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We study the superconducting state of multiorbital spin-orbit coupled systems in the presence of an orbitally
driven inversion asymmetry assuming that the interorbital attraction is the dominant pairing channel. Although
the inversion symmetry is absent, we show that superconducting states that avoid mixing of spin-triplet and
spin-singlet configurations are allowed, and remarkably, spin-triplet states that are topologically nontrivial can
be stabilized in a large portion of the phase diagram. The orbital-dependent spin-triplet pairing generally leads
to topological superconductivity with point nodes that are protected by a nonvanishing winding number. We
demonstrate that the disclosed topological phase can exhibit Lifshitz-type transitions upon different driving
mechanisms and interactions, e.g., by tuning the strength of the atomic spin-orbit and inversion asymmetry
couplings or by varying the doping and the amplitude of order parameter. Such distinctive signatures of the nodal
phase manifest through an extraordinary reconstruction of the low-energy excitation spectra both in the bulk and
at the edge of the superconductor.

DOI: 10.1103/PhysRevB.97.174522

I. INTRODUCTION

Spin-triplet pairing is at the core of intense investigation
especially because of its foundational aspect in unconventional
superconductivity [1–4] and owing to its tight connection with
the occurrence of topological phases with zero-energy surface
Andreev bound states [5–10] marked by Majorana edge modes
[11–19]. Some of the fundamental essences of topological
spin-triplet superconductivity are basically captured by the
Kitaev model [20] and its generalized versions where non-
Abelian states of matter and their employment for topological
quantum computation can be demonstrated [20–24]. Another
remarkable element of odd-parity superconductivity is given
by the potential of having active spin degrees of freedom mak-
ing such states of matter also appealing for superconducting
spintronics applications based on spin control and coherent
spin manipulation of Cooper pairs [25–31]. The interplay of
magnetism and spin-triplet superconductivity can manifest
within different unconventional physical scenarios, such as
the case of the emergent spin-orbital interaction between the
superconducting order parameter and interface magnetization
[32,33], the breakdown of the bulk-boundary correspondence
[34], and the anomalous magnetic [35,36] and spin-charge
current [37] effects occurring in the proximity between chiral
or helical p-wave and spin-singlet superconductors. Achieving
spin-triplet materials platforms, thus, sets the stage for the
development of emergent technologies both in nondissipative
spintronics and in the expanding area of quantum devices.

Although embracing strong promises, spin-triplet super-
conductivity is quite rare in nature and the mechanisms for
electron pairs gluing are not completely settled. The search
for spin-triplet superconductivity has been performed along
different routes. For instance, scientific exploration has been
focused on the regions of the materials phase diagram that

are in proximity to ferromagnetic quantum phase transitions
[38,39], as in the case of heavy fermions superconductivity,
i.e., UGe2, URhGe, and UIr2, or in materials on the verge of a
magnetic instability, e.g., ruthenates [2,40].

Another remarkable route to achieve spin-triplet pairing
relies on the presence of a source of inversion symmetry
breaking, both at the surface/interface and in the bulk, or
alternatively, in connection with noncollinear magnetic or-
dering [41–51]. Paradigmatic examples along these directions
are provided by quasi-one-dimensional heterostructures whose
interplay of inversion and time-reversal symmetry breaking
or noncollinear magnetism have been shown to convert spin-
singlet pairs into spin-triplet ones and in turn to topological
phases [48,52–55]. Similar mechanisms and physical scenarios
are also encountered at the interface between spin-singlet
superconductors and inhomogeneous ferromagnets with even
and odd-in time spin-triplet pairing that are generally generated
[25]. Semimetals have also been indicated as fundamental
building blocks to generate spin-triplet pairing as theoretically
proposed and demonstrated in topological insulators interfaced
with conventional superconductors or by doping Dirac/Weyl
phases [56], e.g., in the case of Cu-doped Bi2Se3 [57–63] in
antiperovskites materials [64], as well as Cd3As2 [65,66].

Generally, there are two fundamental interactions to take
into account in inversion asymmetric microscopic environ-
ments: (i) the Rashba spin-orbit coupling [67] due to inversion
symmetry breaking at the surface or interface in heterostruc-
tures, and (ii) the Dresselhaus coupling arising from the
inversion asymmetry in the bulk of the host material [68].
For the present analysis, it is worth noting that typically in
multiorbital materials, it is the combination of the atomic
spin-orbit interaction with the inversion symmetry-breaking
sources that effectively generates both Rashba and Dresselhaus
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emergent interactions within the electronic manifold close to
the Fermi level. Another general observation is that the lack
of inversion symmetry is expected to lead to a parity mixing
of spin-singlet and spin-triplet configurations [69–71] with an
ensuing series of unexpected features ranging from anomalous
magnetoelectric [72] effects to unconventional surface states
[73], topological phases [74–76], and nontrivial spatial textures
of the spin-triplet pairs [77]. Such symmetry conditions in
intrinsic materials are, however, fundamentally linked to the
momentum dependent structure of the superconducting order
parameter. In contrast, when considering multiorbital systems,
more channels are possible with emergent unconventional
paths for electron pairing that are expected to be strongly tied
to the orbital character of the electron-electron attraction and
of the electronic states close to the Fermi level.

Orbital degrees of freedom are key players in quantum
materials when considering the degeneracy of d bands of
the transition elements not being completely removed by
the crystal distortions or due to the intrinsic spin-orbital
entanglement [78] triggered by the atomic spin-orbit coupling.
In this context, a competition of different and complex types
of order is ubiquitous in realistic materials, such as transition
metal oxides, mainly owing to the frustrated exchange arising
from the active orbital degrees of freedom. Such scenarios
are commonly encountered in materials where the atomic
physics plays a significant role in setting the character of
the electronic structure close to the Fermi level. As the d

orbitals have an anisotropic spatial distribution, the nature of
the electronic states is also strongly dependent on the system’s
dimensionality. Indeed, two-dimensional (2D) confined elec-
tron liquids originating at the interface or surface of materials
generally manifest a rich variety of spin-orbital phenomena
[79]. Along this line, understanding how electron pairing
is settled in quantum systems exhibiting a strong interplay
between orbital degrees of freedom and inversion symmetry
breaking represents a fundamental problem in unconventional
superconductivity, and it can be of great relevance for a large
class of materials.

In this study, we investigate the nature of the supercon-
ducting phase in spin-orbit coupled systems in the absence
of inversion symmetry assuming that the interorbital attrac-
tive channel is dominant and sets the electrons pairing. We
demonstrate that the underlying inversion symmetry break-
ing leads to exotic spin-triplet superconductivity. Isotropic
spin-triplet pairing configurations, without any mixing with
spin-singlet, generally occur among the symmetry allowed
solutions and are shown to be the ground-state in a large
part of the parameters space. We then realize an isotropic
spin-triplet superconductor whose orbital character can make
it topologically nontrivial. Remarkably, the topological phase
exhibits an unconventional nodal structure with unique tunable
features. An exotic fingerprint of the topological phases is
that the number and k position of nodes can be controlled by
doping, orbital polarization, through the competition between
spin-orbit coupling and lattice distortions, and temperature (or
equivalently, the amplitude of the order parameter).

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and present the classification of the
interorbital pairing configurations with respect to the point-
group and time-reversal symmetries. Section III is devoted to

an analysis of the stability of the various orbital entangled su-
perconducting states and the energetics of the isotropic super-
conducting states. Section IV focuses on the electronic spectra
of the energetically most favorable phases and the ensuing
topological configurations both in the bulk and at the boundary.
Finally, in Sec. V, we provide a discussion of the results
and few concluding remarks.

II. MODEL AND SYMMETRY CLASSIFICATION
OF SUPERCONDUCTING PHASES WITH

INTERORBITAL PAIRING

One of the most common crystal structures of transition
metal oxides is the perovskite structure, with transition metal
(TM) elements surrounded by oxygen (O) in an octahedral
environment. For cubic symmetry, owing to the crystal field
potential generated by the oxygen around the TM, the fivefold
orbital degeneracy is removed and d orbitals split into two sec-
tors: t2g , i.e., yz, zx, and xy, and eg , i.e., x2 − y2 and 3z2 − r2.
In the present study, the analysis is focused on two-dimensional
(2D) electronic systems with broken out-of-plane inversion
symmetry and having only the t2g orbitals (Fig. 1) close to

FIG. 1. (a) dyz, dzx , and dxy orbitals with L = 2 orbital angular
momentum. (b) Schematic image of the orbital dependent hopping
amplitudes for εyz, εxy , and the orbital connectivity associated with the
inversion asymmetry term �is . Here, we do not explicitly indicate the
intermediate p orbitals of the oxygen ions surrounding the transition
metal element that enter the effective d − d hopping processes. εzx

is obtained from εyz by rotating π/2 around z axis. �is corresponds
to the odd-in-space hopping amplitude from dxy to dzx along the y

direction. Similarly, the odd-in-space hopping amplitude from dxy to
dyz along the x direction is obtained by π/2 rotation around the z axis.
(c) Sketch of the orbital mixing through the spin-orbit coupling term
in the Hamiltonian. σ denotes the spin state, and σ̄ is the opposite
spin of σ . �t gives the level splitting between dxy orbital and dyz/dzx

orbitals. (d) Schematic illustration of interorbital interaction.
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the Fermi level to set the low-energy excitations. For highly
symmetric TM-O bonds, the three t2g bands are directional
and basically decoupled, e.g., an electron in the dxy orbital can
only hop along the y or x direction through the intermediate px

or py orbitals. Similarly, the dyz and dzx bands are quasi-one-
dimensional when considering a 2D TM-O bonding network.
Furthermore, the atomic spin-orbit interaction (SO) mixes the
t2g orbitals thus competing with the quenching of the orbital
angular momentum due to the crystal potential. Concerning
the inversion asymmetry, we consider microscopic couplings
that arise from the out-of-plane oxygen displacements around
the TM. Indeed, by breaking the reflection symmetry with
respect to the plane placed in between the TM-O bond [80],
a mixing of orbitals that are even and odd under such a
transformation is generated. Such crystal distortions are much
more relevant and pronounced in 2D electron gas forming at the
interface of insulating polar and nonpolar oxide materials or
on their surface and they result in the activation of an effective
hybridization, which is odd in space, of dxy and dyz or dzx

orbitals along the y or x directions, respectively. Although the
polar environment tends to amplify the out-of-plane oxygen
displacements with respect to the position of the TM ion, such
types of distortions can also occur at the interface of nonpolar
oxides and in superlattices [81].

Thus the model Hamiltonian, including the t2g hopping
connectivity, the atomic spin-orbit coupling, and the inversion
symmetry breaking term, reads as

H =
∑

k

Ĉ(k)†H (k)Ĉ(k), (1)

H (k) = H0(k) + HSO(k) + His(k), (2)

where Ĉ†(k) = [c†yz↑k,c
†
zx↑k,c

†
xy↑k,c

†
yz↓k,c

†
zx↓k,c

†
xy↓k] is a vec-

tor whose components are associated with the electron cre-
ation operators for a given spin σ [σ = (↑,↓)], orbital α

[α = (xy,yz,zx)], and momentum k in the Brillouin zone. In
Fig. 1(a), we report a schematic illustration of the local orbital
basis for the t2g states. H0(k), HSO(k), and His(k) indicate
the kinetic term, the spin-orbit interaction, and the inversion
symmetry breaking term, respectively. In the spin-orbital basis,
H0(k) is given by

H0(k) = −μ[l̂0 ⊗ σ̂0] + ε̂k ⊗ σ̂0,

ε̂k =
⎛
⎝εyz 0 0

0 εzx 0
0 0 εxy

⎞
⎠,

εyz = 2t1(1 − cos ky) + 2t3(1 − cos kx), (3)

εzx = 2t1(1 − cos kx) + 2t3(1 − cos ky),

εxy = 4t2 − 2t2 cos kx − 2t2 cos ky + �t,

where l̂0 and σ̂0 are the unit matrices in orbital and spin space,
respectively. Here, μ is the chemical potential, and t1, t2, and t3
are the orbital dependent hopping amplitudes as schematically
shown in Fig. 1(b). �t denotes the crystal field potential owing
to the symmetry lowering from cubic to tetragonal symmetry.
The symmetry reduction yields a level splitting between dxy

orbital and dyz/dzx orbitals. HSO(k) denotes the atomic L · S

spin-orbit coupling,

HSO(k) = λSO[l̂x ⊗ σ̂x + l̂y ⊗ σ̂y + l̂z ⊗ σ̂z], (4)

with σ̂i(i = x,y,z) being the Pauli matrix in spin space. In
order to write down the L · S interaction, it is convenient to
introduce the matrices l̂x , l̂y , and l̂z, which are the projections of
the L = 2 angular momentum operator onto the t2g subspace,
i.e.,

l̂x =
⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠, (5)

l̂y =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (6)

l̂z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (7)

assuming {(dyz,dzx,dxy)} as orbital basis. Finally, as mentioned
above, the breaking of the mirror plane in between the TM-O
bond, due to the oxygen displacements, leads to an inversion
symmetry breaking term His(k) of the type

His(k) = �is[l̂y ⊗ σ̂0 sin kx − l̂x ⊗ σ̂0 sin ky]. (8)

This contribution gives an interorbital process, due to the
broken inversion symmetry, that mixes dxy and dyz or dzx along
x or y spatial directions [Fig. 1(b)]. His resembles a Rashba-
type Hamiltonian that, however, couples the momentum to the
orbital angular momentum rather than the spin. Its origin is due
to distortions or other sources of inversion symmetry breaking
that lead to local asymmetries deforming the orbital lobes and
in turn antisymmetric hopping terms within the orbitals in
the t2g sector. In this respect, it is worth pointing out that it
is the combination of the local spin-orbit coupling and the
antisymmetric inversion symmetry interaction that leads to a
nontrivial momentum dependent spin-orbital splitting. While
the original Rashba effect [67] for the single-band system
describes a linear spin splitting and is typically very small, the
multiband character of the model Hamiltonian yields a more
complex spin-orbit coupled structure with significant splitting
[82]. Indeed, near the � point of the Brillouin zone, one can
have a linear spin splitting with respect to the momentum for
the lowest energy bands, but a cubiclike splitting in momentum
[83,84] for the intermediate ones with enhanced anomalies
when the filling is close to the transition from two to four
Fermi surfaces. The Rashba-like effects due to the combined
atomic spin-orbit coupling and the orbitally driven inversion
symmetry term can be influenced by the application of an
external electric field (e.g., via gating) in a dual way. On one
hand, the gating directly modifies the filling concentration and,
on the other, it can affect the deformation of the orbital lobes
by changing the amplitude of the polar distortion [85,86].

In this paper, we set t1 = t2 ≡ t as a unit of energy
for convenience and clarity of presentation. The analysis is
performed for a representative set of hopping parameters, i.e.,
t3/t = 0.10 and �t/t = −0.50. The primary reason for the
choice of the electronic parameters is that we aim to model
superconductivity in transition-metal-based layered materials
with low electron concentration in the t2g sector at the Fermi
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FIG. 2. (a) Band structure close to the Fermi energy in the normal
state at λSO/t = 0.10 and �is/t = 0.20. (b)–(d) Fermi surfaces at
(b) μ/t = −0.25, (c) 0.0, and (d) 0.35.

level both in the presence of atomic spin-orbit and inversion
symmetry breaking couplings. In this framework, the set of
selected parameters is representative of a general physical
regime where the hierarchy of the energy scales is such
that �t>�is>λSO and �t ∼ t . The choice of this regime is
also motivated by the fact that this relation can be generally
encountered in 3d (or 4d) layered oxides or superlattices
in the presence of tetragonal distortions with flat octahedra
and interface driven inversion symmetry breaking potential.
For instance, in the case of the two-dimensional electron gas
(2DEG) forming at the interface of two band insulators [e.g.,
the n-type 2DEG in LaAlO3/SrTiO3 [87] (LAO/STO)] or the
2DEG at the surface of a band insulator [e.g., in SrTiO3 (STO)],
the energy scales for the electronic parameters, as given by
ab initio [80,83,88] or spectroscopic studies [89], are such
that the bare �t ∼ 50–100 meV, �is ∼ 20 meV, and λSO ∼ 10
meV, while the effective main hopping amplitudes (i.e., t) can
be in the 200–300 meV range. Similar electronic energies can
be also encountered in 4d layered oxides. Slight variations
of these parameters are expected; however, they do not alter
the qualitative aspects of the achieved results. We also point
out that our analysis is not intended for a specific material case
and that variations in the amplitude of the electronic parameters
that keep the indicated hierarchy do not alter the qualitative
outcome and do not lead to significant changes in the results.

The electronic structure of the examined model system
can be accessed by direct diagonalization of the matrix
Hamiltonian. Representative dispersions for λSO/t = 0.10 and
�is/t = 0.20 are shown in Fig. 2(a). We observe six nonde-
generate bands due to the presence of both HSO(k) and His(k).
Once the dispersions are determined, one can immediately
notice that the number of Fermi surfaces and the structure
can be varied by tuning the chemical potential μ. Indeed, for
μ/t = −0.25, 0.0, and 0.35 one can single out all the main

possible cases with two, four, and six Fermi sheets, as given in
Figs. 2(b), 2(c) and 2(d), respectively. For the explored regimes
of low doping, all the Fermi surfaces are made of electronlike
pockets centered around origin of the Brillouin zone (�). The
dispersion of the lowest occupied band has weak anisotropy as
it has a dominant dxy character [Fig. 2(a)]; moreover, moving to
higher electron concentrations, the outer Fermi sheets exhibit
a highly anisotropic profile that becomes more pronounced
when the chemical potential crosses the bands mainly arising
from the dyz and dzx orbitals.

After having considered the normal state properties, we
concentrate on the possible superconducting states that can
be realized, their energetics and their topological behavior.
The analysis is based on the assumption that the interorbital
local attractive interaction is the only relevant pairing channel
that contributes to the formation of Cooper pairs. Then, the
intraorbital pairing coupling is negligible. Such a hypothesis
can be physically applicable in multiorbital systems because
the intraband Coulomb interaction is typically larger than
the interband one. Indeed, in the t2g restricted sector the
Coulomb interaction matrix elements of low-energy lattice
Hamiltonian can be evaluated by employing the Hubbard-
Kanamori parametrization [90] in terms of U , U ′, and JH ,
after symmetrizing the Slater-integrals [91] within the t2g

shell assuming a cubic splitting of the t2g and eg orbitals. U

corresponds to the intraorbital Coulomb repulsion, whereas U ′
(with U ′ = U − 2JH in a cubic symmetry) is the interorbital
interaction which is reduced by Hund exchange, JH . Hence one
has that the interorbital Coulomb repulsion is generally always
smaller than the intraorbital one. Estimates for transition metal
oxide materials in d1, d2, or d3 configurations, being relevant
for the t2g shell and thus for our work, indicate that U ∼ 3.5 eV
and U ′ ∼ 2.5 eV [92]. Thus it is plausible to expect that
the Coulomb repulsion tends to further suppress the electron
pairing that occurs within the same band. In addition, in the
case of having the electron-phonon coupling as a source of
electrons attraction, it is shown that the effective inter and
intraorbital attractive interaction can be of the same magnitude
(see Appendix for more details).

In this framework, we point out that topological supercon-
ductivity is proposed to occur, owing to interorbital pairing, in
Cu-doped Bi2Se3 for an inversion symmetric crystal structure
[60]. Here, although similar interorbital pairing conditions
are considered, we pursue the superconductivity in low-
dimensional configurations, e.g., at the interface of oxides,
with the important constraint of having a broken inversion
symmetry. Concerning the orbital structure of the pairing
interaction, owing to the tetragonal crystalline symmetry,
the coupling between the dxy orbital and dyz/dzx orbital is
equivalent, and thus one can assume that only two independent
channels of attraction are allowed, as shown in Fig. 1(d).
Indeed, Vxy denotes the interaction between the dxy and dyz/dzx

orbitals, while Vz refers to the coupling between the dyz and
dzx orbitals. Then, the pairing interaction is given by

HI = Vxy

∑
i

[nxy,inyz,i + nxy,inzx,i] + Vz

∑
i

nyz,inzx,i , (9)

nα,i = c
†
α↑icα↑i + c

†
α↓icα↓i , (10)

where i denotes the lattice site.
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TABLE I. Irreducible representation of the interorbital isotropic
superconducting states for the tetragonal group C4v . In the columns
we report the sign of the order parameter upon a four-fold rotational
symmetry transformation, C4, and the reflection mirror symmetry
Myz, as well as the explicit spin and orbital structure of the gap
function. In the E representation, + and − of the subscript mean
the doubly degenerate mirror-even (+) and mirror-odd (−) solutions,
respectively.

C4v C4 Myz Orbital Basis function

(dxy,dyz) d (xy,yz)
y

A1 + + (dxy,dzx) d (xy,zx)
x = −d (xy,yz)

y

(dyz,dzx) d (yz,zx)
z

A2 + − (dxy,dyz) d (xy,yz)
x

(dxy,dzx) d (xy,zx)
y = d (xy,yz)

x

B1 − + (dxy,dyz) d (xy,yz)
y

(dxy,dzx) d (xy,zx)
x = d (xy,yz)

y

(dxy,dyz) d (xy,yz)
x

B2 − − (dxy,dzx) d (xy,zx)
y = −d (xy,yz)

x

(dyz,dzx) ψ (yz,zx)

(dxy,dyz) ψ (xy,yz), d (xy,yz)
z

E ±i ± (dxy,dzx) ψ
(xy,zx)
+ = ∓id

(xy,yz)
z+

d
(xy,zx)
z− = ∓iψ

(xy,yz)
−

(dyz,dzx) d (yz,zx)
x , d (yz,zx)

y

Irreducible representation and symmetry classification

In this section, we classify the interorbital superconducting
states according to the point group symmetry. The system
upon examination has a tetragonal symmetry associated with
the point group C4v , marked by fourfold rotational sym-
metry C4 and mirror symmetries Myz and Mzx . Based on
the rotational and reflection symmetry transformations, all
the possible interorbital isotropic pairings can be classified
into five irreducible representations of the C4v point group
as summarized in Table I. For our purposes, only solutions
that do not break the time-reversal symmetry are considered
and are reported in Table I. Then, the superconducting order
parameter associated to bands α and β can be classified as
an isotropic (s-wave) spin-triplet/orbital-singlet d(α,β) vector
and s-wave spin-singlet/orbital-triplet with amplitude ψ (α,β)

or as a mixing of both configurations. With these assumptions,
one can generally describe the isotropic order parameter with
spin-singlet and triplet components as

�̂α,β = iσ̂y[ψ (α,β) + σ̂ · d(α,β)], (11)

with α and β standing for the orbital index, and having for
each channel three possible orbital flavors. Furthermore, owing
to the selected tetragonal crystal symmetry, one can achieve
three different types of interorbital pairings. The spin-singlet
configurations are orbital triplets and can be described by a
symmetric superposition of opposite spin states in different
orbitals. On the other hand, spin-triplet components can be
expressed by means of the following d vectors:

d(xy,yz) = (
d (xy,yz)

x ,d (xy,yz)
y ,d (xy,yz)

z

)
,

d(xy,zx) = (
d (xy,zx)

x ,d (xy,zx)
y ,d (xy,zx)

z

)
,

d(yz,zx) = (
d (yz,zx)

x ,d (yz,zx)
y ,d (yz,zx)

z

)
,

with d(α,β) indicating the spin-triplet configuration built with α

and β orbitals. In general, independently of the orbital mixing,
spin-triplet pairing can be expressed in a matrix form as

�T =
(

�↑↑ �↑↓
�↓↑ �↓↓

)
=

(−dx + idy dz

dz dx + idy

)
, (12)

where the d-vector components are related to the pairing order
parameter with zero spin projection along the corresponding
symmetry axis. The three components dx = 1

2 (−�↑↑ + �↓↓),
dy = 1

2i
(�↑↑ + �↓↓), and dz = �↑↓ are expressed in terms of

the equal spin �↑↑and�↓↓, and the antialigned spin �↑↓ gap
functions. As the components of the d-vector are associated
with the zero spin projection of spin-triplet configuration, if
the d-vector points along a given direction, the parallel spin
configurations lie in the plane perpendicular to the d-vector
orientation. In the presence of time-reversal symmetry, the
superconducting order parameter should satisfy the following
relations:

�
↓↓
α,β = [�↑↑

α,β]∗, (13)

�
↑↓
α,β = −[�↓↑

α,β]∗, (14)

with the appropriate choice of the U(1) gauge. In addition,
the pairing order parameter has fourfold rotational symmetry
and mirror reflection symmetry with respect to the yz and zx

planes as dictated by the point group C4v . Thus it has to be
transformed according to the following relations:

C4�̂Ct
4 = ei nπ

2 �̂, Myz�̂Mt
yz = ±�̂,

where n equals to 0 for A representation, 2 for B repre-
sentation, 1, and 3 for E representation. Such properties are
very important to distinguish the symmetry of the solutions
obtained by the Bogoliubov-de Gennes equation. The energy
gap functions are then explicitly constructed by taking into
account the corresponding irreducible representations. For the
one-dimensional representations, the A1 state is given by

d (xy,zx)
x = −d (xy,yz)

y , �↑↑
xy,yz = �↓↓

xy,yz = id (xy,yz)
y ,

�↑↑
xy,zx = −�↓↓

xy,zx = −d (xy,zx)
x , �↑↓

yz,zx = �↓↑
yz,zx = d (yz,zx)

z ,

while for the A2 representation,

d (xy,zx)
y = d (xy,yz)

x ,

�↑↑
xy,yz = −�↓↓

xy,yz = −d (xy,yz)
x ,

�↑↑
xy,zx = �↓↓

xy,zx = id (xy,zx)
y ,

the B1 representation,

d (xy,zx)
x = d (xy,yz)

y ,

�↑↑
xy,yz = �↓↓

xy,yz = id (xy,yz)
y ,

�↑↑
xy,zx = −�↓↓

xy,zx = −d (xy,zx)
x ,

and the B2 representation,

d (xy,zx)
y = −d (xy,yz)

x ,

�↑↑
xy,yz = −�↓↓

xy,yz = −d (xy,yz)
x ,

�↑↑
xy,zx = �↓↓

xy,zx = id (xy,zx)
y ,

�↑↓
yz,zx = −�↓↑

yz,zx = ψ (yz,zx).
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Finally, for the E representation, there are doubly degenerate
mirror-even (+) and mirror-odd (−) solutions:

ψ
(xy,zx)
+ = ∓id

(xy,yz)
z+ ,

d
(xy,zx)
z− = ∓iψ

(xy,yz)
− ,

�↑↓
xy,yz = α−ψ

(xy,yz)
− + α+d

(xy,yz)
z+ ,

�↓↑
xy,yz = −α−ψ

(xy,yz)
− + α+d

(xy,yz)
z+ ,

�↑↓
xy,zx = α+ψ

(xy,zx)
+ + α−d

(xy,zx)
z− ,

�↓↑
xy,zx = −α+ψ

(xy,zx)
+ + α−d

(xy,zx)
z− ,

�↑↑
yz,zx = −α−d

(yz,zx)
x− + iα+d

(yz,zx)
y+ ,

�↓↓
yz,zx = α−d

(yz,zx)
x− + iα+d

(yz,zx)
y+ ,

where α+ and α− denote arbitrary constants for the linear
superposition. As a consequence of the symmetry constraint
and of the interorbital structure of the order parameter, dif-
ferent types of isotropic spin-triplet and singlet-triplet mixed
configurations can be obtained. Equal spin-triplet and opposite
spin-triplet pairings are mixed in the A1 representation. On the
other hand, in the B2 representation, equal spin-triplet and spin-
singlet pairings are mixed. For the A2 and B1 representations,
only equal spin-triplet pairings are allowed, and all types of
pairings can be realized in the E representation. It is worth
noting that A1, B2, and E representations have pairings between
all the orbitals in the yz-zx and xy-yz/zx channels, while
A2 and B1 can make electron pairings only in the xy-yz/zx

channel, that is, by mixing the dxy and dyz/dzx-orbitals as
shown in Table I. This symmetry constraint is important when
searching for the ground-state configuration.

III. ENERGY GAP EQUATION AND PHASE DIAGRAM

In order to investigate which of the possible symmetry-
allowed solutions is more stable energetically, we solve the
Eliashberg equation within the mean-field approximation by
taking into account the multiorbital effects near the transition
temperature. The linearized Eliashberg equation within the
weak coupling approximation is given by

��στ
α,γ = −kBT

N
Vα,γ

∑
k′,iεm

Fασ,γ τ (k′,iεm),

Vxy,yz = Vxy,zx = Vyz,xy = Vzx,xy ≡ Vxy,

Vyz,zx = Vzx,yz ≡ Vz, (15)

Fασ,γ τ (k′,iεm)

=
∑
β,δ

∑
σ ′,τ ′

�σ ′τ ′
β,δ Gσσ ′

α,β (k′,iεm)Gττ ′
γ,δ(−k′,−iεm), (16)

where � is the eigenvalue of the linearized Eliashberg equa-
tion. Here,σ , τ ,σ ′, and τ ′ denote the spin states andα,β,γ , and
δ stand for the orbital indices. Fασ,γ τ (k′,iεm) is the anomalous
Green’s function. As we assume an isotropic Cooper pairing,
which is k-independent, the summation over momentum and
Matsubara frequency in Eq. (16) gets simplified. Finally, the
problem is reduced to the diagonalization of the 24 × 24
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FIG. 3. Phase diagram as a function of Vz/Vxy and chemical
potential μ at λSO/t = 0.10, �is/t = 0.20, T/t = 5.0 × 10−5, and
Vxy/t = −1.0. The brown solid line is the border between A1 and
B1 states. The black solid line indicates the value of the chemical
potential for which the number of Fermi surfaces changes. The black
dotted lines correspond to the values of the chemical potentials used
in Fig. 2 for the normal state Fermi surfaces.

matrix. We then study the relative stability of the irreducible
representations as listed in Table I. An analysis of the energet-
ically most favorable superconducting states is performed as
a function of Vz/Vxy , assuming that Vxy/t = −1.0 and for a
given temperature T/t = 5.0 × 10−5. When we keep the ratio
Vz/Vxy , the eigenvalue � is proportional to Vxy within the
mean-field approximation. The choice of the representative
coupling Vxy/t = −1.0 is guided by the fact that one aims
to access a physical regime for the superconducting phase
that in principle can be compared to realistic superconducting
materials in the weak coupling limit. For instance, if one
chooses t ∼ 200–300 meV, which is common in oxides, and
considering that the superconducting transition temperature Tc

is obtained when the magnitude of the greatest eigenvalue gets
close to 1, then one would find Tc to be of the order of 100–300
mK, which is reasonable for the 2DEG superconductivity at the
oxide interface.

Figure 3 shows the superconducting phase diagram for
representative amplitudes of the spin-orbit coupling, λSO/t =
0.10, and inversion asymmetry interaction, �is/t = 0.20,
while varying both the chemical potential and the ratio of the
pairing couplings Vz/Vxy . Owing to the inequivalent mixing
of the orbitals in the paired configurations, it is plausible to
expect a significant competition between the various symmetry
allowed states and that such an interplay is sensitive not only
to the pairing orbital anisotropy, but also to the structure and
the number of Fermi surfaces. A direct observation is that for
Vz larger than Vxy , the A1 phase is stabilized with respect
to the B1 phase because it contains a d

(yz,zx)
z channel of a

spin-triplet pairing in the yz-zx sector that is absent in B1

phase. However, such a simple deduction does not directly
explain why the A1 phase wins the competition with other
superconducting phases, e.g., the B2 and E phases, which also
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can gain condensation energy by pairing electrons in the yz-zx
sector. As a different type of d-vector orientation enters into
the A1 and E configurations, yet in the B2 state, the yz-zx
channel has a spin-singlet pairing, one can deduce that the
interplay between the spin of the Copper pairs and that of the
single-electron states close to the Fermi level is relevant to
single out the most favorable superconducting phase.

The boundary between the A1 and B1 phases exhibits a
sudden variation when one tunes the chemical potential across
the value for which the number of Fermi surfaces changes.
Such an abrupt transition is, however, plausible when passing
through a Lifshitz point in the electronic structure of the
normal state because other pairing channels get activated at
the Fermi level. The relation between the modification of the
superconducting state and electronic topological or Lifshitz
transition [93] that the Fermi surface can undergo is a subject
of general interest. Indeed, there are many theoretical studies
and experimental signatures pointing to a subtle interplay of
Lifshitz transitions and superconductivity in cuprates [94,95],
heavy-fermion superconductors [96] and more recently in
iron-based superconductors [97–100]. In those cases, major
changes of the superconducting state seem to occur when going
through a Lifshitz transition because Fermi pockets can appear
or disappear at the Fermi level and in turn lead to different
physical effects.

Here, along this line of investigation, the role of the electron
filling is also quite important and sets the competition between
the energetically most stable phases. Indeed, one can notice
that the A1 (B1) phase is stabilized for higher (lower) Vz/Vxy

and lower (higher) μ. Furthermore, we find that, in the case
of two Fermi surfaces, the A1 state is further stabilized by
decreasing the chemical potential and moving to a regime of
extremely low concentration. On the other hand, a transition
to the B1 phase is achieved by electron doping. In the doping
regime of four bands at the Fermi level, the A1-B1 boundary
evolves approximately as a linear function of Vz/Vxy . This
implies that the A1 configuration tends to be less stable and a
higher ratio Vz/Vxy is needed to achieve such a configuration
at a given chemical potential. Finally, approaching the doping
regime of six Fermi surfaces, the A1-B1 boundary becomes
independent of the amplitude of μ. It is remarkable that the
doping can substantially alter the competition between the A1

and B1 phases, thus manifesting the intricate consequences of
the spin-orbital character of the electronic structure close to
the Fermi level.

To explicitly and quantitatively demonstrate the energy
competition among all the symmetry allowed phases, one
can follow the behavior of the eigenvalues of the linearized
Eliashberg equations as a function of the ratio Vz/Vxy (Fig. 4).
Figures 4(a)–4(c) show the eigenvalues of the Eliashberg
matrix equation for all the irreducible representations as a
function of Vz/Vxy when the number of Fermi surfaces is
(a) two (μ/t = −0.25), (b) four (μ/t = 0.0), and (c) six
(μ/t = 0.35) as indicated by the dotted lines in Fig. 3. With
the increase in Vz, the magnitude of the eigenvalues of the
irreducible representations including the yz-zx channel, i.e.,
A1, B2, and E representations, increases in all the cases with
two, four, and six Fermi surfaces. On the other hand, the
eigenvalues of the A2 and B1 representations are independent
of Vz, as Vz is irrelevant for this pairing channel. When the
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FIG. 4. Evolution of the eigenvalue of the Eliashberg matrix
equation as a function of Vz/Vxy at (a) μ/t = −0.25, (b) 0.0, and (c)
0.35 at λSO/t = 0.10, �is/t = 0.20, T/t = 5.0 × 10−5, and Vxy/t =
−1.0. (a) A1 representation is dominant. [(b) and (c)] B1 is dominant
for small amplitude of the ratio Vz/Vxy .

number of Fermi surfaces is two, the A1 representation is the
most dominant pairing for all Vz. Although the magnitude of
the eigenvalues for the B2 and E representations also increases
with Vz, these solutions never become dominant as compared
with the A1 state. When the number of Fermi surfaces is four
or six, the eigenvalue of the B1 phase is larger than that of the
A1 representation for lower Vz.

Finally, we have investigated the phase diagram by scanning
a larger range of temperatures for few representative cases of
pairing interaction and filling concentration (see Appendix).
The results are not significantly changed except in a region of
extremely high temperature, corresponding to an unphysically
large amplitude of the pairing interaction. There, although
B1 keeps being the most stable state, the largest eigenvalues
indicate a competition between the B1 and B2 rather than the
B1 and A1 configurations.

IV. TOPOLOGICAL PROPERTIES AND ENERGY
EXCITATION SPECTRUM IN THE BULK

AND AT THE EDGE

In the previous section, we confirmed that both the A1 and
B1 pairings can be energetically stabilized in a large region
of the parameter space. Thus it is relevant to further consider
the nature of the electronic structure of these superconducting
phases in order to provide key elements and indications that can
be employed for the detection of the most favorable interorbital
superconductivity. The analysis is based on the solution of the
Bogoliubov-de Gennes (BdG) equation for the evaluation of
the low-energy spectral excitations both in the bulk and at the
edge of the superconductor for both the A1 and B1 phases. The
matrix Hamiltonian in momentum space is given by

HBdG(k) =
(

H (k) �̂

�̂† −H ∗(−k)

)
(17)

with H (k) being the normal state Hamiltonian.
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FIG. 5. (a) Fermi surfaces at μ/t = 0.0 in the normal state.
[(b)–(e)] A1 quasiparticle energy gap along the Fermi surface as
a function of the polar angle θ as shown in (a) for λSO/t = 0.10,
�is/t = 0.20, and |�0|/t = 1.0 × 10−3 corresponding to the Fermi
surfaces in (a).

A. Bulk energy spectrum and topological superconductivity

In order to determine the excitation spectrum, we solve the
BdG equations for both the A1 and B1 configurations. For
convenience, we introduce the gap amplitude |�0|, and we
set the components of the d-vectors to be

d (xy,yz)
y = −d (xy,zx)

x = d (yz,zx)
z = |�0|, (18)

for A1 and

d (xy,yz)
y = d (xy,zx)

x = |�0|, (19)

for B1 state. Here, the parameter |�0|/t = 1.0 × 10−3 is set as
a scale of energy.

We start focusing on the doping regime of four bands
at the Fermi level. In this case, the A1 state has a fully
gapped electronic structure for all the bands at the Fermi
level as demonstrated by the inspection of the in-plane an-
gular dependence of the gap magnitude [Figs. 5(b)–5(e)]. In
particular, we notice that the gap amplitude is not isotropic
and orbital dependent when moving from the outer to the inner
Fermi surface [Figs. 5(b)–5(e)]. The nodal state (Fig. 6), on
the other hand, exhibits a more regular behavior of the gap
amplitude which is basically orbital independent and point
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FIG. 6. (a) Fermi surfaces and position of the nodes at μ/t =
0.0. We indicate the winding numbers defined at each node. (b)–(e)
indicate the quasiparticle energy spectra for the B1 state with λSO/t =
0.10, �is/t = 0.20, and |�0|/t = 1.0 × 10−3 at the corresponding
Fermi surfaces shown in (a).

nodes occurring only along the diagonal of the Brillouin zone
on the various Fermi surfaces.

It is interesting to further investigate the nature of the
nodal B1 phase by determining whether the existence of the
nodes is related to a nonvanishing topological invariant. As
the model Hamiltonian owes particle-hole and time-reversal
symmetry, one can define a chiral operator �̂ as a product
of the particle-hole Ĉ and time-reversal �̂ operators. As the
chiral symmetry operator anticommutes with HBdG(k), by
employing a unitary transformation rotating the basis in the
eigenbasis of �̂, the Hamiltonian can be put in an off-diagonal
form with antidiagonal blocks. Hence the determinant of each
block can be put in a complex polar form and, as long as the
eigenvalues are nonzero, it can be used to obtain a winding
number by evaluating its trajectory in the complex plane. On a
general ground, we point out that the number of singularities
in the phase of the determinant is a topological invariant
[101] because it cannot change without the amplitude going
to zero, thus implying a gap closing and a topological phase
transition. For this symmetry class, then, one can associate and
determine the winding number around each node by follow-
ing, for instance, the approach already applied successfully
in Refs. [102–104].
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The chiral, particle-hole, and time-reversal operators are
expressed as

�̂ = −iĈ�̂, (20)

Ĉ =
(

0 Î6×6

Î6×6 0

)
= l̂0 ⊗ σ̂x ⊗ τ̂0, (21)

�̂ = l̂0 ⊗ iσ̂y ⊗ τ̂0. (22)

Here, Î6×6 and τ̂0 denote the 6 × 6 unit matrix and the
identity matrix in the particle-hole space, respectively. As we
consider time-reversal symmetric pairings, the chiral operator
anticommutes with the Hamiltonian:

{HBdG(k),�̂} = 0. (23)

One can then introduce a unitary matrix Û� that diagonalizes
the chiral operator �̂:

Û
†
��̂Û� =

(
Î6×6 0

0 −Î6×6

)
, (24)

Û
†
� = Û� = 1√

2

(
Î6×6 l̂0 ⊗ σ̂y

l̂0 ⊗ σ̂y −Î6×6

)
. (25)

In this basis the BdG Hamiltonian is block antidiagonalized
by Û� ,

Û
†
�HBdG(k)Û� =

(
0 q̂(k)

q̂†(k) 0

)
, (26)

q̂ = H (k)[l̂0 ⊗ σ̂y] − �̂. (27)

Then, the determinant of the q̂(k) matrix block can be put in a
complex polar form, and as long as the eigenvalues are nonzero,
it can be used to obtain the winding number W by evaluating
its trajectory in the complex plane as

W = 1

2π

∮
C

dθ (k),

(28)
θ (k) ≡ arg[det q̂(k)].

C in Eq. (28) is a closed line contour that encloses a given node
as schematically shown in Fig. 7(b). From the explicit calcu-

lation, we find that the amplitude of W is ±1 [see Figs. 6(a)
and 7(a)]. If the nodes have a nonzero winding number, edge
states appear due to the bulk-edge correspondence. It is known
[103] that the following index theorem is satisfied: for any
one-dimensional cut in the Brillouin zone that is indicated by
a given momentum k‖ that is parallel to the edge, one has that
w(k‖) = n+ − n−, with n+ and n− being the number of the
eigenstates associated to the eigenvalues +1 and −1 of the
chiral operator �̂, respectively. The number of edge states is
equal to |w(k‖)| when considering a boundary configuration
with a conserved k‖. We can easily show that W which is
given in Eq. (28) and w(k‖) are deeply linked: w(k1) − w(k2) =
−W sgn(k1 − k2) where W is the total winding number around
the nodes between k‖ = k1 and k‖ = k2. Thus nonzero W

on the nodes means nonzero w(k‖) and the existence of the
zero-energy edge state with appropriate choice of the crystal
plane. Such relation sets the main physical connection between
the winding number and the properties of the topological
superconductor.

We generally find that two to six point nodes can occur along
the �-M direction, and their number is related to that of the
Fermi surfaces. Interestingly, the position of the point nodes
is not fixed and pinned to the lines of the Fermi surface in the
normal state. In general, their position along the diagonal of the
Brillouin zone depends on the amplitude |�0| and indirectly on
the values of the spin-orbit and inversion asymmetry couplings.
Thus two adjacent point nodes with opposite winding numbers
can, in principle, be moved until they merge and then disappear
by opening a gap in the excitation spectrum. This behavior
is generally demonstrated in Fig. 8. A phase diagram can be
determined in terms of the amplitude |�0| and the chemical
potential μ. The nodal superconductor can undergo different
types of Lifshitz transitions, and in general, those occurring
in the normal state are not linked to the nodal merging in
the superconducting phase. Indeed, one of the characteristic
features of the nodal superconductor is that, by changing the
filling, through μ, one can drive a transition from two to four
and six point nodes independently of the number of bands
crossing the Fermi level in the normal state. It is rather the
strength of |�0| that plays an important role in tuning the nodal
superconductor. An increase in |�0| tends to reduce the number
of nodes until a fully gapped phase appears. As the critical lines
are sensitive to the spin-orbit λSO and inversion asymmetry �is

couplings, one can get line crossings that allow for multiple
merging of nodes such that the superconductor can undergo a
direct transition from six to two at μ/t ∼ 0.40 [Figs. 8(e) and
8(d)] or from four to zero point nodes, as for instance nearby the
crossing between the blue and orange lines at μ/t ∼ 0.10 in the
Fig. 8. As the positions of the point nodes are fixed, each Fermi
surface in the limit of small |�0| and its distance in the Brillouin
zone increases with level splitting by �is and λSO, a larger |�0|
is required to annihilate the point nodes when both �is and λSO

grow in amplitude as demonstrated by the shift of the green
and blue critical lines in Figs. 8(a)–8(c) for different values
of �is , and Figs. 8(d), 8(b) and 8(e) in terms of λSO. When
considering these results in the context of two-dimensional
superconductors that emerge at the surface or interface of band
insulators we observe that the achieved topological transitions
can be driven by gate voltage and temperature, as μ and
�is are tunable by electric fields, and the amplitude of |�0|
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can be controlled by the temperature and the electric field
as well.

B. Local density of states at the edge of the superconductor

Having established that the nodes in the B1 configuration are
protected by a nonvanishing winding number, one can expect
that flat zero-energy surface Andreev bound states (SABS)
occur at the boundary of the superconductor.

In this section, we investigate the SABS and the local
density of states (LDOS) for two different terminations of
the two-dimensional superconductor, i.e., the (100) and (110)

oriented edges. We start by discussing the LDOS for the (100)
and (110) edges at representative values of λSO/t = 0.10,
�is/t = 0.20, and |�0|/t = 1.0 × 10−3, and by varying the
chemical potential in order to compare the cases with a different
number of point nodes in the bulk energy spectrum at μ/t =
−0.25, 0.0, and 0.35 as shown in Figs. 9(a)–9(c), respectively.

As expected, the momentum resolved LDOS indicates that
zero-energy SABS can be observed but only for specific
orientations of the edge. Indeed, as reported in Figs. 9(d)–9(i),
one has zero-energy SABS (ZESABS) for the (110) boundary
while they are absent for the (100) edge. The reason for
having inequivalent SABS edge modes is directly related to
the presence of a nontrivial winding number that is protecting
the point nodes. For the (110) edge, isolated point nodes exist
in the surface Brillouin zone, and they have winding numbers
with opposite sign. Thus the ZESABS, which connects the
nodes with a positive and negative winding number, emerge in
the gap. On the other hand, when considering the (100) oriented
termination, the winding numbers for positive kx and negative
kx are completely opposite in sign, and they cancel each other
when projected on the (100) surface Brillouin zone. Thus flat
zero-energy states cannot occur for the (100) edge. Neverthe-
less, helical edge modes are observed inside the energy gap
as demonstrated in Fig. 9(d). This is because the Majorana
edge modes with positive and negative chirality can couple,
get split, and acquire a dispersion. The differences in the
edge ABS also manifest in the momentum integrated LDOS.
For the (110) edge, owing to the presence of the ZESABS,
the LDOS normalized by its normal state value at E = 0
shows pronounced zero-energy peaks [see dash-dotted line in
Figs. 9(j)–9(l)]. On the other hand, for the (100) boundary, they
lead to a broad peak or exhibit many narrow spectral structures
reflecting the complex dispersion of the edge states.

Finally, we discuss the |�0| dependence of LDOS at zero
energy, i.e., E = 0 as shown in Fig. 10. For the (110) edge,
the zero-energy peak mainly originates from the zero-energy
flat band. The height of the zero-energy peak can then be
characterized by (i) the strength of the localization of the edge
state and (ii) the total length of the ZESABS within the surface
Brillouin zone. The strength of the localization is defined by
the inverse of the localization length 1/ξ and 1/ξ ∝ |�0|. In
other words, the peak height generally increases with |�0|.
On the other hand, as shown in Fig. 8, the extension in the
momentum space of the zero-energy flat states becomes shorter
with increasing |�0|. For simplicity, one can focus on the
two Fermi surface configuration. In this case, the total length
of the zero-energy flat band is roughly estimated as δk(1 −
|�0|/|�c

0|) for |�0| < |�c
0| and zero for |�0| > |�c

0|, where
δk is the Fermi surface splitting along the �-M direction and
|�c

0| is a critical value above which the point-nodes disappear.
Then, the height of the zero-energy peak is proportional to
|�0|(1 − |�0|/|�c

0|) for |�0| < |�c
0| and vanishes for |�0| >

|�c
0|. This is a nonmonotonic dome-shaped behavior of the

ZELDOS as a function of |�0|. The explicit profile can be seen
in Fig. 10 at μ/t = −0.25 and μ/t = 0.0. For μ/t = 0.35, the
point nodes still exist in this parameter regime, and the height
of the zero-energy peak develops with |�0|. Thus we have that
the ZESABS get strongly renormalized and are tunable by a
variation in the electron filling (μ) and amplitude of the order
parameter |�0| as shown in Fig. 8.
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FIG. 9. Momentum-resolved and angular averaged LDOS for B1 representation. The Fermi surfaces and the position of the point nodes are
shown for (a) μ/t = −0.25, (b) 0.0, and (c) 0.35. The momentum (k‖) resolved LDOS at the (100) oriented surface for (d) μ/t = −0.25, (e)
0.0, and (f) 0.35. The momentum (k‖) resolved LDOS at the (110) oriented surface for (g) μ/t = −0.25, (h) 0.0, and (i) 0.35. LDOS normalized
by its normal state value at E = 0 [DOSN(E = 0)] at the (100) and (110) oriented surfaces, and in the bulk for (j) μ/t = −0.25, (k) 0.0, and
(l) 0.35. The red solid line, blue dash-dotted line, and black dashed line denote the LDOS at the (100) oriented surface, (110) oriented surface,
and in the bulk, respectively. Other parameters are λSO/t = 0.10, �is/t = 0.20, and |�0|/t = 1.0 × 10−3.

V. DISCUSSION AND SUMMARY

We investigated and determined the possible superconduct-
ing phases arising from interorbital pairing in an electronic
environment marked by spin-orbit coupling and inversion
symmetry breaking while focusing on momentum independent

paired configurations. One remarkable aspect is that, although
the inversion symmetry is absent, one can have symmetry-
allowed solutions that avoid mixing of spin-triplet and spin-
singlet configurations. Importantly, states with only spin-triplet
pairings can be stabilized in a large portion of the phase
diagram.
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FIG. 10. The LDOS at E = 0 for the (110) oriented surface for
the B1 representation as a function of |�0|/t at λSO/t = 0.10 and
�is/t = 0.20. The red solid line, blue dotted line, and green dash-
dotted line correspond to μ/t = −0.25, 0.0, and 0.35.

Within those spin-triplet superconducting states, we un-
veiled an unconventional type of topological phase in two-
dimensional superconductors that arises from the interplay of
spin-orbit coupling and orbitally driven inversion symmetry
breaking. For this kind of a model system, atomic physics
plays a relevant role and inevitably tends to yield orbital
entanglement close to the Fermi level. Thus we assumed that
local interorbital pairing is the dominant attractive interaction.
As already mentioned, this type of pairing in the presence
of inversion symmetry breaking allows for solutions that do
not mix spin-singlet and triplet configurations. The orbital-
singlet/spin-triplet superconducting phase can have a topolog-
ical nature with distinctive spin-orbital fingerprints in the low-
energy excitations spectra that make it fundamentally different
from the topological configuration that is usually obtained
in single-band noncentrosymmetric superconductors. Here, a
remarkable finding is that, contrary to the common view that an
isotropic pairing structure leads to a fully gapped spectrum, a
nodal superconductivity can be achieved when considering an
isotropic spin-triplet pairing. Although in a different context,
we noticed that akin paths for the generation of an anomalous
nodal-line superconductor can also be encountered when local
spin-singlet pairing occur in antiferromagnetic semimetals
[105].

In the present study, for a given symmetry, the supercon-
ducting phase can exhibit point nodes that are protected by
a nonvanishing winding number. The most striking feature
of the disclosed topological superconductivity is expressed
by its being prone to both topological and Lifshitz-type
transitions upon different driving mechanisms and interac-
tions, e.g., when tuning the strength of intrinsic spin-orbit
and orbital-momentum couplings or by varying doping and
the amplitude of order parameter by, for example, varying
the temperature. The essence of such a topologically and
electronically tunable superconductivity phase is encoded in
the fundamental observation of having control of the nodes
position in the Brillouin zone. Indeed, the location of the point
nodes is not determined by the symmetry of the order parameter

in the momentum space, as occurs in the single-band noncen-
trosymmetric system, but rather it is a nontrivial consequence
of the interplay between spin-triplet pairing and the spin-orbital
character of the electronic structure. In particular, their position
and existence in the Brillouin zone can be manipulated through
various types of Lifshitz transitions, if one varies the chemical
potential, the amplitude of the spin-triplet order parameter,
the inversion symmetry breaking term, and the atomic spin-
orbit coupling. While electron doping can induce a change
in the number of Fermi surfaces, such electronic transition
is not always accompanied by a variation in the number of
nodes within the superconducting state. This behavior allows
one to explore different physical scenarios that single out
notable experimental paths for the detection of the targeted
topological phase. Owing to the strong sensitivity of the
topological and Lifshitz transitions with respect to the strength
of the superconducting order parameter, one can foresee the
possibility of observing an extraordinary reconstruction of the
superconducting state both in the bulk and at the edge by
employing the temperature to drive the pairing order parameter
to a vanishing value, i.e., at the critical temperature, starting
from a given strength at zero temperature. Then, a substantial
thermal reorganization of the superconducting phase can be
obtained. While a variation in the number of nodes in the
low-energy excitations spectra cannot be easily extracted by
thermodynamic bulk measurements, we find that the electronic
structure at the edge of the superconductor generally undergoes
a dramatic reconstruction that manifests into a nonmonotonous
behavior of the zero-bias conductance or in an unconventional
thermal dependence of the in-gap states. Another important de-
tection scheme of the examined spin-triplet superconductivity
emerges when considering its sensitivity to the doping or to the
strength of the inversion symmetry breaking coupling, which
can be accessed by applying an electrostatic gating or pressure.
Such gate/distortive control can find interesting applications,
especially when considering two-dimensional electron gas
systems.

Another interesting feature of the multiple-nodes topologi-
cal superconducting phase is given by the strong sensitivity of
the edge states to the geometric termination, as demonstrated in
Fig. 9. This is indeed a consequence of the presence of nodes
with an opposite sign winding number within the Brillouin
zone. Hence, when considering the electronic transport along
a profile that is averaging different terminations, it is natural
to expect multiple in-gap features.

Owing to the multiorbital character of the superconducting
state, we expect that nontrivial odd-in-time pair amplitudes
are also generated [106–110]. In particular, we predict that
both local odd-in-time spin-singlet and triplet states can be
obtained in the bulk and at the edge. The local spin-singlet
odd-in-time pair correlations are an exquisite consequence of
the multiorbital superconducting phase. Accessing the nature
of their competition/cooperation and its connection to the nodal
superconducting phase is a general and relevant problem in
relation to the generation, manipulation, and control of odd-
in-time pair amplitudes.

It is also relevant to comment on the impact of an intraorbital
pairing on the achieved results. Here, there are few fundamen-
tal observations to make. Firstly, one may ask whether the
topological B1 phase is robust to the adding of an extra pairing
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component which in the intraorbital channel is most likely to
have a spin-singlet symmetry. For this circumstance, one can
start by pointing out that for any intraorbital pairing component
that does not break the chiral symmetry protecting the nodal
structure of the superconducting state, the B1 configuration
can only undergo a Lifshitz-type transition associated with the
merging of nodes having opposite sign in the winding number.
Moreover, specifically for the B1 irreducible representation, the
intraorbital spin-singlet component would have a dx2−y2 -wave
symmetry (∼ cos kx − cos ky) and thus its amplitude would be
vanishing along the �-M direction of the Brillouin zone where
the nodes of the B1 phase are placed. Hence the intraorbital
component cannot affect at all the nodal structure of the B1

phase. From this perspective, the B1 phase is remarkably robust
to the inclusion of spin-singlet intraorbital pairing components.
In Appendix, the intraorbital spin-singlet pairings other than
B1 representation (dx2−y2 -wave) are discussed.

Concerning the experimental consequences of the topo-
logical superconducting phase, one can observe that, apart
from the direct spectroscopic access to the temperature depen-
dence of the edge states, the use of a superconductor-normal
metal-superconductor (S-N-S) junction can also contribute to
design of experiments to directly probe the peculiar behavior
of the B1 phase. In particular, by scanning its temperature
dependent properties, since the B1 state can undergo a series
of Lifshitz transitions within the superconducting phase by
gapping out part of the nodes, a dramatic modification of the
Andreev spectrum at the S-N boundary is expected to occur.
Hence, upon the application of a phase difference between the
superconductors in the S-N-S junction, the Josephson current
is expected to exhibit an anomalous temperature behavior. In
particular, the abrupt changes in the Andreev bound states will
drive a rapid variation in the Josephson current through the
S-N-S junction when the superconductor undergoes transitions
in the number of nodes.

Finally, we point out that the examined model Hamiltonian
is generally applicable to two-dimensional layered materials,
in the low/intermediate doping regime, having t2g d-bands
at the Fermi level and subjected to both atomic spin-orbit
coupling and inversion symmetry breaking, for instance, ow-
ing to lattice distortions and bond bending. Many candidate
material cases can be encountered in the family of transition
metal oxides. There, unconventional low-dimensional quan-
tum liquids with low electron density can be obtained by
engineering a 2DEG at polar/nonpolar interfaces between two
band insulators, on the surface of band insulators (i.e., STO)
or by designing single monolayer heterostructures, ultrathin
films or superlattices. A paradigmatic case of superconducting
2DEG is provided by the LAO/STO heterostructure [111–114].
Recent experimental observations by tunneling spectroscopy
have pointed out that the superconducting state can be uncon-
ventional owing to the occurrence of in-gap states with peaks
at zero and finite energies [115]. Although these peaks may be
associated with a variety of concomitant physical mechanisms,
e.g., surface Andreev bound states [5–10], the anomalous prox-
imity effect by odd-frequency spin-triplet pairing [15,116–
128], and bound states owing to the presence of magnetic im-
purities [129], their nature can provide key information about
the pairing symmetry of the superconductor. Furthermore, the
observation of Josephson currents [130] across a constriction

in the 2DEG confirms a fundamental unconventional nature
of the superconducting state [131–133]. A common aspect
emerging from the two different spectroscopic probes is that
the superconducting state seems to have a multicomponent
character. Although it is not easy to disentangle the various
contributions that may affect the superconducting phase in the
2DEG, we speculate that the proposed topological phase can
be also included within the possible candidates for addressing
the puzzling properties of the superconductivity of the oxide
interface.
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APPENDIX

In this section, we address three different issues related to
the presented results. Firstly, we investigate how a modification
of the pairing interaction affects the phase diagram and the rel-
ative competition between the various configurations by scan-
ning a larger range of temperatures at representative cases of
filling concentration. Then, we consider the classification of the
irreducible representations of the superconducting phases in
the presence of an intraorbital attractive interaction. Moreover,
we demonstrate that the intraorbital and interorbital pairing
interactions mediated by phonons have the same amplitude.

Starting from the impact of the pairing interaction on
the phase diagram, in Fig. 11, we show that at a given
temperature the maximal eigenvalue in the various irreducible
representations scales with the values of Vz and Vxy at
λSO/t = 0.10, �is/t = 0.20, and μ/t = 0.0. When we keep
the ratio Vz/Vxy , the eigenvalue � is proportional to Vxy within
the mean-field approximation. Hence the phase diagram is
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FIG. 11. The eigenvalues for various irreducible representations
as a function of Vz/Vxy at (a) Vxy/t = −0.10, (b) −0.50, and (c)−1.0,
assuming that T/t = 1.0 × 10−5, λSO/t = 0.10, �is/t = 0.20, and
μ/t = 0.0.
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0.70, assuming that Vxy/t = −1.0, λSO/t = 0.10, �is/t = 0.20,
and μ/t = 0.0.

basically determined by the ratio Vz/Vxy . In addition, since
the transition temperature Tc is achieved when the magnitude
of the greatest eigenvalue gets close to 1, then, according to this
relation, one can identify the regime of temperatures which is
close to the superconducting transition by suitably scaling the
pairing interactions. In this way, the corresponding irreducible
representation with the largest eigenvalue is the most stable
according to the solution of the gap equation.

In order to understand how a change in the critical tem-
perature can affect the relative stability, in Fig. 12, we report
the eigenvalues for the various irreducible representations at
λSO/t = 0.10, �is/t = 0.20, and μ/t = 0.0 as a function of
T/t at two different ratio (a) Vz/Vxy = 1.0 and (b) Vz/Vxy =
0.70. We notice that the most stable configuration is not
affected by a change in temperature or the strength of the
pairing coupling. However, the eigenvalues of the B2 and E
representation become larger than that of A1 above T/t ∼
1.0 × 10−2 [see Fig. 12(b)], thus affecting the competition
between the A1 and B1 configurations. Otherwise, the analysis
at different temperatures demonstrate that even for larger
values of the pairing interaction the phase diagram is not much
affected.

Concerning the role of the intraorbital spin-singlet pairing,
in Ref. [1], we can classify the possible irreducible represen-
tations for the tetragonal group C4v assuming both isotropic
interorbital pairing and intraorbital ones with isotropic
and anisotropic structures compatible with the symmetry
configuration (see Table II).

Finally, we consider the relative strength of the attractive
interaction in the inter and intraorbital channel as due to
electron-phonon coupling in a t2g multiorbital system. Con-

TABLE II. Irreducible representation of isotropic interorbital su-
perconducting states and intraorbital spin-singlet ones with isotropic
and anisotropic structures for the tetragonal group C4v . In the columns,
we report the sign of the order parameter upon a fourfold rotational
symmetry transformation, C4, and the reflection mirror symmetry
Myz, as well as the explicit spin and orbital structure of the gap
function. In the E representation, + and − of the subscript mean
the doubly degenerate mirror-even (+) and mirror-odd (−) solutions,
respectively.

C4v C4 Myz Orbital Basis function

(dyz,dyz) ψ (yz,yz) = const.
(dzx,dzx) ψ (zx,zx) = ψ (yz,yz)

A1 + + (dxy,dxy) ψ (xy,xy) = const.
(dxy,dyz) d (xy,yz)

y

(dxy,dzx) d (xy,zx)
x = −d (xy,yz)

y

(dyz,dzx) d (yz,zx)
z

(dyz,dyz) ψ (yz,yz) = sin kx sin ky(cos kx − cos ky)
(dzx,dzx) ψ (zx,zx)(kx,ky) = ψ (yz,yz)(ky,−kx)

A2 + − (dxy,dxy) ψ (xy,xy) = sin kx sin ky(cos kx − cos ky)
(dxy,dyz) d (xy,yz)

x

(dxy,dzx) d (xy,zx)
y = d (xy,yz)

x

(dyz,dyz) ψ (yz,yz) ∝ cos kx − cos ky

(dzx,dzx) ψ (zx,zx)(kx,ky) = −ψ (yz,yz)(ky,−kx)
B1 − + (dxy,dxy) ψ (xy,xy) ∝ cos kx − cos ky

(dxy,dyz) d (xy,yz)
y

(dxy,dzx) d (xy,zx)
x = d (xy,yz)

y

(dyz,dyz) ψ (yz,yz) ∝ sin kx sin ky

(dzx,dzx) ψ (zx,zx)(kx,ky) = −ψ (yz,yz)(ky,−kx)
B2 − − (dxy,dxy) ψ (xy,xy) ∝ sin kx sin ky

(dxy,dyz) d (xy,yz)
x

(dxy,dzx) d (xy,zx)
y = −d (xy,yz)

x

(dyz,dzx) ψ (yz,zx)

(dxy,dyz) ψ (xy,yz), d (xy,yz)
z

E ±i ± (dxy,dzx) ψ
(xy,zx)
+ = ∓id

(xy,yz)
z+

d
(xy,zx)
z− = ∓iψ

(xy,yz)
−

(dyz,dzx) d (yz,zx)
x , d (yz,zx)

y

sider the electron phonon coupling in t2g system,

Hep = 1√
N

∑
k,q,m,l,l′σ

αm
ll′(q)c†k+q,l,σ ck,l′,σ , (A1)

where m denotes the phonon mode, αm
ll′(q) is the electron-

phonon coupling constant, and l and l′ stands for orbital
indices in the basis of yz, zx, and xy. Here, we consider
only the diagonal elements, which are relevant to the attractive
interaction. Off-diagonal ones are relevant to the pair hopping,
which enhance the transition temperature.

Hep = 1√
N

∑
k,q,m,l,σ

αm
ll (q)c†k+q,l,σ ck,l,σ . (A2)

The effective interaction in the Eliashberg equation due to this
electron-phonon coupling is given by

V m
ll′ (q,ωn) = −αm

ll (q)αm
l′l′(q)Dm(q,ωn), (A3)

174522-14



INTERORBITAL TOPOLOGICAL SUPERCONDUCTIVITY … PHYSICAL REVIEW B 97, 174522 (2018)

where Dm(q,ωn) is the Green’s function of phonon

Dm(q,ωn) = 2ωm(q)

ω2
m(q) + ω2

n

, (A4)

with phonon’s frequency ωm(q) and bosonic Matsubara fre-
quency ωn = 2nπkBT . Here, we suppose the A1 modes are
the most relevant to the interaction. In A1 modes,

αm
yz,yz(q) = αm

zx,zx(q) (A5)

in the tetragonal symmetry. Then, we have the relation

V m
yz,yz(q,ωn) = V m

zx,zx(q,ωn) = V m
yz,zx(q,ωn) = V m

zx,yz(q,ωn).

This means that the effective inter and intraorbital attractive
interaction in these two orbitals are the same. We can also
include xy orbitals into this relation when �t and �is is small
and the symmetry goes toward the cubic.
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