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Angle-adjustable density field formulation for the modeling of crystalline microstructure
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A continuum density field formulation with particle-scale resolution is constructed to simultaneously
incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a
fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems
across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion
of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling
of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle
control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic
way of performing tunable angle analyses for crystalline microstructures.
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One of the long-lasting challenges in materials study is
how to effectively tackle the complex structural and dynamical
phenomena involving multiple spatial and temporal scales.
Of particular importance is the bridging between atomic-
level microstructural details and mesoscopic, nonequilibrium
characteristics, such as mesoscale surface patterns or interface
structures that are governed by system elasticity and plasticity
and by diffusional or displacive dynamic processes. This
requires novel theoretical efforts, particularly those based on
coarse-graining methods beyond the traditional single-scale
atomistic or continuum approaches. Among them much work
has been devoted to the development of density-field-based
schemes across different scales, as featured by the incor-
poration of crystalline and microscopic attributes into the
probability density description [1–4].

Many of these field-based models can be connected to
the classical density functional theory (CDFT) [5,6]. Through
coarse graining or “smoothing” the local density field over
atomic vibrational scales, the small-scale limitation of CDFT
can be mitigated, resulting in a continuum field theory with
an atomic- or particle-scale spatial resolution and diffusive
timescales. A fast-growing and widely applied version of such
a theory is the phase field crystal (PFC) method [1,2,7–14],
with applications across a variety of solid and soft-matter
systems, particularly for the elastoplastic phenomena that are
inaccessible using traditional methods [15–23]. Most PFC
models are constructed for systems of isotropic interactions,
with the lattice symmetry controlled by microscopic length
scales [1,2,7–14,24–26]. They are applicable to metallic-type
materials or colloidal systems with excluded volume or steric
interactions that are dependent on interparticle distance, but
would be a crude approximation if applied to a broader range
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of material systems with directional interactions depending
on both bond lengths and angles. It is thus important to
build the bond (or particle-neighboring) angle dependency into
continuum modeling which, however, is nontrivial, given that
microscopically the corresponding interparticle interactions
are anisotropic, while rotational invariance of the whole
system must be maintained in the free-energy functional.

In the traditional density-field approach based on Landau
theory, an additional bond-orientational order parameter and
the associated rotationally invariant orientational free energy
were introduced for glassy [27] or quasicrystalline [28] sys-
tems. On the other hand, in principle, the orientational infor-
mation should already be incorporated in the density functional
and direct correlation functions, although it is challenging to
identify and control. The related attempts are rather limited,
and are usually accompanied by some specific assumptions,
as in two types of angle-dependent PFC models developed
recently. The first one [29] adopts some nonlinear free-energy
gradient terms introduced in previous studies of the square
convection pattern [30,31], while the second type is built on
some preassumed infinite series expansions of the three-point
direct correlation function C(3), either through a separation of
C(3) in real space [32] or in terms of Legendre polynomials in
Fourier space [33].

Here, we provide a systematic study of angular dependence
and orientation control in a density field formulation. Our
analysis is based on the property of the isotropic tensor and the
complete Fourier expansion of any n-point direct correlation
function C(n) that satisfies the condition of rotational invari-
ance, without any preassumptions. Our results show that any
finite-order contributions of C(3) expansion to the rotationally
invariant free energy are always angle independent, as a result
of the resonant condition of the wave-vector triads, while those
from at least a four-point correlation are needed to explicitly
incorporate the dependency on the angle between neighboring
constituent particles. Applications of this PFC-type model
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include some examples of three-dimensional (3D) structure
modeling (such as simple cubic and diamond cubic phases) via
a single length scale combined with angle-dependent effects,
and, importantly, the achievement of continuous angle control
in both two-dimensional (2D) and 3D crystalline structures
such as 2D rhombic and square and 3D simple monoclinic
and orthorhombic phases, which demonstrates the advantage
of this angle-adjustable density field approach.

In CDFT the free-energy functional is expanded via direct
correlation functions [5,6], i.e.,

�F/kBT = ρ0

∫
dr(1 + n) ln(1 + n) −

∑
m

1

m!
ρm

0

×
∫ m∏

j=1

drjC
(m)(r1,r2, . . . ,rm)

× n(r1)n(r2) · · · n(rm), (1)

where n = (ρ − ρ0)/ρ0 is the density variation field, with
ρ the local atomic number density and ρ0 a reference state
density. The condition of rotational invariance needs to
be maintained for any m-point direct correlation function
C(m) and its Fourier transform Ĉ(m)(q1,q2, . . . ,qm−1).
If expanding Ĉ(m) as a power series of wave vector qi ,
the resulting terms are of the form

∏m−1
i=1

∏
α=x,y,z q

niα

iα

(niα = 0,1,2, . . .), the majority of which are, however, not
rotationally invariant. Alternatively, this expansion can be
expressed in an equivalent form, Ĉ(m)(q1,q2, . . . ,qm−1) =∑∞

K=0

∑m−1
i1···=1

∑
αi1 ···=x,y,z Ci1αi1 ···iKαiK

T
(K)
i1αi1 ···iKαiK

, where

T
(K)
i1αi1 ···iKαiK

= qi1αi1
· · · qiKαiK

can be viewed as components

of a tensor T(K) of rank K . Thus the rotational invariance
condition of this expansion would be satisfied if these tensor
components are invariant under a proper orthogonal group
O+(2) or O+(3) transformation (i.e., 2D or 3D rotation),
which is the definition of an isotropic Cartesian tensor. Given
the property of isotropic tensors which can be written as
linear combinations of the products of Kronecker deltas δαiαj

(for even rank K) or their product with only one Levi-Civita
permutation tensor εαkαlαp

(for odd K , with αk,αl,αp = x,y,z)
in 2D or 3D Euclidean space [34–36], the corresponding
rotationally invariant form of Ĉ(m) expansion can be expressed
in terms of qi · qj and (qk × ql) · qp, i.e.,

Ĉ(m)(q1,q2, . . . ,qm−1)

=
∞∑

μ11···=0

Ĉ(m)
μ11···

m−1∏
i,j=1

(qi · qj )μij +
m−1∑

k,l,p=1

∞∑
ν11···=0

Ĉ
(m)
ν11···klp

×
m−1∏
i,j=1

(qi · qj )νij [(qk × ql) · qp], (2)

with coefficients Ĉ(m)
μ11··· and Ĉ

(m)
ν11···klp. Note that this is a general

form of expansion but not an irreducible one.
For a two-point correlation, from Eq. (2) with m =

2 the only available expansion form is (q · q)M = q2M ,
i.e., Ĉ(2)(q) = Ĉ0 + ∑∞

M=1 ĈMq2M . Its contribution to the

free-energy functional is given by (after rescaling)

�F (2) =
∫

dr

{
−ε

2
n2 + λ

2
n

N−1∏
i=0

[(∇2 + Q2
i

)2 + bi

]
n

}
,

(3)

where ε, λ, Qi , and bi can be expressed via the expansion
coefficients ĈM . This leads to the multimode PFC model
presented in Ref. [10], with wave numbers Qi determining
N different length scales (bond lengths).

When m = 3, the general form of Ĉ(3)(q1,q2) reads

Ĉ(3)(q1,q2) = Ĉ
(3)
0 +

∞∑
M=1

[
Ĉ

(3)
1 q2M

1 + Ĉ
(3)
2 q2M

2

+
M−1∑
μ=1

Ĉ
(3)
2μ,2M−2μq

2μ
1 q

2M−2μ
2

+
M−1∑
μ=0

M−1−μ∑
ν=0

Ĉ
(3)
2μ,2ν,2M−2μ−2νq

2μ
1

× q2ν
2 (q1 · q2)M−μ−ν

]
, (4)

with the corresponding free-energy contribution given by [see
the Supplemental Material (SM) [37] for the derivation]

�F (3) =
∫

dr

{
−1

3
D0n

3 +
∞∑

M=1

[
DMn2∇2Mn

+
M−1∑
μ=1

Dμ,M−μn(∇2μn)(∇2M−2μn)

+
M−1∑
μ=1

M−1−μ∑
ν=1

Dμ,ν,M−μ−ν(∇2μn)

× (∇2νn)(∇2M−2μ−2νn)

]}
, (5)

where parameters D’s are dependent on the Ĉ(3) coefficients.
Interestingly, Eq. (5) shows that any terms of the C(3) free-
energy contribution are always angle independent and isotropic
(except for some special infinite series of Ĉ(3) expansion
[32,33]; see the SM [37]). This can be attributed to the fact
that the cubic energy terms are governed by the resonant triads
of reciprocal lattice vectors [10,38], i.e., qj + qk + ql = 0, and
the side lengths of this vector triangle (|qj |, |qk|, |ql|, i.e., lattice
length scales) uniquely determine all three angles between the
wave vectors and hence the bond (neighboring) orientations.

Thus we need a four- or higher-order direct correlation
to obtain the explicit angle dependence, given that angles of
a wave-vector polygon or skew polygon of more than three
sides (with resonant condition

∑m
i=1 qi = 0, m � 4) cannot

be uniquely determined by the side lengths. For Ĉ(4) all the
free-energy terms are derived in the SM, including two types
of isotropic terms, n4 and n(∇2μn)(∇2νn)(∇2M−2μ−2νn) (with
integers μ,ν � 0, M � μ + ν), and three types of angle-
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dependent terms,

f
(4)
a1 = [∇2μ(n∇2ωn)](∇2νn)(∇2M−2μ−2ν−2ωn),

f
(4)
a2 =

∑
αi ,βj =x,y,z

⎡
⎣∇2μ

⎛
⎝n∇2ω

κ∏
i=1

τ∏
j=1

∂αi
∂βj

n

⎞
⎠

⎤
⎦

×
(

∇2ν

κ∏
i=1

∂αi
n

)⎛
⎝∇2M−2μ−2ν−2ω−2κ−2τ

τ∏
j=1

∂βj
n

⎞
⎠,

f
(4)
a3 = n

∑
αi ,βj ,γk

∑
α,β,γ

εαβγ

(
∇2μ

κ∏
i=1

λ∏
k=1

∂αi
∂γk

∂αn

)

×
⎛
⎝∇2ν

κ∏
i=1

τ∏
j=1

∂αi
∂βj

∂βn

⎞
⎠

⎛
⎝∇2ω

τ∏
j=1

λ∏
k=1

∂βj
∂γk

∂γ n

⎞
⎠,

where αi,βj ,γk,α,β,γ = x,y,z. For the example of f
(4)
a1

terms (with integers μ � 1, ν,ω � 0 and M � μ + ν + ω), if
expanding the density field as n=n0+

∑
j Aj exp(iqj · r), with

the average density n0 and amplitudes Aj (qj ) = A∗
−j (−qj ),

given a system of volume V , we have

1

V

∫
drf (4)

a1

∣∣∣∣
n0=0

= (−1)M
∑
ijkl

|qi + qj |2μq2ω
j q2ν

k q
2M−2μ−2ν−2ω

l

×AiAjAkAlδqi+qj +qk+ql ,0. (6)

The resonant condition qi + qj + qk + ql = 0 is satisfied by
three types of wave-vector combinations [10,39]: collinear
(qi − qi + qi − qi = 0), pairwise (qi − qi + qj − qj = 0),
and nonpairwise closed loops. For Eq. (6), the collinear
contribution f C from nq wave vectors yields f C =
(−1)M22μ+1 ∑nq

j=1 q2M
j |Aj |4, while the angle dependence

arises from the factor |qi + qj |2μ if μ � 2 for pairwise
resonant tetrads and μ � 1 for nonpairwise ones.

For some crystalline structures (e.g., five 2D Bravais lattices
and some 3D ones) the pairwise contributions would be
sufficient in determining the phase stability. Given any pair
(qi ,qj ) with angle θ and qj = γ qi ≡ γ q (i �= j ), the pairwise
(P ) contribution of Eq. (6) gives

1

V

∫
dr[∇2μ(n∇2ωn)](∇2νn)(∇2M−2μ−2ν−2ωn)

∣∣∣∣
(P )

n0=0

= 2(−1)M [(1 + γ 2 + 2γ cos θ )μ + (1 + γ 2 − 2γ cos θ )μ]

×q2M (γ 2M−2μ−2ν−2ω + γ 2ν)(1 + γ 2ω)|Ai |2|Aj |2, (7)

the minimization of which leads to cos θ = 0 when (−1)M >

0. A similar outcome is obtained for all other angle-dependent
Ĉ(4) contributions [37], indicating that a single quartic gradient
term would favor only the π/2 orientation when considering
pairwise wave vectors.

FIG. 1. Phase diagrams determined by Eq. (8) at λ = 1 and
(E0,E11,E44) = (1,25/72,1/16) for (a) and (1/18,0,1/32) for (c).
Sample sc (b) and dc (d) structures are obtained from simulations with
a 643 grid size, for n0 = −0.01 and ε = 0.02. An enlarged portion of
(d) is shown in (e), while (f) gives the diffraction pattern of (d).

To verify this result we study a 3D example with only one
length scale (i.e., one mode with q0 = 1 and γ = 1),

F =
∫

dr
[
−1

2
εn2 + 1

2
λn

(∇2 + q2
0

)2
n + 1

4
E0n

4

+E11n
3∇2n + E44n

2∇4n2

]
, (8)

where the only angle-dependent term is n2∇4n2 (i.e., M =
μ = 2 and ν = ω = 0, reproducing that used previously in 2D
square pattern formations [30,31]). From the above analysis,
the simple cubic (sc) phase, characterized by a bond angle
θ = π/2 and basic wave vectors (1,0,0), (0,1,0), (0,0,1), should
be stabilized for n0 close to 0. This is consistent with our nu-
merical result in Fig. 1(b), for which the simulation starts from
a homogeneous state with random initial condition and follows
the dynamics ∂n/∂t = ∇2δF/δn. The phase diagram is given
in Fig. 1(a), as calculated via a one-mode approximation.

To model structures characterized by other angles, the
parameters need to be chosen such that the contributions from
nonpairwise wave vectors would be important. For the example
of a diamond cubic (dc) phase, in the first mode with am-
plitude A, q1 = q0(−1,1,1)/

√
3, q2 = q0(1,−1,1)/

√
3, q3 =

q0(1,1,−1)/
√

3, and q4 = q0(−1,−1,−1)/
√

3, thus q1 +
q2 + q3 + q4 = 0, yielding cos θ = −1/3 and θ = 109.47◦.
The corresponding nonpairwise contribution of Eq. (6) is then
given by (−1)M+148q2M

0 2μ(1 + cos θ )μ|A|4. Combining with
Eq. (7), we can identify the parameters minimizingF of Eq. (8)
that favor the dc structure, with results (including the phase
diagram and a simulated structure emerging from initial homo-
geneous state) shown in Figs. 1(c)–1(f). Note that due to the
incorporation of angle dependence, only one mode is needed
to generate a sc or dc phase, different from previous isotropic
PFC models where three [8] or two [24] modes are required.

An important feature of this approach is the ability to
continuously control the characteristic angles of the crystalline
phases, as achieved by combining angle-dependent gradient
terms, e.g.,

∑
k Ekn(∇2μkn2)(∇2Mk−2μkn), so that the angle
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can be tuned via coefficients Ek . For the case of a single
adjustable angle θ between any pair of wave vectors (qi ,qj ),
the simplest combination is E1n(∇2μ1n2)(∇2M1−2μ1n) +
E2n(∇2μ2n2)(∇2M2−2μ2n). For the structures dominated by
pairwise and collinear wave vector contributions, Eq. (7) gives

f P = 1

V

∫
dr

2∑
k=1

Ekn(∇2μkn2)(∇2Mk−2μkn)

∣∣∣∣∣
(P )

n0=0

= 4{E1[(1 + γ 2 + 2γ cos θ )μ1 + (1 + γ 2 − 2γ cos θ )μ1 ]

×(−1)M1q2M1 (1 + γ 2M1−2μ1 )

+E2[(1 + γ 2 + 2γ cos θ )μ2 + (1 + γ 2 − 2γ cos θ )μ2 ]

×(−1)M2q2M2 (1 + γ 2M2−2μ2 )}|Ai |2|Aj |2, (9)

while the collinear contribution is angle independent, i.e.,
f C = ∑2

k=1(−1)Mkq2Mk 22μk+1Ek(|Ai |4 + γ 2Mk |Aj |4). By
minimizing f P we get sin θ = 0 or

−E′
2

E′
1

[(1 + γ 2 + 2γ cos θ )μ2−1 − (1 + γ 2 − 2γ cos θ )μ2−1]

= (1 + γ 2 + 2γ cos θ )μ1−1 − (1 + γ 2 − 2γ cos θ )μ1−1,

(10)

where E′
k = (−1)Mkq2MkμkEk(1 + γ 2Mk−2μk ) (k = 1,2). It is

straightforward to show that the lowest-order terms giving
adjustable values of nonzero θ for f P minimization are of
μ1 = 4 and μ2 = 2, when (−1)M1E1 > 0 and (−1)M2E2 < 0,
thus cos2 θ = −[E′

2/E
′
1 + 3(1 + γ 2)2]/4γ 2 from Eq. (10). To

ensure the results are independent of wave number q, we
set M1 = M2 = M and to lowest order M = μ1 = 4, μ2 = 2,
leading to the combination E1n

2∇8n2 + E2n(∇4n2)(∇4n) and

E2

E1
= − 4

1 + γ 4
[3(1 + γ 2)2 + 4γ 2 cos2 θ ], E1 > 0, (11)

i.e., at least eighth-order gradient terms are needed to obtain
the angle control in structures governed by pairwise resonant
wave vectors. The free-energy functional is then

F =
∫

dr

[
−ε

2
n2 + λ

2
n

N−1∏
i=0

(∇2 + Q2
i

)2
n + E1n

2∇8n2

+E2n(∇4n2)(∇4n) + E3(∇2n2)(∇4n)(∇2n) + E0

4
n4

]
,

(12)

where the E3 term is angle independent for pairwise wave
vectors and is introduced for structure stability.

We first apply the above analysis to the modeling of 2D
rhombic and square phases with continuous angle selection
(0 < θ � π/2), using one mode with N = Q0 = γ = 1 and
the basic wave vectors q1,2 = [∓ cos(θ/2), sin(θ/2)]. Some
simulation results are illustrated in Fig. 2, for five sample
rhombic structures with θ = 30◦,45◦,55◦,70◦,85◦, starting
from a homogeneous initial state. The parameter ratio E2/E1 is
chosen according to Eq. (11), and E3 = 0. The resulting struc-
tures with desired angles are corroborated by the associated

FIG. 2. Angle control for the rhombic phase, based on the
prediction of Eq. (11) for E2/E1 vs θ (solid curve). Simulated
structures and diffraction patterns are obtained with n0 = 0, ε =
0.01, E0 = 1/3, E3 = 0, and (λ,E1) = (600,1/750) for θ = 85◦ and
70◦, (2 × 104,1/750) for θ = 55◦, (6 × 104,1/800) for θ = 45◦, and
(6 × 105,1.104 × 10−3) for θ = 30◦.

diffraction patterns (Fig. 2 insets), indicating the capability of
angle control via nonlinear gradient terms.

Similar outcomes of continuous angle control can be ob-
tained in 3D from Eqs. (11) and (12), with an example of simple
monoclinic phase presented in Fig. 3. Three modes, Q0 :
Q1 : Q2 = 1 : γ2 : γ3, are needed here, with basic wave vec-
tors q1 = (1,0,0), q2 = (0,γ2,0), and q3 = (γ cos θ,0,γ sin θ )
with γ ≡ γ3. This gives θ12 = θ23 = π/2, where θij is the
angle between qi and qj , and θ13 ≡ θ is the only tunable
angle determined by Eq. (11). The corresponding structures
of different θ , including simple orthorhombic with θ = π/2,
have been obtained in our numerical simulations using random
initial and periodic boundary conditions (Fig. 3). Note that this
modeling procedure is also applicable to other angle-adjustable

FIG. 3. Angle control for simple monoclinic structures with Q0 :
Q1 : Q2 = 1 : 1.16 : 1.24, based on the prediction of Eq. (11). A
portion of the simulated system and the diffraction pattern are shown
for each angle, with n0 = 0, ε = 0.01, E0 = 1/2, E1 = 1/240, E3 =
5/32, and λ = 5 × 106 for θ = 66.22◦ and 5 × 105 for θ = 74.41◦,
80.72◦, 84.21◦.
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phases, such as rhombohedral (trigonal) or a more complex
case of triclinic (with three modes and three tunable angles). All
these results thus verify the effect of angle tuning and control
on the emergence of crystalline phases through contributions
of quartic coupling.

It is also important to note that although the model in-
troduced above involves high-order nonlinear gradient terms,
the related computational cost is modest when using the
pseudospectral numerical algorithm, particularly for the cases
of weak segregation (i.e., small ε) simulated here. In addition,
such a format with spatial gradient terms has the advantage of
being more feasible for the construction of amplitude equa-
tion formalism describing slowly varying mesoscopic scales
[13,14,18,22], which is important for large-scale simulations
with high computational efficiency and is the subject of our
future research.

In summary, we have constructed a complete density field
formulation integrating the microscopic property of interpar-
ticle bond-angle anisotropy and the requirement of global-
scale system rotational invariance. Our results demonstrate
that effects of angle dependency and adjustment are incor-
porated explicitly through quartic correlation in the system,

but not through any finite-order cubic coupling which instead
implicitly affects angle selection via lattice length scales.
The resulting nonlinear gradient terms of the atomic density
field have been utilized to model various crystalline phases
and, importantly, their bond-angle control. Since the model
developed here already incorporates system elasticity and
plasticity as in other PFC-type models, it can be readily applied
to the study or prediction of a broad range of crystalline or
polycrystalline material systems and more complex phases
with bond anisotropy, their elastoplastic and defect properties,
and nonequilibrium phenomena during crystallization and
growth. This approach is built on the full-order expansion of
direct correlation functions and the application of isotropic
Cartesian tensors, and is thus of a generic nature and applicable
to different types of ordering or self-assembling systems with
varying atomistic details.

Z.-F.H. acknowledges support from the National Science
Foundation under Grant No. DMR-1609625. Z.R.L. was sup-
ported by the National Natural Science Foundation of China
under Grant No. 21773002.
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