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We consider a two leg bosonic ladder in a U (1) gauge field with both interleg hopping and interleg repulsion.
As a function of the flux, the interleg interaction converts the commensurate-incommensurate transition from
the Meissner to a Vortex phase, into an Ising-type of transition towards a density wave phase. A disorder point
is also found after which the correlation functions develop a damped sinusoid behavior signaling a melting
of the vortex phase. We discuss the differences on the phase diagram for attractive and repulsive interleg
interaction. In particular, we show how repulsion favors the Meissner phase at low flux and a phase with a
second incommensuration in the correlation functions for intermediate flux, leading to a richer phase diagram
than in the case of interleg attraction. The effect of the temperature on the chiral current is also discussed.
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I. INTRODUCTION

Trapped ultracold atoms have provided experimentalists
with a unique ability to realize highly tunable quantum simula-
tors of many-body model Hamiltonians [1–3], including quasi-
one-dimensional systems [4]. Moreover, it has recently become
possible to simulate the effect of an applied magnetic field
using two-photon Raman transitions [5–7], spin-orbit coupling
[8], or optical clock transitions [9]. Such a situation gives
access to a regime where the interplay of low dimensionality,
interaction, and magnetic field generates exotic phases such as
bosonic analogues of the fractional quantum Hall effect [10].
The simplest system to observe nontrivial effects of an artificial
gauge field is the bosonic two-leg ladder [11]. Originally,
such systems were considered in the context of Josephson
junction arrays in magnetic field [12–14] and a commensurate-
incommensurate (C-IC) phase transition between a Meissner-
like phase with currents along the legs and a Vortex-like phase
with quasi-long-range ordered current loops was predicted.
However, in Josephson junction systems, ohmic dissipation
[15,16] spoiled the quantum coherence required to observe
such a transition. In cold atom systems, the Meissner and
Vortex states have been observed in a noninteracting case
[11]. Moreover, recent progress in superconducting qubits
[17] engineering offer another promising path [18,19] for
realization of low-dimensional bosons in artificial flux. Finally,
another relevant quantum platform that can implement artificial
classical magnetic fields is that of trapped ions [20].

The availability of experimental systems has thus renewed
theoretical interest in the two leg bosonic ladder in a flux
[21–48]. These works have revealed in that deceptively simple
model a zoo of ground state phases besides Meissner-like
and Vortex-like ones. At commensurate filling, Mott-Meissner
and Mott-Vortex phases [30] as well as chiral Mott insulating
phases [21–23,48] have been predicted. Meanwhile, with

strong repulsion and a flux � = 2πn with n the number of par-
ticles per rung, bosonic analogs of the Laughlin states [49] are
expected [34,39,41]. Interactions also affect the C-IC transition
between the Meissner-like and the Vortex-like phase [50]. In a
previous work [51], we have considered the effect of attractive
interchain interactions on the C-IC transition. Using an analogy
with statistical mechanics of classical elastic systems on
periodic substrates [52–56], we have shown that interchain
attraction split the single commensurate-incommensurate (C-
IC) transition point into (a) an Ising transition point between the
Meissner-like phase and a density-wave phase, (b) a disorder
point [57,58] where incommensuration develops inside the
density-wave phase, and (c) a Berezinskii-Kosterlitz-Thouless
(BKT) transition [59,60] where the density wave with in-
commensuration turns into the Vortex-like phase. The density
wave phase with incommensuration can be identified as a
melted vortex state while the transition (c) can be seen as
a melting of the vortex phase. The density wave competing
with the Meissner phase at Ising point (a) is induced by
interchain interaction [61–63] even in the absence of flux.
We have verified the existence of those phases in DMRG
simulations of hard core bosons [51]. Since the analogy with
classical elastic systems holds irrespective of the sign of the
interchain interaction, a similar splitting of the C-IC point
should also be present in the repulsive case. Differently from
the attractive case, we will show that repulsive interactions
stabilize the Meissner phase and make the splitting of the C-IC
transition occur in a much narrower region in the hard-core
case. Moreover, they also favor the appearance of an extra
periodic oscillation of the correlation function at a wave vector
depending on both flux and interchain hopping, even for fluxes
noncommensurate with density [38]. Such a prediction could
be easily traced in current experiments by Bragg spectroscopy,
that measures the static structure factor, or by time of flight
spectroscopy that measures momentum distribution.
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The paper is organized as follows: In Sec. II we introduce
the model and its bosonized version, as well as the observables
and their correlation functions. In Sec. III we discuss the Ising
transition and the disorder point by using a fermionization
approach based on the Majorana fermion representation. Here
we also briefly discuss the effect of the temperature on the spin
current and momentum distribution. In Sec. IV we discuss the
emergence of the second incommensuration by using a uni-
tary transformation approach and non-Abelian bosonization.
Section V presents the numerical results for the hard-core limit
in the legs. In Sec. VI we discuss the major results and give
some conclusions.

II. MODEL

We consider a model of bosons on a two-leg ladder in the
presence of an artificial U(1) gauge field [40,41]:

H = −t
∑
j,σ

(b†j,σ eiλσ bj+1,σ + b
†
j+1,σ e−iλσ bj,σ )

+ �

2

∑
j,α,β

b
†
j,α(σx)αβbj,β +

∑
j,α,β

Uαβnjαnjβ, (1)

where σ = ↑,↓ represents the leg index or the internal mode
of the atom [8,9,64], bj,σ annihilates a boson on leg σ on the
j th site, njα = b

†
jαbjα, t is the hopping amplitude along the

chain, � is the tunneling between the legs or the laser induced
tunneling between internal modes, λ is the Peierls phase of
the effective magnetic field associated to the gauge field,
U↑↑ = U↓↓ = U is the repulsion between bosons on the same
leg, U↓↑ = U⊥ the interaction between bosons on opposite
legs. In synthetic dimensions, the contact interaction between
atoms of different internal quantum numbers becomes the
interchain interaction. This model can be mapped to spin-1/2
bosons with a spin-orbit interaction model [38], where � is the
transverse magnetic field, λ measures the spin-orbit coupling,
U↑↑ = U↓↓ is the repulsion between bosons of identical spins,
U↓↑ = U⊥ the interaction between bosons of opposite spins.

A. Bosonized description

Let us derive the low-energy effective theory for the Hamil-
tonian (1), treating � and U⊥ as perturbations, and using
Haldane’s bosonization of interacting bosons [65]. Introducing
[65] the fields φα(x) and 
α(x) satisfying canonical commu-
tation relations [φα(x),
β(y)] = iδ(x − y) as well as the dual
θα(x) = π

∫ x
dy
α(y) of φα(x), we can represent the boson

annihilation operators as:

bjσ√
a

= ψσ (x) = eiθσ (x)
+∞∑
m=0

A(σ )
m cos

(
2mφσ (x) − 2mπρ(0)

σ x
)
,

(2)

and the density operators [65] as:

njσ

a
= ρσ (x) = ρ(0)

σ − 1

π
∂xφσ

+
∞∑

m=1

B(σ )
m cos

(
2mφσ (x) − 2mπρ(0)

σ x
)
. (3)

Here, we have introduced the lattice spacing a, while
Am and Bm are nonuniversal coefficients that depend on
the microscopic details of the model. For integrable models,
these coefficients have been determined from Bethe Ansatz
calculations [66–68] while for nonintegrable models, they
can be determined from numerical calculations of correlation
functions [69,70].

Introducing the canonically conjugate linear combinations:

φc = 1√
2

(φ↑ + φ↓) 
c = 1√
2

(
↑ + 
↓), (4)

φs = 1√
2

(φ↑ − φ↓) 
s = 1√
2

(
↑ − 
↓), (5)

the bosonized Hamiltonian can be rewritten as H = Hc + Hs ,
where

Hc =
∫

dx

2π

[
ucKc(π
c)2 + uc

Kc

(∂xφc)2

]
(6)

describes the total density fluctuations for incommensurate
filling when umklapp terms are irrelevant, and

Hs =
∫

dx

2π

[
usKs

(
π
s + λ

a
√

2

)2

+ us

Ks

(∂xφs)
2

]

− 2�A2
0

∫
dx cos

√
2θs + U⊥aB2

1

2

∫
dx cos

√
8φs

(7)

describes the antisymmetric density fluctuations. In Eq. (7) and
(6), us and uc are, respectively, the velocity of antisymmetric
and total density excitations, A0 and B1 are nonuniversal
coefficients [71], while Ks and Kc are the corresponding
Tomonaga-Luttinger (TL) exponents, which are perturbative
with respect to U⊥. They can be expressed as a function of
the velocity of excitations u, and Tomonaga-Luttinger liquid
exponent K of the isolated chain as:

uc = u

(
1 + U⊥Ka

πu

)1/2

(8)

us = u

(
1 − U⊥Ka

πu

)1/2

(9)

Kc = K

(
1 + U⊥Ka

πu

)−1/2

(10)

Ks = K

(
1 − U⊥Ka

πu

)−1/2

. (11)

For an isolated chain of hard core bosons, we have u =
2t sin(πρ0

σ ) and K = 1. Physical observables can also be
represented in bosonization. The rung current, or the flow of
bosons from the upper leg to the lower leg, is:

J⊥(j ) = −i�(b†j,↑bj↓ − b
†
j,↓bj↑ ).

= 2�A2
0 sin

√
2θs + · · · (12)
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The chiral current, i.e., the difference between the currents of
upper and lower leg, is defined as

J‖(j,λ) = −it
∑

σ

σ (b†j,σ eiλσ bj+1,σ − b
†
j+1,σ e−iλσ bj,σ ),

(13)

= usKs

π
√

2

(
∂xθs + λ

a
√

2

)
. (14)

The density difference between the chains Sz
j = nj↑ − nj↓ is

written in bosonization as:

Sz
j = −

√
2

π
∂xφs − 2B1 sin(

√
2φc − πρx) sin

√
2φs, (15)

while the density of particles per rung is:

nj = −
√

2

π
∂xφc − 2B1 cos(

√
2φc − πρx) cos

√
2φs. (16)

Let us discuss some simple limits of the Hamiltonian
(7). When � �= 0, U⊥ = 0, and λ → 0, the antisymmetric
modes Hamiltonian Eq. (7) reduces to a quantum sine-Gordon
Hamiltonian. For Ks > 1/4, the spectrum of Hs is gapped
and the system is in the so-called Meissner state [12,13]
characterized by 〈θs〉 = 0. In such a state, the chiral current
increases linearly with the applied flux at small λ, while the av-
erage rung current 〈J⊥〉 = 0 and its correlations 〈J⊥(j )J⊥(0)〉
decay exponentially with distance. The antisymmetric density
correlations also decay exponentially with distance, while the
symmetric ones behave as:

〈ninj 〉 = − 2Kc

π2(i − j )2
+ e−|i−j |/ξ cos πn(i − j )

|i − j |Kc
, (17)

where ξ is the correlation length resulting from the spectral gap
of Hs . With � = 0,U⊥ �= 0, the antisymmetric density fluctu-
ations Hamiltonian (7) becomes again a quantum sine-Gordon
model that can be related to the previous one by the dual-
ity transformation θs → 2φs,φs → θs/2,Ks → 1/(4Ks). For
Ks < 1, the Hamiltonian Hs has a gapped spectrum and 〈φs〉 =
π√

8
for U⊥ > 0 yielding a zigzag density wave ground state and

〈φs〉 = 0 for U⊥ < 0 yielding a rung density wave ground state
[61–63,72–74]. In both density wave states, the expectation
values of the spin and conversion current vanish, and their
correlations decay exponentially. The Green’s functions of
the bosons also decay exponentially, so that the momentum
distribution only has a Lorentzian shaped maximum at k = 0.
However, in the zigzag density wave state (U⊥ > 0), we have:

〈
Sz

jS
z
k

〉 ∼ C1e
−|j−k|/ξ + C2

cos πn(j − k)

|j − k|Kc
, (18)

〈njnk〉 ∼ − 2Kc

π2(j − k)2
+ C3

cos πn(j − k)

|j − k|Kc
e−|j−k|/ξ , (19)

while in the rung density wave (U⊥ < 0),

〈njnk〉 ∼ − 2Kc

π2(j − k)2
+ C ′

3
cos πn(j − k)

|j − k|Kc
, (20)

〈
Sz

jS
z
k

〉 ∼ C ′
1e

−|j−k|/ξ + C ′
2

cos πn(j − k)

|j − k|Kc
e−|j−k|/ξ , (21)

where Kc depends on the interleg interaction, increasing when
it is attractive and decreasing when it is repulsive as indicated

in Eq. (8). The behavior of density correlations in real space
is reflected in the corresponding static structure factors:

Sc(q) =
∑

j

e−iqj 〈njn0〉, (22)

Ss(q) =
∑

j

〈
Sz

jS
z
0

〉
. (23)

In all phases, Sc(q → 0) = 2Kc

π
|q| + o(q), while Ss(q) ∼

Ss(0) + Aq2 + o(q2) indicating that symmetric excitations
are always gapless while antisymmetric excitations are always
gapped. However, in the rung density wave, Sc(q → πn) has
a power law divergence ∼|q − πn|Kc−1 (if Kc < 1) or a cusp
∼ C + C ′|q − πn|Kc−1 (if 1 < Kc < 2) and Ss(q → πn)
has only a Lorentzian-shaped maximum while in the zigzag
density wave, Ss(q → πn) shows a cusp or singularity while
Sc(q → πn) has a Lorentzian-shaped maximum. The case
of Uαα = +∞ is peculiar since Ks → 1. The Hamiltonian
(1) can then be mapped to the Fermi-Hubbard model (see
Appendix A 2). Bosonization of the Fermi-Hubbard model
[71] shows that the operator cos

√
8φs is marginal in the

renormalization group sense. On the attractive side [71],
it is marginally relevant, and the density wave exists for
all U⊥ < 0. However, on the repulsive side, cos

√
8φs is

marginally irrelevant and the staggered density wave is absent.
With both � and U⊥ nonzero andλ = 0, the Hamiltonian Hs

becomes the self-dual sine-Gordon model [75,76]. When both
cosines are relevant (i.e., 1/4 < Ks < 1) the Meissner phase
(stable for |�| � |U⊥|) is competing with the density wave
phases (stable in the opposite limit). The competing phases
are separated by an Ising critical point [75,76]. In the case of
Uαα = +∞, since the density wave is absent for U⊥ > 0, one
only has the Meissner state for all U⊥ > 0. By contrast, for
U⊥ < 0, the charge density wave exists at � = 0 and an Ising
critical point is present. Thus, phase diagrams for U⊥ > 0 and
U⊥ < 0 are very different.

In the presence of flux (λ �= 0), the density wave phases are
stable. However,for U⊥ = 0, in the Meissner phase [12,13],
when the flux λ exceeds the threshold λc the commensurate-
incommensurate transition takes place [77–79]: the ground
state of Hs then presents a nonzero density of sine-Gordon
solitons forming a Tomonaga-Luttinger liquid [12,13]. The low
energy properties of the incommensurate phase are described
by the effective Hamiltonian:

H ∗ =
∫

dx

2π

[
u∗

s (λ)K∗
s (λ)(π
∗

s )2 + u∗
s (λ)

K∗
s (λ)

(∂xφ)2

]
, (24)

where 
s = 
∗
s + 〈
s〉(λ). Near the transition point

λc, 〈
s〉(λ) ∼ C
√

λ − λc. Moreover, as λ → λc + 0, K∗
s (λ)

goes to a limiting value K (0)
s such that [79,80] the scaling

dimension of cos
√

2θs becomes 1. Since the scaling dimension
of cos

√
2θs with a Hamiltonian of the form (24) is 1/[2K∗

s (λ)]
one finds K (0)

s = 1/2. In that incommensurate phase, called
the Vortex state [13] in the ladder language, 〈J‖(j )〉 decreases
and eventually vanishes for large flux values. Meanwhile,
the rung current correlations, density correlations, and the
Green’s functions of the bosons decay with distance as
power law damped sinusoids. The effect of the interaction
between identical spins on the commensurate-incommensurate
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TABLE I. Fourier transform of the correlation functions of the different observables in the phases as predicted in bosonization. When a power
law behavior is indicated, if the exponent is negative the singularity is a divergence. When the exponent is positive, the singularity is a cusp and the
power law is simply a leading correction to a constant value. Lorentzian at kmax indicates that in the vicinity of its maximum kmax, the correlation
function behaves as 1/(a + b(k − kmax)2) with kmax = πn. In the fourth column, “Quadratic” indicates that Ss(k) = Ss(0) + S ′′

s (0)k2/2 + o(k2)
while “Linear” indicates a behavior Ss(k) = K∗

s |k|/π + o(k).

zigzag CDW zigzag CDW
Phase momentum distribution rung current structure factor structure factor structure factor

n(k) C(k) Ss(k ∼ 0) Ss(k ∼ πn)

Meissner power law |k| 1
4Kc

−1 Lorentzian peak at k = 0 Quadratic Lorentzian peak at k = πn

Meissner-DW single Lorentzian peak at k = 0 Lorentzian peak at k = 0 Quadratic ∼ |k − πn|Kc−1

Melted vortex two Lorentzian peaks at ±q(λ) two Lorentzian peaks at ±2q(λ) Quadratic ∼ |k − πn|Kc−1

Vortex power law peaks ∼ |k − q(λ)|1/4Kc+1/4K∗
s −1 power law peaks ∼ |k − 2q(λ)|1/K∗

s −1 Linear ∼ |k − πn|Kc+K∗
s −1

transition has been largely investigated both numerically and
theoretically [23,27,29,30,38].

Since U⊥ can give rise to a phase competing with the
Meissner state in the absence of flux, its effect on the com-
mensurate incommensurate transition induced by λ needs to be
considered. Indeed, near the transition the scaling dimension
of the field cos

√
8φs is 2K∗

s (λ) � 1, thus the cos
√

8φs term
in Eq. (7) is relevant and causes a gap opening [54,56]. A
fermionization approach [52,53] allows us to show that the
flux induced transition remains in the Ising universality class.
Moreover, this approach also predicts the existence of a disor-
der point [57,58] where incommensuration develops in some
correlation functions even though the gap and the density wave
phase persist. For instance, the bosonic Green function reads:

〈bj,σ b
†
k,σ 〉 = 〈

e
i

θc (ja)√
2 e

−i θc (ka)√
2

〉〈
e
iσ

θ∗
s (ja)√

2 e
−iσ

θ∗
s (ka)√

2
〉

∼
(

1

|j − k|
) 1

4Kc

eiσq(λ)(j−k)e−|j−k|/ξ , (25)

where q = π〈
s〉/(a
√

2) and consequently the momentum
distribution

nσ (k) =
∑

j

〈b†j,σ b0,σ 〉e−ikj , (26)

instead of showing power-law divergences [37] at momentum
±q as in the vortex state, presents Lorentzian-shaped maximas.
In the bosonization picture, the disorder point can be under-
stood as the superposition of the incommensuration induced by
λ
s and the gap opened by cos

√
8φs . As λ further increases,

the dimension K∗
s (λ) recovers the value Ks . In the case of

Ks > 1, there is a second critical point, λ = λBKT where
K∗

s (λBKT ) = 1 and the cos
√

8φs operator becomes marginal.
At that point, a Berezinskii-Kosterlitz-Thouless [59,60] takes
place [54], from the density wave phase to the gapless vortex
state [13]. This allows us to interpret the density wave state
with incommensuration as a melted vortex state. By contrast, if
Ks < 1, the ground state remains in a gapped density wave for
all values of λ > λc. Thus from simple low-energy description,
we can derive the phases listed in Table I at increasing λ.

III. ISING TRANSITION AND DISORDER POINT

As discussed above in Sec. II A the application of the flux
gives rise to an Ising transition point followed by a disorder

point both of which can be described using a Majorana fermion
representation.

A. Majorana Fermions representation and quantum Ising
transition

Let us now consider a value of the flux close to the
commensurate-incommensurate transition, when Ks = 1/2,
fermionization [52,53] leads to a a detailed picture of the
transition between the Meissner state and the density wave
states. The fermionized Hamiltonian reads [51]:

H = −i
us

2

∫
dx

2∑
j=1

(ζR,j ∂xζR,j − ζL,j ∂xζL,j )

− i
∑
j=1,2

mj

∫
dxζR,j ζL,j

− ih

∫
dx(ζR,1ζR,2 + ζL,1ζL,2) +

∫
dx

h2

2πus

, (27)

where mj = m + (−)j−1� with

h = −λusKs

a
, (28)

m = 2π�A2
0a, (29)

� = π

2
U⊥(B1a)2, (30)

and {ζν,j (x),ζν ′,j ′ (x ′)} = δnu,ν ′δj,j ′δ(x − x ′) are Majorana
fermion field operators.

Hamiltonians of the form (27) have previously been studied
in the context of spin-1 chains in magnetic field [81–83] or
spin-1/2 ladders [84,85] with anisotropic interactions [86].
The eigenvalues of (27) are:

E±(k)2 = (usk)2 + m2 + h2 + �2

± 2
√

h2(usk)2 + h2m2 + �2m2. (31)

For m = √
h2 + �2, E−(k) = u�

m
|k| + O(k2), and a single

Majorana fermion mode becomes massless at the transition
[52] between the Meissner and the density wave state as
expected at an Ising [87] transition. As a consequence, at
the transition, the Von Neumann entanglement entropy SvN =
1
3 (cc + cIsing) ln L = 1

2 (1 + 1/2) ln L, while away from the
transition it is SvN = 1

3cc ln L = 1
3 ln L since the total density
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modes φc are always gapless. A more detailed discussion
of finite size scaling of entanglement entropies is found in
Ref. [88].

B. Ising order and disorder parameters

At the point Ks = 1/2, the bosonization operators
cos θs/

√
2, sin θs/

√
2, cos

√
2φs , and sin

√
2φs can be ex-

pressed in terms of the Ising order and disorder operators
associated with the Majorana fermions operators of Eq. (27)
as [89–92]:

cos
θs√

2
= μ1μ2 sin

θs√
2

= σ1σ2, (32)

cos
√

2φs = σ1μ2 sin
√

2φs = μ1σ2. (33)

With our conventions, for mj > 0 we have 〈μj 〉 �= 0,〈σj 〉 = 0
while mj < 0 we have 〈μj 〉 = 0,〈σj 〉 �= 0. In terms of the Ising
order and disorder fields,

bj,σ = e
i θc√

2 (μ1μ2 + isign(σ )σ1σ2) (34)

Sz
j = i(ζR,1ζR,2 − ζL,1ζL,2)

− 2B1 sin(
√

2φc − πρx)μ1σ2, (35)

nj = −
√

2

π
∂xφc − 2B1 sin(

√
2φc − πρx)μ2σ1. (36)

Let’s consider first the case of h = 0,� > 0. For U⊥ =
0 the system is in the Meissner phase with 〈μ1〉〈μ2〉 �= 0.
As U⊥ > 0 increases, m2 = m − � changes sign, so that
〈σ2〉 �= 0 while m1 remains positive and μ1 �= 0. As a result,
〈sin

√
2φs〉 �= 0, and we recover the zigzag density wave phase

[50]. With U⊥ < 0,m2 remains positive, while m1 is changing
sign. As a result, for large |U⊥|, 〈σ1〉 �= 0 giving a nonzero
〈cos

√
2φs〉 and a rung density wave sets in.

Instead as a function of h, we stress that in case of fixed
U⊥,� and variable h, a phase transition is possible only if
m2 − �2 > 0, i.e., only when for h = 0 we have 〈μ1〉〈μ2〉 �=
0. Then, for h >

√
m2 − �2, we will have 〈μ1〉〈σ2〉 �= 0 (for

U⊥ > 0) or 〈μ2〉〈σ1〉 �= 0 (for U⊥ < 0). Therefore, as in the
case of the transition as a function of U⊥, one of the pairs of
dual Ising variable is becoming critical at the transition while
the other remains spectator.

C. Disorder point

The correlators of the Majorana fermion operators
〈ζν,j (x)ζν ′,j ′ (x ′)〉 can be obtained from just two integrals [51]:

I1(x) =
∫

dk

2π

eikx

E+(k)E−(k)(E+(k) + E−(k))
, (37)

I2(x) =
∫

dk

2π

eikx

(E+(k) + E−(k))
(38)

by taking the appropriate number of derivatives with re-
spect to x. To estimate the asymptotic behavior of the
Green’s functions, one can apply a contour integral method
[93] as detailed in Appendix B. The long distance behav-
ior is determined by the branch cut singularities of the

denominators in the upper half plane. For I2, the cut is
obtained for uk = ±i

√
m2(1 + �2/h2) cosh φ, so I2(x) =

O(e−|x|
√

m2(1+�2/h2)/u). As a result, the long distance behavior
is dominated by I1(x). For h < m, its branch cut extends
along the imaginary axis from i|� − √

m2 − h2|/u < k <

i(� + √
m2 − h2), giving I1(x) ∼ e− |�−

√
m2−h2 ||x|
u . This recovers

the correlation length diverging as ∼|m − √
h2 + �2|−1 near

the Ising transition.
For h > m, the denominator in I1 has two branch cuts that

terminate into two branch points. The long distance behavior
of Ī1 is determined by these two branch points as:

Ī1(x) ∼ e− �|x|
u

[
ei

√
h2−m2 |x|

u ϕ1(x) + e−i

√
h2−m2 |x|

u ϕ1(x)∗
]
, (39)

with |ϕ1(x)| = O(x−1/2), so that oscillations of wave vector√
h2 − m2/u appear in the real space Majorana fermion

correlators for h > m. The point h = m is called a disorder
point [57,58].

If we calculate equal time correlation functions of the
conversion current using Wick’s theorem, the result depends on
products of two Green’s functions. The conversion current thus
shows exponentially damped oscillations with wave vector
2
√

h2 − m2/us and correlation length us/(2�).
Moreover, the correlation functions of the Ising order

and disorder fields are expressed in terms of Pfaffians of
antisymmetric matrices whose elements are expressed in terms
of the Majorana fermion Green’s functions [87]. The presence
of exponentially damped oscillations in the Majorana fermions
Green’s function thus also affects correlation functions of Ising
order and disorder operators [82]. More precisely, when the
large flux ground state is the CDW, for long distances:

〈σ1(x)μ2(x)σ1(0)μ2(0)〉 ∼ e− 2�|x|
u

r
, (40)

〈μ1(x)σ2(x)μ1(0)σ2(0)〉 ∼ (〈μ1σ2〉)2 �= 0, (41)

〈μ1(x)μ2(x)μ1(0)μ2(0)〉

∼ e− �|x|
u√
r

cos

(√
h2 − m2x

u

)
, (42)

and when the ground state is the zigzag density wave the long
distance correlations of σ2μ1 and σ1μ2 are exchanged.

D. Effect of finite temperature

From the eigenenergies (31), we find the free energy per
unit length as:

f = F

L
= h2

2πus

− kBT
∑
r=±

∫ �

0

dk

π
ln

[
2 cosh

(
Er (k)

2kBT

)]
.

(43)

The spin current is Js = − usKs

a
∂hf with:

∂f

∂h
= h

πus

−
∑
r=±

∫ �

0

dk

2π
tanh

(
Er (k)

2kBT

)
∂Er (k)

∂h
. (44)
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J// (0)J// (T) −
O(e−|h−hc|/(k_BT))~

J// (0)J// (T) −
O(e −|h−hc|/(k_BT))

~
~ O(kBT)

kBT

hhc

FIG. 1. Crossover diagram for the current. Below the dashed
line, the low temperature region with h < hc is the “renormalized
classical” regime, while the low temperature region with h > hc is
the disordered regime. In both of these regions, the finite temperature
correction to the zero temperature current is exponentially small.
Above the dashed line, in the quantum critical region, thermal
corrections are O(kBT ).

The integral (44) is convergent in the limit � → +∞. We
can split (44) into a ground state contribution and a thermal
contribution:

∂f

∂h
= ∂eGS

∂h
+

∑
r=±

∫ �

0

dk

π

2

e
Er (k)
kB T + 1

∂Er (k)

∂h
, (45)

and we see that away from the critical point, the latter
contribution is O(e−E−(0)/(kBT )) when E−(0) � kBT . For
E−(0) � kBT the thermal contribution becomes O(kBT ). A
crossover diagram [94,95] is represented in Fig. 1. The region
where the corrections are linear in temperature is the quantum
critical region.

At fixed temperature, varying the applied flux, two regimes
are possible. For kBT � min(�,m), only a narrow region
of flux around the critical flux is inside the quantum critical
region, and the current versus flux curve is barely modified. For
kBT � min(�,m), the current versus flux curve is showing a
broadened maximum that shifts progressively to higher flux.
This behavior is shown in Fig. 2.

If we turn to the current susceptibility, which has a loga-
rithmic divergence at the critical flux in the ground state, its
positive temperature expression is:

∂2f

∂2h
= 1

πu
−

∑
r=±

∫ +∞

0

dk

2π

[
∂2Er (k)

∂h2
tanh

(
Er (k)

2kBT

)

+
(

∂Er (k)

∂h

)2 1

2kBT cosh2
(

Er (k)
2kBT

)
]
. (46)

Exactly at the critical point h = √
m2 − �2, we find that:

∂2E−(k)

∂h2
= h2

2m�u|k| + O(|k|), (47)

so that ∂J
∂h

∼ h2

4πm�u
ln(1/T ). In the general case, the diver-

gence of ∂hJ is controlled by the integral:∫ �

0

dk

E−(k)
tanh

(
E−(k)

2kBT

)
. (48)

If we take T = 0, the integral will have a logarithmic diver-
gence in the limit of h → √

m2 − �2, indicating the Ising
transition. However, for any finite T , the hyperbolic tangent
will cutoff the divergence for E−(k) � kBT , and give instead

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2

J s

h

T=0
T=10-2 m
T=10-1 m
T=0.5 m

FIG. 2. The current versus flux curves for � = 0.2m at varying
temperature. For temperatures small (T = 0.01m) compared with
�,m the curve is indistinguishable from the zero temperature curve.
As temperature becomes comparable with � the maximum of the
current becomes broader and shifts to higher flux. For temperature
comparable with m, the maximum becomes very broad.

a maximum scaling as ∼ln(1/T ). Therefore, one expects that
∂hJ ∼ − ln[(m − √

h2 + �2)2 + (kBT )2]. Thus, for very low
temperature, the slope of the curve J versus h presents a
maximum at h = √

m2 − �2 indicating the presence of an
inflection point instead of the vertical tangent obtained at
T = 0. If we turn to correlation functions, since our system
is one dimensional, at any nonzero temperature its correlation
functions always decay exponentially [96]. However, in the
quantum Ising chain, the correlation length of operators that
are long range ordered at zero temperature has been found
[97,98] to behave as ∼us(T M)−1/2eM/T where M is the
gap at zero temperature. By contrast, operators with short-
range ordered correlations in the ground state still have a
correlation length ∼us/M . The difference between the two
classes of operators thus remains distinguishable until T ∼
M . Therefore, in the “renormalized classical” region, the
zero temperature power law peaks in nσ (k → 0) turns into a
narrow Lorentzian maximum, while the Lorentzian maximas
in Sc/s(k) and C(k) remain broad. The distinction between
CDW and Meissner phase is lost only at a temperature
kBT ∼ E−(0).

IV. SECOND INCOMMENSURATION WITH
REPULSIVE INTERACTION

In previous investigations [37,38] a second incommensura-
tion (2IC) was obtained when the flux λ = πn for a two-leg
ladder of hard core bosons. The 2IC can be associated to the
interchain hopping and manifests in the periodic oscillations
of the correlation functions at wave vectors formed by linear
combinations of λ and �. A very simple picture of the second
incommensuration can be obtained in the limit U � t where
one can use a Jordan-Wigner representation for the bosons.
Using a gauge transformation, the Hamiltonian (1) can be
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rewritten:

H = −t
∑
j,σ

(b†j+1,σ bj,σ + b
†
j,σ bj+1,σ ) + U

∑
j

nj↑nj↓

+ �

2

∑
j

(eiλj b
†
j,↑bj,↓ + e−iλj b

†
j,↓bj,↑). (49)

In terms of the Jordan-Wigner fermions given in Appendix
(A4) the interchain hopping has, in general, a complicated
nonlocal expression:

b
†
j,↑bj,↓ = c

†
j,↑ηj↑ηj↓c

†
j,↓eiπ

∑
k<j (nk↑+nk↓). (50)

However, at half filling, the charge is gapped so that one
can approximate,

eiπ
∑

k<j (nk↑+nk↓) � (−)j , (51)

and the remaining gapless spin mode described by an effective
spin chain model:

H = 4t2

U

∑
n

�Sn · �Sn+1. (52)

The anti-hermitian operator ηj↑ηj↓ commutes with the Hamil-
tonian and can be replaced by one of its eigenvalues ±i. Then,
the interchain hopping reduces to:

�

2

∑
j

(ei(λ−π)j ic
†
j↑cj↓ + H.c.), (53)

and, having in mind the Jordan-Wigner transformation (A4), it
reduces to �

∑
j S

y

j when λ = π . Therefore, it acts on the spin
chain (52) as a uniform magnetic field, and induces a magne-
tization along the y axis. Such magnetization also gives rise to
incommensuration [71] in the correlation functions of the spin
components x and z. This treatment represents the simplest
way to understand the origin of a second incommensuration in
the correlation functions. However, in the case away from half
filling, the second incommensuration could not be deduced
as straightforwardly [38] and one had to resort to a modified
mean-field theory.

Here, we want to present another approach, using a canoni-
cal transformation that avoids some of the shortcomings of the
mean-field theory. If we bosonize the Jordan-Wigner fermionic
version of the Hamiltonian (49) we obtain:

H =
∑
ν=c,s

∫
dx

2π

[
uνKν(π
ν)2 + uν

Kν

(∂xφν)2

]

+ �

2πa

∫
dx

[
ei

√
2φc (e−i

√
2(θs+φs ) + e−i

√
2(θs−φs )) + H.c.

]
− 2g1⊥

(2πa)2

∫
dx cos

√
8φs. (54)

The Hamiltonian (54) contains relevant perturbations of con-
formal spin ±1 that break Lorentz invariance and can in
particular shift the minimum of the dispersion [99] of the
low energy excitations away from k = 0. In such a case,
incommensurate modulation of the correlation functions can
be observed [100–103]. On the basis of a modified mean-field
theory, we have argued [38] previously that indeed the rung
current correlator would develop a incommensuration in its

correlation functions. Here, we will follow a different approach
using a canonical transformation. Indeed, in the limit Kc →
0, the field φc becomes classical, and the incommensurate
character of the correlations can be readily obtained. If we
introduce the rescaling φc = √

Kcφ̂c, θcθ̂c/
√

Kc, and use the
unitary transformation (55)

U = exp

[
−i

∫
dx

π

√
Kcφ̂c(x)∂xφs

]
, (55)

we will have:

U †HU

=
∫

dx

2π

[
uc(π
̂c)2 + usKs(π
s)

2

+ (usKsKc + uc)(∂xφ̂c)2 +
(

ucKc + us

Ks

)
(∂xφs)

2

]

+
√

Kc

∫
dx(usKs
s∂xφ̂c − uc
̂c∂xφs)

+ �

2πa

∫
dx cos

√
2θs cos

√
2φs

− 2g1⊥
(2πa)2

∫
dx cos

√
8φs. (56)

The spin-charge interaction in the second line of the
Hamiltonian is proportional to

√
Kc � 1 and is an exactly

marginal perturbation in the renormalization group sense. In
a first approximation, we can neglect it. We then obtain the
Hamiltonian of an XXZ chain in a uniform transverse field
[104,105]. Using a rotation (see Appendix C) one can find
the ground state of that Hamiltonian [104,105] and obtain its
correlation functions. In the gapless phase, one finds:

〈ρ(j )ρ(j ′)〉 ∼ 〈σ z(j )σ z(j ′)〉

∼ (−1)j−j ′

|j − j ′| + 1

2π2(j − j ′)2

× cos

(
hs(j − j ′)

us

± λ(j − j ′)
)

(57)

〈j⊥(j )j⊥(j ′)〉 ∼ (−1)j−j ′

|j − j ′| + 1

2π2(j − j ′)2

× cos

(
hs(j − j ′)

us

± λ(j − j ′)
)

, (58)

with hs = O(�). The correlation functions will therefore
present periodic oscillations of wave vector formed of lin-
ear combinations of λ and hs/us with integer coefficients,
i.e., besides the incommensuration resulting from the flux, a
second incommensuration resulting from interchain hopping
is obtained. At large � a gapped phase can form in which
either the spin-spin or the rung current correlation will show a
quasi-long-range order. In such a case, the oscillations associ-
ated with the second incommensuration become exponentially
damped but give rise to Lorentzian-like peaks in the structure
factors. When � is low, a charge density wave can be stabilized.
Such a situation is possible in the case of attractive interaction,
and making attraction between opposite spins stronger is detri-
mental to the observation of the second incommensuration.
This explains why, in Ref. [51], we were not observing a
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competition of Ising and second incommensuration in the
attractive case. At odds, in the repulsive case, the second
incommensuration is very robust. Let us finally note that if
we consider the effect of the marginal operator that we have
neglected, its main effect would be to modify the scaling
dimensions of other operators. However, its contribution to the
Hamiltonian is suppressed by the oscillations induced by the
second incommensuration. It may thus affect the location of the
phase boundaries but not the presence of an incommensuration
in the correlation functions.

V. THE HARD-CORE LIMIT

In this section we report numerical results on the effect
of the interaction between opposite spins when the repulsion
between bosons of the same spin is infinite (hard-core case).
Here we focus on the repulsive case, since results obtained
in the attractive case have been discussed in Ref. [51], where
we found that instead of having a single flux-driven Meissner
to Vortex transition, the commensurate Meissner phase and
the incommensurate Vortex phase leave space to a Meissner
charge-density wave and to a melted vortex phase with short
range order. The transition from the Meissner to the charge
density wave phase was in the Ising universality class, as pre-
dicted by fermionization. With a repulsive interaction we find
that the observation of the Ising transition becomes difficult
even though signatures of a vortex melting remain visible.

We show results from DMRG simulations for the filling
ρ = 0.5 per rung. We fix interchain hopping �/t and con-
sider different values of the applied flux λ with varying the
interaction strength U⊥. Simulations are performed in periodic
boundary conditions (PBC) for L = 32 and up to L = 64 in
some selected cases, keeping up to M = 841 states during
the renormalization procedure. The truncation error, that is
the weight of the discarded states, is at most of order 10−5,
while the error on the ground-state energy is of order 10−4 at
most [106,107].

At variance with the attractive case, for filling different from
unity, in the absence of an applied field we do not expect the
transition from the superfluid Meissner phase to the density
wave phase [63] since repulsion only gives rise to a marginally
irrelevant perturbation. Thus, the phase diagram in the presence
of flux is expected to be qualitatively different from the one
with attraction.

In Fig. 3 we show the response functions, Sc(k) for the
attractive case and Ss(k) for the repulsive case, as they evolve
upon increasing the strength of interchain interaction, when
λ = 0. As already discussed in Sec. II A, in the hard-core
case, attractive interchain interaction is expected to give rise
to charge density wave, while in the repulsive case there is not
a spin density wave.

In the left panel of Fig. 3, peaks in Sc(k) (U⊥/t < 0) develop
at k = π/2 and k = 3π/2 as attraction increases and the system
enters the in-phase density wave phase. Meanwhile in the right
panel of Fig. 3, Ss(k) (U⊥/t > 0) never develops peaks and in
fact becomes almost flat as the bosons become more localized,
as repulsion is increased. Hence, as expected from marginal
irrelevance of interchain repulsion, the spin density wave phase
is unfavored.

FIG. 3. Left panel: Sc(k) for the attractive case. Right panel:
Ss(k) for the repulsive case. Interaction strength is |U⊥|/t =
±1.0,1.5,2.0,3.0, and 6.0 from bottom to top curves. Solid black
curves indicate a Meissner state, while red solid curves indicate a
CDW where the peaks at k = 2kF develop. Data from L = 64 DMRG
simulations in PBC at λ = 0 for ρ = 0.5, at �/t = 0.5.

In order to detect the density wave phases we choose a
value of �/t sufficiently large and an applied flux close to the
value at which the commensurate-incommensurate transition
between the Meissner and the Vortex phases occurs in the
absence of interchain interaction. Let us note that the Luttinger
parameters Kc and Ks have a different dependence on the
interchain interaction. In the attractive case Kc is enhanced
and Ks is reduced, thus the region of stability of the Meissner
phase is reduced and the system is more prone to reach the
in-phase density wave and vortex regime. On the contrary, in
the repulsive case Kc is reduced and Ks is increased and, as a
consequence, the Meissner phase becomes more stable at the
expense of the Vortex and density wave ones.

We consider the following case: �/t = 0.125 at different
applied fluxes. At λ � λc(U⊥ = 0), i.e., just before the C-IC
transition occurs, the system never develops a density wave.
In Fig. 4 we show the behavior of the spin and the charge
response functions Ss(k) and Sc(k), respectively, for small and
large interaction strength. On increasing the strength the spin
static structure factor develops shoulders at k = 2kF = ±π/2
signaling the incipient transition towards a density wave phase,
while the static structure factor for low momentum shows the
expected linear behavior Sc(k) � 2Kc

π
|k| for gapless charge

 0

 0.25

 0.5

 0  0.5  1  1.5  2

2 
S

s (k
),

S
c (k

)/
2

k(π)

FIG. 4. Sc(k) and Ss(k) for the repulsive case, respectively, solid
and dotted lines, for U⊥/t = 0.5 and 5.5, red and black curves,
respectively. Data from L = 64 DMRG simulations in PBC at λ =
0.0625π , for �/t = 0.125 and ρ = 0.5.
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FIG. 5. Sc(k) and Ss(k) are, respectively, shown as dark-green and
red solid lines in all panels. Blue dotted lines are for spin resolved
momentum distribution nσ (k) whose argument has been shifted
shifted of π and black dashed lines are for rung-rung correlation
function C(k). Panels (a), (b), (c), and (d) are, respectively, for
U⊥ = −3,−1,1, and 3. Data from L = 64 DMRG simulations in PBC
at λ = π/8, for �/t = 0.5 and ρ = 0.5.

excitations. Kc smoothly decreases as a function of U⊥, going
from one, as for a noninteracting hard-core Bose system,
towards 1/2 as shown from the slope of the low momentum
linear behavior of Sc(k) (see Fig. 4).

The asymmetry between the attractive and the repulsive
case persists in the presence of an applied flux, as shown in
Fig. 5, where we follow the response functions change when
we increase the interaction strength at fixed λ and �/t = 0.5.
At small |U⊥|, panels (c) and (b), we start from the Meissner
phase where the momentum distribution has a single peak at
k = 0, but for larger interaction strength, while in the attractive
case we are in a melted Vortex phase, panel (a), in the repulsive
case the system is still in the Meissner phase and Ss(k) shows
only shoulders at k = 2kF [panel (d)].

In the following we investigate the system for fixed �/t =
0.125 and at a fixed applied flux for which the system is in the
Vortex state in the absence of interaction between the chains
(U⊥ = 0).

In the absence of the interaction the spin response function
Ss(k) displays the expected linear behavior at small momentum
and a discontinuity in the derivative at k = 2kF [38]. As
we increase the interaction strength (panel A in Fig. 6) the
spin structure factor develops peaks at k = π/2 and k =
3π/2 and an almost quadratic behavior at small wave vector.
The quadratic behavior indicates that spin excitations remain
gapped, while the presence of peaks at k = π/2,3π/2 is
the signature of a zigzag charge density wave (in the ladder
language) or a spin density wave (in the spin-orbit language).
The momentum distribution as well the rung-rung response
function C(k) develop two separate peaks, that show negligible
size effects, indicating the presence of an incommensuration.

FIG. 6. Upper panel shows the spin current Js as a function of
strength of interchain interaction; solid red line is only a guide to
the eye. Panels below show 8Ss(k) (red solid line), 4C(k) (black
dashed line), and n(k) (blue dotted line) where the argument of this
last quantity has been shifted of π . Left, center, and right panel shows
these quantities for the cases indicated by the points A, B, and C in the
upper panel, respectively, corresponding to cases where the system is
in the melted Vortex phase, in the CDW-Meissner phase, and in the
Meissner phase. Data shown are from DMRG simulations in PBC for
L = 32.

Thus, we can identify the phase to the so-called melted Vortex
phase [51]. For a large value of interaction, panel C of Fig. 6,
the system is in strongly correlated Meissner phase, indeed
momentum distribution shows only one peak at k = 0 whose
height scales with size as n(k) = L1−1/(4Kc)f (kL) where
f (kL) can be expressed as a ratio of Gamma functions. At the
same time Ss(k) develops two peaks, whose shape is well fitted
by a Lorentzian form, at k = π/2 and k = 3π/2, signaling the
incipient transition towards the CDW-Meissner phase.

In panel B we have an intermediate situation. The signature
of the zigzag DW can be detected from the peaks in the spin
response function. The absence of a short-range incommen-
suration is visible from the position at k = 0 of the peak in
n(k) and from rung-rung correlation function, which show
negligible size effects. We conjecture that this corresponds to
the so-called charge-density Meissner phase.

In the upper panel of Fig. 6 we show the spin current Js as
a function of the strength of interchain interaction when the
system goes from the Vortex state to the Meissner one: There
is no cusp indicating a square root threshold singularity typical
of the C-IC transition, instead the spin current only shows
at most a vertical tangent indicating a possible logarithmic
divergence of its derivative. To summarize, under application
of interleg repulsion, the Vortex phase becomes first a melted
vortex phase via a BKT transition, then past the disorder point
a DW-Meissner is formed, and finally the Meissner state is
stabilized at large repulsion.

As discussed in the previous section, in the presence
of the so-called second incommensuration [37,38], the pic-
ture becomes more complicated. Indeed, in such a case,
nearby λ � πn there is a new incommensurate wave vector
which gives, in the various structure factors, extra peaks
whose magnitude of which is controlled by �. In order to
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FIG. 7. Upper panel shows the spin current Js as a function of the applied flux; red line is only a guide to the eye. Panels below show Ss(k)
(red solid line), C(k) (black line), nσ (k) (blue line), where the argument of this last quantity has been shifted of π . Left, center, and right panels
show these quantities for the cases indicated by the points A, B, and C in the upper panel, respectively, corresponding to cases where the system
is in the Meissner phase, in the melted-Vortex phase and in the Vortex phase. Data shown are from DMRG simulations in PBC for L = 64.

illustrate that situation we have made simulations for a larger
interchain hopping, namely �/t = 0.5, so that we have the
C-IC transition nearby λ = nπ in the absence of interchain
interaction and therefore near the occurrence of the second
incommensuration.

In Fig. 7 the situation at fixed U⊥/t = 1.5 and �/t = 0.5
is shown. In the upper panel we follow the spin current as a
function of the applied field. It shows the typical behavior of
the Meissner phase when it increases as a function of λ, then
it rapidly decreases when entering the Vortex phase which
is however short-ranged ordered and finally for λ � 0.75π

enters the quasi-long-range ordered Vortex phase, as can also
be seen from the typical finite size induced oscillations in
this quantity [108]. The Meissner phase is shown in panel A,
while the melted-Vortex phase is shown in panel B, where
the spin response function has the expected peaks at k = π/2
and 3π/2, yet it has the low momentum behavior observed
in the presence of a second incommensuration [38]. In this
case, in the momentum distribution it is possible to see besides
the primary peaks also the secondary peaks related to the
second incommensuration. These peaks can be seen also in the
rung-rung correlation function C(k). However, both of these
functions do not show appreciable size effects attesting the
short range of the incommensurate order. In panel C we recover
the quasi-long-range ordered Vortex phase.

As a last comment we want to stress the fact that in the
rung-rung current correlation function in the Meissner phase,
see panel C of Fig. 6 and panel A of Fig. 7, shows, respectively,
a Lorentzian-like peak and a cusp centered at k = 4kF = π as
the result of a higher order term in the Haldane expansion

when we derive the rung current. This cusp is present since the
exponent Kc is decreasing with repulsion, thus enhancing the
contribution at π compared with the attractive case.

VI. CONCLUSIONS

To conclude, we have analyzed the phase diagram of a
boson ladder in the presence of an artificial gauge field, when a
repulsive interchain interaction is switched on. We have shown,
using bosonization, fermionization, and DMRG approach,
that the commensurate-incommensurate transition between
the Meissner phase and the QLRO vortex phase is replaced
by an Ising-like transition towards a commensurate zigzag
density wave phase. The fermionization approach has allowed
us to predict the existence of a disorder point after which the
bosonic Green’s functions and the rung current correlation
function develop exponentially damped oscillations in real
space while zigzag density wave phase persists. This phase
is recognized as a melted vortex phase. Differently from the
attractive interaction, a second incommensuration, i.e., an
extra periodic oscillation of the correlation functions at wave
vectors formed by linear combinations of the flux and the
interchain interaction, dominates even away from half filling.
As numerically shown, the hard core limit in the chains favors
the zigzag density wave phase. Our predictions on the melting
of vortices in Bose-Einstein condensates and on the second
incommensuration in optical lattices can be traced in current
experiments by the measurement of the static structure factors
and momentum distributions, together with the rung current.
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APPENDIX A: HARD CORE BOSON LIMIT AND
MAPPINGS

That limit corresponds to U↑↑ = U↓↓ → +∞. In that limit,
the bosonic ladder can be mapped to an anisotropic two-leg lad-
der model with Dzyaloshinskii-Moriya [109,110] interaction
and to the Hubbard model.

1. Mapping to a spin ladder

If we consider hard core bosons, we can use the mapping
of hard core bosons to spins 1/2:

b
†
j = S+

j (A1)

bj = S−
j (A2)

b
†
j bj = Sz

j + 1
2 , (A3)

which can be deduced easily from the Holstein-Primakoff
representation [111] of spin-1/2 operators. With such map-
ping, we can rewrite the Hamiltonian (1) as a two-leg ladder
Hamiltonian in which the upper and the lower leg have uniform
Dzyaloshinskii Moriya interaction. In the two leg ladder rep-
resentation, � and U↑↓ become the rung exchange interaction,
t cos(λ/2) and U↑↑,U↑↑ become the leg exchange interaction,
t sin(λ/2) becomes the Dzyaloshinskii-Moriya term.

2. Mapping to spin-1/2 fermions

Another possible mapping in the case of hard core bosons
U↑↑,U↓↓ → ∞ is to the Hubbard model. This mapping is only
valid when � = 0, but it allows us to take advantage of the
integrability of the Hubbard model [112–115]. The mapping
is obtained from the Jordan-Wigner transformation [116] given
in Appendix A 2, that maps hard core bosons operators bjσ to
fermion operators cjσ :

bjσ = ησ cj,σ eiπ
∑

k<j c
†
k,σ ck,σ , (A4)

b
†
jσ bjσ = c

†
j,σ cj,σ , (A5)

where {ησ ,ησ ′ }+ = δσσ ′ . The Hamiltonian (1) with � = 0 is
rewritten as:

H = −t
∑
j,σ

(c†j+1,σ e−iλσ cj,σ + H.c.) + U
∑

j

nj,↑nj,↓.

(A6)

The gauge transformation [117] cj,σ = e−iλσj aj,σ reduces
the Hamiltonian (A6) to the Hubbard form. The Hubbard
model presents a spin-charge separation. When interactions are
repulsive, and away from half filling, charge and spin modes
are gapless, whereas with attractive interactions charge modes

Re(k)

Im(k)

0

FIG. 8. The integration path in complex k plane for h > m. The
red curves are such that E−(k)2 < 0. The red dots at extremities of
the curve are the points where E−(k) = 0.

are always gapless but spin modes are gapped. In terms of
the original bosons, total density modes are always gapless
away from half filling, but the chain antisymmetric density
fluctuations are gapped with attractive interaction giving rise
to a symmetric density wave phase, gapless with repulsive
interaction.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
GREEN’S FUNCTIONS

To estimate the asymptotic behavior of the Green’s func-
tions, we apply a contour integral method [93] to the integral

Ī1(x) =
∫ ∞

−∞

dk

2π

eik|x|

E−(k)
. (B1)

The function E−(k) has only branch cut singularities
in the upper half plane. The branch cuts arise either
from h2(uk)2 + h2m2 + m2�2 < 0 or (uk)2 + m2 + �2 +
h2 − 2

√
h2(uk)2 + h2m2 + m2�2 < 0. The first branch cut,

obtained for u2k2 < −m2(1 + �2/h2) gives a contribution

decaying as e−m
√

1+�2/h2|x|/u, that can be ignored for |x| �
m/u. The contribution of the cuts of the second type depends
whether h < m or h > m. For h < m, there is a single
branch cut extending along the imaginary axis from i|� −√

m2 − h2|/u < k < i(� + √
m2 − h2). We can rewrite the

integral (B1) as:

Ī1(x) =
∫ �+

√
m2−h2

u

|�−
√

m2−h2 |
u

dk

π

e−k|x|

E−(ik)
, (B2)

showing that I1(x) ∼ e− |�−
√

m2−h2 ||x|
u . This gives a correlation

length diverging as ∼|m − √
h2 + �2|−1 near the Ising tran-

sition.
For h > m, there are two branch cuts given by:√

(uk)2 + m2 + m2�2

h2
= h ± i�

√
1 − m2

h2
cosh α, (B3)

and α real. The integration path in the complex plane is
represented in Fig. 8. The branch cuts terminate at the branch
points k

(±)
d = i �

u
±

√
h2−m2

u
such that E−(k(±)

d )2 = 0. The long
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distance behavior of Ī1 is determined by these two branch
points as:

Ī1(x) ∼ e− �|x|
u

[
ei

√
h2−m2 |x|

u ϕ1(x) + e−i

√
h2−m2 |x|

u ϕ1(x)∗
]
, (B4)

so that oscillations of wave vector
√

h2 − m2/u appear in the
real space correlation functions for h > m. The point h = m

is called a disorder point [57,58]. Disorder points are known
to occur in frustrated quantum Ising chains in transverse field
[118], bilinear-biquadratic spin-1 chains [119,120], frustrated
spin-1/2 ladders [121,122], and spin-1 [123,124] chains. They
can be classified [58] into disorder points of the first kind
(with parameter dependent incommensuration) and disorder
point of the second kind (with parameter independent incom-
mensuration). In our model, the disorder point is of the first
kind.

APPENDIX C: SECOND INCOMMENSURATION AND
CANONICAL TRANSFORMATION

In this section, we give some details on the rotation
[104,105] used to diagonalize the Hamiltonian obtained after
the unitary transformation of Eq. (55). First, we rewrite our
Hamiltonian (56) using non-Abelian bosonization [125]:

Hs = 2πv

3

∫
dx( �JR · �JR + �JL · �JL) + g1‖

∫
dxJ z

RJ z
L

(C1)

+ g1⊥
∫

dx
(
J x

RJ x
L + J

y

RJ
y

L

) + �

∫
dx

(
J

y

R + J
y

L

)
(C2)

with g1‖ �= g1⊥. Using a π
2 rotation around the x axis [37] we

can rewrite:

Hs = 2πv

3

∫
dx( �̃JR · �̃JR + �̃JL · �̃JL)

+ g1‖
∫

dxJ̃
y

RJ̃
y

L + g1⊥
∫

dx(J̃ x
RJ̃ x

L + J̃ z
RJ̃ z

L)

+�

∫
dx(J̃ z

R + J̃ z
L). (C3)

Finally, returning to Abelian bosonization, we obtain [104,105]

Hs =
∫

dx

2π

[
uK(π
̃s)

2 + u

K
(∂xφ̃s)

2
]

− �

π
√

2

∫
dx∂xφ̃s

+2(g1⊥ + g1‖)

(2πa)2

∫
dx cos

√
8φ̃s

+2(g1⊥ − g1‖)

(2πa)2

∫
dx cos

√
8θ̃s . (C4)

As we can see, either we obtain a fixed point with θ̃s long
range ordered or a gapless fixed point. In both cases since

we may eliminate the ∂xφ̃s by a shift of the φ̃s field, one
has 〈φ̃s〉 = hs√

2us

x. When θ̃s is gapless, this gives rise to the
second incommensuration of Ref. [38]. To be more precise, if
we consider the bosonized expression for the observables:

U †ρ(x)U = ρ0 −
√

2

π
∂xφc + cos

√
2(φc − 2πρ0x) cos

√
2φs

(C5)

U †σ z(x)U = −
√

2

π
∂xφs + cos

√
2(φc − 2πρ0x) sin

√
2φs

U †j⊥(x)U = �

πa

[ ∑
r=±1

sin
√

2(θs + rφs) cos
√

2φc

+ cos
√

2(θs + rφs) sin
√

2φc

+ sin
√

2θs cos(
√

2φc + λx)

+ cos
√

2θs sin(
√

2φc + λx)

]
(C6)

and perform here the shift of the field φ̃s → φs − hsx√
2us

x and
using a rotation of the SU (2)1 primary fields [37], we reexpress
the observables as:

U †ρ(x)U = ρ0 −
√

2

π
∂xφc

+ cos
√

2(φc − 2πρ0x) cos

(√
2φ̃s + hs

us

x

)
(C7)

U †σ z(x)U = − 1

πa

∑
r,r ′=±

eir
√

2(θ̃s+r ′φ̃s )+irr ′ hs x
us

− cos
√

2(φc − 2πρ0x) cos
√

2θ̃s (C8)

U †j⊥(x)U = �

πa

[ ∑
r=±1

sin
√

2

(
θ̃s + rφ̃s + hs

us

x

)
cos

√
2φc

− 1

π
√

2
∂xφ̃s sin

√
2φc

+ sin
√

2θ̃s cos(
√

2φc + λx)

+ sin

(√
2φ̃s + hs

us

x

)
sin(

√
2φc + λx)

]
. (C9)

In the gapless case, taking the expectation value gives the
second incommensuration.
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