerically (solid circles) and the 1/T result of the Bethe ansatz
(black line). The inset is the correlation function for an intermediate
temperature T = 0.01J obtained numerically (open circles); the
zero-temperature result 1/r is valid in the short-range region r < r∗
(dashed red line) and an exponential, exp (−r/ξ ), is valid in the
long-range region r > r∗ (solid blue line).

the power law at a finite range r∗ (see the inset in Fig. 2),
whose value changes smoothly from r∗ = ∞ at T = 0 to
r∗ ≈ 0 at T � J . In 2D the integral in Eq. (10) gives I (rx) =
−2 sin (πr/2)/(πr)2 at zero temperature and the 〈S0 · Sxr〉 =
−2 sin (πr/2)/(πr)2 correlation function at r 	 1. At finite
temperature the correlation length in the two-dimensional
antiferromagnet is known to have an exponential dependence
on temperature, ξ ∝ exp (const/T ) [39,40]. Numerically, we

find that the result of Eqs. (5), (6), and (10) is consistent with
Ref. [39] at a small temperature range below T � J , which is
still accessible due to not so large values of r∗ at relatively not
so low temperatures.

In conclusion, we have constructed a mean-field approach
based on two-point correlation functions for spin-1/2 antifer-
romagnets in 1D and 2D, for which the effect of quantum
fluctuations is the strongest. Solutions of the corresponding
self-consistency equations recover the strong renormalization
of the classical spin picture in 1D, established by the Bethe
ansatz, and only a small correction to the classical antiferro-
magnet in 2D. This approach produces no finite-temperature
phase transitions, in accord with the Mermin-Wagner theorem,
and the 1/T expansion at high temperatures in D = 1 and
D = 2. The biggest quantitative discrepancy of ignoring three-
and higher-point correlation functions occurs at intermediate
temperatures and is up to ∼20% that can be assessed in
1D, where the thermodynamic quantities can be calculated at
arbitrary temperatures using the thermodynamic Bethe ansatz.
The controversy about the effect of dimensionality in the
anisotropic 2D quantum antiferromagnets, e.g., Cs2CuCl4 (the
ratio of the exchange constants is J⊥/J‖ � 0.33) for which
neutron scattering shows both signatures of one-dimensional
physics [41] and a dispersion in the perpendicular direction
[42], can be explained here as a dimensional crossover,
where strong effects of quantum fluctuations in 1D disappear
smoothly as the coupling between the chains is increased.
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