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We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe
phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on
the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological
properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-
Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our
study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic
honeycomb lattices in the presence of the DM term.
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Introduction. Over the past few decades, topology has
emerged as a long-ignored yet most revolutionary concept in
condensed matter physics [1]. In particular, the last few years
have witnessed an intensive worldwide search for topological
phases in electronic systems [2–6]. More recently, another race
began in the search for analogous phases in bosonic systems,
with a few notable examples already given: gapped spin liquids,
photonic band-gap materials, and magnon insulators [7–14].
The realization that the Bloch theorem holds for both bosonic
and electronic band structures has also led to a couple of
new topological magnon bands, in pyrochlore lattices [15–19]
and in two-dimensional (2D) kagome lattices [20,21]. In light
of the recent experimental realization of monolayer magnetic
honeycomb lattices of NiPS3 and FePS3 [22,23], Cr2Ge2Te6

[24], and CrI3 [25], the topological character of the magnon
band in a honeycomb lattice is not only of theoretical interest
but also of experimental relevance.

Previous studies of magnon band topology for the honey-
comb lattice were restricted to the ferromagnetic and Néel
phases. It has been shown that the former exhibits a magnon
band structure with Dirac points occurring at each valley point
[26,27], which is gapped out by the next-nearest-neighbor
Dzyaloshinskii-Moriya (DM) interaction producing a magnon
analog of the quantum anomalous Hall (QAH) phase [28,29].
However, a finite DM interaction added to the latter phase,
while giving rise to the spin Nernst effect, does not yield a
topological magnon band structure [30,31]. In addition, for
the Sz conserving phases, another possible topological phase
is a magnon analog of the quantum spin Hall (QSH) phase
arising from a well-defined spin Chern number [32]. To the
best of our knowledge, a simple model for this topological
phase is lacking; the models proposed so far for a magnon
analog of the QSH include either a bilayer honeycomb with

*kihoonlee@snu.ac.kr
†sbchung0@uos.ac.kr

antiferromagnetic interlayer coupling [30,33] or a dipolar
interaction [34] with the Aharonov-Casher effect on magnon
bands under an external electric field for a square lattice
[35]. This motivates us to study the magnon topology of
other physically feasible collinear spin ordered phases in the
honeycomb spin Hamiltonian, the zigzag and stripe phases.

In this Rapid Communication, we examine the topological
properties of these two phases on a monolayer honeycomb
lattice. Our study finds that for both phases the nontrivial Berry
phase and Dirac magnon point are protected by spatial (glide)
mirror symmetry. We show that with the DM interaction,
the stripe phase hosts a magnon analog of the QSH phase.
We demonstrate that the resulting band topology is that of
a CS = 1 QSH, not a C = 1 QAH, by computing its spin
Berry curvature and edge states for a finite width lattice. By
contrast, we find that the zigzag phase has a nodal line protected
by nonsymmorphic symmetry combined with time-reversal
symmetry. For both phases, we also calculate the spin Nernst
effect, which is the manifestation of nontrivial topology and
a direct consequence of nontrivial magnon Berry curvature.
In the remainder of this Rapid Communication, we will first
explain our spin model for a monolayer honeycomb lattice
and the method we used to calculate the magnon band, before
presenting our results for the zigzag and stripe phases.

Model. We consider a J1-J2-J3 model for a honeycomb
lattice with a next-nearest-neighbor DMI,

H0 =
3∑

n=1

Jn

∑

〈i,j〉n
Si · Sj + JDM

∑

〈i,j〉2

νij ẑ · (Si × Sj ), (1)

where Si is spin at site i with size S and 〈i,j 〉n is a pair of nth
nearest neighbors, νij = sgn

∑
〈i,k〉1,〈k,j〉1

ẑ · r ik × rkj , where
r ij = r i − rj and r i is the coordinate of the ith site. Note that
there is only one k simultaneously satisfying both conditions
〈i,k〉1 and 〈k,j 〉1 for a given second-nearest-neighbor pair
〈i,j 〉2. While our analysis is intended to be of general appli-
cability, the Hamiltonian is mostly relevant to the single-layer
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van der Waals magnetic material family MAX3, such as NiPS3

and FePS3 [22,23,36]. In the phase diagram of J1, J2, and J3,
several ground states were identified, such as ferromagnetic
(FM), Néel, zigzag, and stripe phases, while other noncollinear
phases can also appear for both cases of J1 > 0 and J1 < 0
[37]; for instance, the zigzag phase for J1 > 0 appears within
J2/J1,J3/J1 > 0.5, and we will examine the stripe phase later
in this Rapid Communication. While these phases are not very
common, there are materials such as BaNi2As2O8 showing
zigzag order arising from the J1-J2-J3 model [38].

It is important to note that spin-orbit coupling, if not zero,
has a crucial consequence on the symmetry of the magnetic
Hamiltonian and its ground state. For nonzero spin-orbit cou-
pling, the symmetric point group of the magnon Hamiltonian
for the magnetic ground state contains operations acting both
on the spin and lattice. But if the spin-orbit coupling is small
enough, we can ignore some of the anisotropic exchange or
higher-order single-ion anisotropy. Such an assumption allows
us to reduce the Hamiltonian to have a symmetry higher than
the (magnetic) space group, and such a symmetry group is
called a spin-space group [39]. For example, a ferromagnetic
magnon band structure in a honeycomb has crossings at the K

points if only Heisenberg terms exist in the spin Hamiltonian
[26]. But once the lattice symmetry-allowed DMI, which
requires the spin-orbit coupling (SOC) to have a nonzero value,
is introduced, the gap is opened [29]. While both Hamiltonians
are allowed by the lattice symmetry, the spin-space group of
the first case without DMI has a higher symmetry that protects
the crossings at the K points.

Method. We study the magnon bands of the zigzag and stripe
phases using the linear spin-wave theory (LSWT). We take
the z direction to be the easy axis, which is relevant to the
anisotropic DM interaction. Applying a Holstein-Primarkoff
(HP) transformation to spin S̃i in the local spin coordinates
by taking the local magnetization direction as the z direction
and S̃+ � √

2Sa, S̃− � √
2Sa†, S̃z = S − a†a, we obtain a

quadratic HP boson Hamiltonian in the following form,

H = 1

2

∑

α,β,k

ψ
†
αkHαβ(k)ψβk

= 1

2

∑

k,η

[Eη(k)γ †
ηkγηk + Eη(−k)γη,−kγ

†
η,−k], (2)

where ψαk = (aα,k,a
†
α,−k)

T
is the Nambu spinor of the HP

boson, α,β are sublattice indices, and η is the band index. The
Hamiltonian can be diagonalized by a paraunitary matrix T (k)
satisfying

∑
η(γ †

ηk,γη,−k)T †
ηα(k) = ψ

†
αk, σ3 = T †(k)σ3T (k) =

T (k)σ3T
†(k), and

∑
α,β T †

ηα(k)Hαβ(k)Tβη′(k) =
δηη′ diag{Eη(k),Eη(−k)}, where σ3 is the Pauli matrix
operator acting on particle-hole space [40,41]; for explicit
forms of the Hamiltonians, see the Supplemental Material
[42].

Zigzag phase. In analyzing the magnon band structure
for the zigzag phase, its symmetry properties need to be
considered. First, we note that the zigzag phase has a doubled
unit cell consisting of four lattice sites and a spin configuration
as shown in the inset of Fig. 1(a). Second, the symmetry
group of Eq. (2) is composed of elements of the space group

FIG. 1. Magnon band structure for each phase following the paths
in the inset of (a). The solid (dashed) line is without (with) DMI. The
figures in the insets represent the ground-state configurations, and
each color represents opposite sz components. We can find a Dirac
magnon on the 
-X line, which can be gapped by DMI. The zigzag
phase has fourfold degeneracy on the X-M line, which is protected by
nonsymmorphic symmetry combined with time-reversal symmetry.
We used the following parameters for the zigzag phase (J2 = 0.8J1,
J3 = 0.8J1) and for the stripe phase (J2 = 0.4J1, J3 = −0.2J1).

of Eq. (1) that does not alter the magnetic ground state.
The universal symmetry of a collinear phase is C∞ of spin,
which is a subgroup of the SO(3) of Eq. (1) and generated
by Sz. Therefore, combining with translation symmetry, we
can assign two eigenvalues to an energy eigenstate, a mag-
netic moment along the magnetization axis sz, and crystal
momentum k in the magnetic Brillouin zone (MBZ). In the
presence of an additional symmetry operator A that commutes
with translation, we will consider two specific cases. The first
case is where the two operators commute, for which we can
simply add another eigenvalue to label an energy eigenstate.
The second case is where two operators anticommute and it
guarantees twofold degeneracy. To show this, let us assume
an energy eigenstate |sz,k〉 labeled by sz and k. The anticom-
mutation {Sz,A} = 0 guarantees that A should flip the sign
of sz, i.e., Sz(A |sz,k〉) = −ASz |sz,k〉 = −sz(A |sz,k〉), from
which we obtain the twofold degeneracy through H |−sz,k〉 =
HA |sz,k〉 = AH |sz,k〉 = EA |sz,k〉 = E |−sz,k〉 (note that
if sz �= 0, A |sz,k〉 �= |sz,k〉).

In a collinear AFM phase, there are various symmetry
operators that combine exchanging sublattices with flipping
spins either through twofold spin rotation or time reversal.
One such symmetry that does not affect crystal momentum is
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C2z�, where � is the time-reversal operation. We have C2z�

symmetry all in the zigzag, stripe, and Néel phases of the
honeycomb lattice. Twofold rotation is located at the center
of the honeycomb for the zigzag and Néel phases whereas it
is at the center of a bonding connecting sites with opposite
spin configuration for the stripe phase. We show below that
the two relevant symmetries of the zigzag phase that commute
with Sz are the glide mirror M̃yτx , where τx is the half unit
cell lattice translation in the x direction (defined in Fig. 1), and
M̃ye

iπSx τx�; the symmetry operators with the tilde sign here
act only on the lattice.

M̃yτx protects the two accidental band crossings on the
mirror-symmetric line ky = 0 for JDM = 0, at which it com-
mutes with the Hamiltonian of Eq. (1) [43]. However, for
JDM �= 0 as in the Néel phase, it removes this accidental de-
generacy as it breaks M̃yτx symmetry due to the pseudoscalar
νij ≡ sgn

∑
〈i,k〉1,〈k,j〉1

ẑ · (r ik × rkj ) reversing sign under the

mirror operation M̃y . The eigenvalues of the glide mirror M̃yτx

are ±eikx/2 due to (M̃yτx)2 = τ 2
x , and for JDM = 0 we can

simply assign the same glide mirror eigenvalue to a pair of
degenerate bands with an opposite Sz eigenvalue as M̃yτx

commutes with Sz. The protection for the accidental crossing
between two doubly degenerate bands at JDM = 0 requires
their glide mirror eigenvalues to be opposite. That is exactly
the case we found in our work for the zigzag phase, because
there is no diagonal term in the representation of M̃yτx . The
sum of mirror eigenvalues of all bands vanishes as M̃yτx

changes the position of every sublattice. While glide mirror
symmetry protects the existing accidental crossings, it does
not necessarily guarantee their existence. For an accidental
crossing to exist on the 
-X symmetric line, we need to have
[E+(
) − E−(
)][∂kx

E+(X) − ∂kx
E−(X)] < 0, where E± is

the dispersion of bands with ±eikx/2 glide mirror eigenval-
ues. This condition arises out of the constraint E+(X) =
E−(X), which is required by the symmetry that we will now
discuss.

At the zone boundary, a glide mirror combined with
time-reversal symmetry g = Myτx� = M̃ye

iπSx τx� produces
the constraint that two bands with opposite glide mirror
eigenvalues should be degenerate [43] as long as the zigzag
phase is stable. Not only is g a symmetry, but we have g2 =
−1 at the MBZ boundary kx = π as τ 2

x = eikx = −1 holds
there. An antiunitary symmetry whose square is −1 gives a
Kramer-type degeneracy, and—as the operator commutes with
Sz—altogether, fourfold degeneracy arises, which leads to the
sticking of all bands at the zone boundary. Therefore, at the
zone boundary kx = π , all four bands are degenerate and so
cannot be split [44]. It holds even in the presence of the DM
interaction as it does not break the symmetry g.

Stripe phase. The stripe phase has a unit cell identical to
that of the zigzag phase with the spin configurations shown in
the inset of Fig. 1(b). The stripe phase has twofold degeneracy
because of the degeneracy between states with opposite sz as
in the zigzag phase. If JDM = 0, the stripe phase has a spatial
mirror symmetry M̃y , which protects the accidental crossing
on the mirror invariant line ky = 0 for the same reason that
the glide mirror symmetry protects that of the zigzag phase.
The condition to have crossing is [E+(
) − E−(
)][E+(X) −
E−(X)] < 0, where E±(k) is the dispersion of the band with a
± mirror eigenvalue at a given momentum k.

FIG. 2. (a) Band structure for the stripe phase with finite width
along the zigzag direction of a honeycomb lattice with DMI (blue)
or without DMI (yellow). Lines are the edge states calculated from a
finite width of 40 magnetic unit cells and the colored region represents
the bulk bands. To remove the instability from near the edge, we
added an easy-axis anisotropy term 0.3J1(1 − S2

z ). Other parameters
are kept the same as in Fig. 1. To find at which side the edge modes are
localized, see the Supplemental Material [42]. (b) Berry curvature in
the Brillouin zone. (c) Gapped stripe phase on top of classical phase
diagram of J1-J2-J3 for J1 > 0 (the zigzag phase would require a
larger positive J3/J1).

With the DM interaction, the stripe phase can exhibit a
magnon band structure that is both insulatorlike and topologi-
cally nontrivial. This is because the DM interaction breaks the
spatial mirror symmetry M̃y and opens the band crossing as in
the zigzag phase. As this occurs without any nonsymmorphic
symmetry constraining bands to be degenerate, two bands can
be split to make the magnon band structure insulatorlike, as
depicted in Fig. 1(b) with a proper choice of parameters. In
such a case, the topology of the lower band is well defined, with
the topological invariant under Sz conservation being the spin
Chern number. The Berry curvature of the nth band is defined
as �n(k) = iεμνz[σ3∂kμ

T
†
k σ3∂kν

Tk]
nn

[45,46]. In general, a
degenerate band will not have a well-defined Berry curvature
on its own, but we can separate a pair of degenerate bands
using Sz conservation. The Berry curvature of a band with
a well-defined Sz eigenvalue is shown in Fig. 2(b), and we
note that the Berry curvature is concentrated near the band
edge. The Chern number can be defined for each band as
Cn = 1

2π

∫
dkxdky�n(k). The spin Chern number of doubly

degenerated lower bands is CS = (C↑ − C↓)/2, where C↑ (C↓)
is the Chern number of sz = 1 (sz = −1) [30,47]. The Chern
number for each is an integer and opposite in sign (i.e.,
C↑ = −C↓), because two bands are related by an antiunitary
operator C2z�. Therefore, CS is also quantized to be an integer
and for the stripe phase CS = sgn(JDM). In this sense, the band
topology is analogous to that of the QSH insulator discussed
in Ref. [32].

It is important to comment that the nontrivial topological
number of bosonic bands cannot give rise to a quantized
transverse response as in fermionic systems. It is because
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a bosonic band, lacking the Pauli exclusion principle, can-
not be filled uniformly, the only possible exception being
the low-temperature transverse conductivity divided by the
temperature-dependent bosonic occupation number where the
lowest band is flat and well separated from other bands [35].
While a nontrivial bosonic band topology can give rise to
edge states, their spectra need to lie within the bulk energy
gap in order for them to make a greater contribution to the
transport properties. The stripe phase can stabilize such a
gapped magnon band structure over a finite parameter space
at JDM/J1 = 0.05, as shown in Fig. 2(c). In this case, we can
have an effective edge magnon transport, as the decay of edge
modes to the bulk states requires inelastic scattering due to the
edge modes being inside the bulk band gap; recently, it has
been reported that such edge transport is more robust against
disorder than bulk transport [48].

The dispersion of edge states between the lower and upper
bands of the stripe phase is shown in Fig. 2(a). The edge
modes carry the Sz spin as the HP boson Hamiltonian still
commutes with Sz in the nanoribbon geometry. There are two
types of terminations possible, and each type determines the
center position of the edge modes (whether it is to appear
in −π > kx > 0 or 0 < kx < π ). We also had to include a
term for easy-axis anisotropy for the nanoribbon geometry
calculations to prevent an exponentially decaying deviation
from appearing near the edges of the stripe configuration. This
instability is naturally expected as the coordination number is
reduced near the edges. We comment that small noncollinearity
will introduce a small gap on the edge modes.

Although the spin Berry curvature does not give quantized
responses, we still can obtain a finite transverse response. For
example, the FM phase shows a finite thermal Hall effect due
to magnons. Similarly, for the Néel phase, the spin Nernst
effect (SNE) was obtained for a finite DM interaction [30,31].
The SNE is given by the thermal spin Hall conductivity
αs

xy = − 1
T

∑
kn(Szσ3)nn�n(k)

∫ En(k)
0 dηη

dg(η)
dη

, where g(η) is
the Bose-Einstein distribution function, n is the band index,
and the band index summation is limited to a particle band
[30]. The thermal spin Hall conductivity calculated for both
zigzag and stripe phases is shown in Fig. 3. We find a sign
change of SNE in the zigzag phase, which can also be found
in the Néel phase [31]. It is due to the Berry curvature sign not
being constant over the MBZ in the zigzag phase [42].

In passing, we would like to comment that both zigzag and
stripe phases also appear in extended Kitaev Hamiltonians [49–
53], but the staggered moment is not out of plane, and the

FIG. 3. Spin Nernst effect in the (a) zigzag phase and (b) stripe
phase with varying JDM.

Kitaev and 
 terms break SO(2) symmetry. As a result, neither
the spin carried by magnons nor the spin Chern number relying
on Sz conservation are well defined.

Conclusions. We have studied the magnon band structure
of zigzag and stripe phases for the J1-J2-J3 Heisenberg model
with and without DMI for a honeycomb lattice. In both phases,
we found a Dirac magnon, where the accidental crossing is
protected by spatial glide mirror or mirror symmetry and the
gap can be opened by the DM interaction, but with different
topological phases for different symmetries. For the zigzag
phase, which is commonly found in magnetic systems with a
honeycomb lattice, we found that a nonsymmorphic symmetry
combined with time reversal gives rise to a topologically
protected line node at the zone boundary. On the other hand,
for the stripe phase, we found that it is possible to realize the
magnon analog of QSH.

Note added. Recently, we became aware of a related paper
[54], which has obtained a similar result for the zigzag and
stripe phases for a Hamiltonian without DMI.
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