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Spin current and spin transfer torque in ferromagnet/superconductor spin valves
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Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two
magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure
that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results
as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets,
and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within
the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets,
and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the
text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the
physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of
the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these
quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future
experiments, as they take into account imperfect interfaces and a realistic geometry.
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I. INTRODUCTION

Spintronic devices, such as spin valves, have seen increasing
attention over the years due [1] to their expected technological
applications (for example, to nonvolatile memory) and for
their intrinsic scientific interest. Traditional spin valves [1] are
composed of two ferromagnets (F ) in close proximity, often
separated by a normal metal or insulator. A charge current
interacts with the exchange field of the first ferromagnetic
component, inducing a polarization in its spin degree of free-
dom. The second F component is introduced as a spin selector
and detector, in which a spin current and spin accumulation
are predicted and measured [2,3]. The charge current and
the relative orientation of the exchange fields of the two
ferromagnets determine the spin transport properties of these
devices. In their application to nonvolatile memory, the mag-
netic memory is current-switched (as opposed to magnetic-
field-switched) via the spin transfer torque (STT) [4–6]. This
gives the devices an advantage in power consumption and
scalability [7].

Superconducting spin valves are different. They are spin-
tronic devices that include, in addition to the F components,
one or more layers of a superconducting (S) material. Thus,
superconducting as well as ferromagnetic and normal compo-
nents are involved. They are exciting, developing spintronic
structures presenting their own unique set of properties and
applications [8]. In these devices the presence of (usually
traditional, well-understood) superconductors in proximity
to ferromagnetic materials fundamentally affects spin trans-
port. Furthermore, their ultralow power consumption offers a
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distinct advantage over standard spin valves, particularly in
memory applications. Many such devices have been proposed
[9–11]. The first spin switch device using a superconducting
current was reported in Ref. [12]. Other superconducting spin
valves with F1/N/F2/S layered structures have since been
studied [13–15]. The currents in such devices are in general
spin-polarized and can potentially be controlled by STT in
nanoscale devices, just as in traditional spin valves. However,
they are not merely regular spin valves with spin currents.
Rather, these are novel structures with their own distinct set
of spin transport properties due to the F/S proximity effects
[16]. Below, we discuss some of the peculiar properties of these
devices as they are relevant to our study.

Superconductivity results from the formation of Cooper
pairs consisting of opposite-momentum electrons [17]. In the
usual s-wave superconductivity, these pairs form a singlet state.
Ferromagnetism, on the other hand, has a strong tendency to
break these singlet pairs, while favoring in principle triplet
pairing states with mz = ±1. It would seem that ferromag-
netism and s-wave superconductivity are largely incompatible.
Indeed, the ordinary superconducting proximity effects in F/S

heterostructures result in a heavily damped, oscillatory behav-
ior of the singlet pair amplitudes in the F -layer regions [18,19],
caused by Cooper pairs acquiring a center-of-mass momentum
[20]. This oscillatory behavior is critical to understanding F/S

heterostructures, as it makes all transport measurements highly
dependent on the thicknesses of each material layer. However,
proximity effects in F/S structures are by no means limited to
those arising from the s-wave Cooper pairs in the S material.
Indeed, there are long-range proximity effects from triplet pair
correlations that are induced in the structure by the presence
of nonuniform exchange fields [21–25]. This conversion is
possible because, unless all exchange fields are collinear, the
Hamiltonian does not commute with Sz, the z component of
the Cooper pair spins: thus it is not conserved.
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Because of the Pauli principle, the triplet correlations for
a spatially even Cooper pair configuration must be odd in
frequency [26] or equivalently in time [23]. In the presence of
a uniform exchange field, only the mz = 0 triplet component
may be induced. The required nonuniform exchange field can
be introduced in a variety of ways: for example one can have
an F1/F2/S heterostructure with noncollinear exchange fields,
or a single F layer with a nonuniform magnetization texture
such as one may have with magnetic domains or, in a more
controllable way, by using a magnet such as holmium [27–30]
in which the magnetic structure is spiral. In these cases the
presence of mz = ±1 pairs is compatible with conservation
laws and the Pauli principle, and in fact such pairs are usually
induced. The exchange fields do not necessarily break these
triplet correlations, and thus the proximity effect can be long-
ranged [31–37] in F . In heterostructures which include two
ferromagnetic layers F1 and F2, as we consider in this paper,
one can immediately see that there will be an interesting
angular dependence of the results on the misalignment angle
φ between the two F layers, as their orientations vary from
being parallel, to orthogonal, to antiparallel. In traditional
spin valves, this angular dependence is characterized by the
magnetoresistance obtained by comparing the parallel (P) and
antiparallel (AP) configurations [38]. In the superconducting
devices, as triplet pairs are induced, singlet pair amplitudes
decrease, diminishing the strength of the superconducting pair
potential and influencing the transport properties [14,39]. As
φ is varied between 0◦ and 180◦ a unique angular dependence
that is nonmonotonic is produced.

The superconducting proximity effects discussed above
affect both the thermodynamic and the transport properties
of the device. A fundamental contribution to both arises from
Andreev reflection [40] at the interfaces. Andreev reflection
is the process of electron-to-hole conversion by the creation
or annihilation of a Cooper pair, occurring at the interface of
a superconductor. There are two types of Andreev reflection:
conventional and anomalous. In conventional Andreev reflec-
tion, the reflected electron/hole has spin opposite to that of
the incident particle. In anomalous Andreev reflection, these
electron/hole pairs have the same spin. It has been shown
[14,41–44] that normal and anomalous Andreev reflection are
correlated with triplet proximity effects. Understanding and
accurately characterizing the transmission amplitudes of the
Andreev reflections is pertinent to all transport calculations
in superconducting heterostructures [45–48], particularly for
quantities with spatial dependence such as the spin current and
spin transfer torque.

The practical fabrication of F/F/S valve structures results
in devices that deviate very significantly from theoretical
idealizations. To be able to modify the angle φ requires the
insertion of a normal metal spacer between the F layers,
so that they are decoupled and the magnetization of one
of them can be rotated individually. In addition, even high-
quality interfaces between all layers involved are not perfect:
some interfacial scattering is inevitable and transport [10] in
superconducting spin valves is very sensitive to it [39,48],
as is also the case [49] for spin transport in traditional spin
valves. It has been shown that if the the normal spacer and
the interfacial scattering are properly taken into account, then
it is possible to quantitatively characterize to high accuracy

[50] the thermodynamic properties of high-quality devices. In
recent work [39], we have also examined the charge transport
properties of F1/N/F2/S heterostructures with an emphasis on
practical, realistic layer thicknesses and interfacial scattering
parameters. However, spin transport properties, such as spin
current and the STT, were calculated only for the “proof of
principle” ideal case with no normal metal spacer or interfacial
scattering parameters.

Developments in deposition techniques have allowed for the
fabrication of spintronic devices [10] that can be described via
clean limit methods. These are the high-quality devices [50]
which are our focus in this paper. Thus, we assume geometrical
(thickness of the layers, including that of N ) and material
parameters appropriate to the Co, Cu, and Nb layers used there
[50]. The charge and spin transport properties depend strongly
on the applied bias voltage. Many of their features [14,39]
change rather abruptly when the applied voltage reaches the
critical-bias (CB) value, which is related to the self-consistent
pair potential within the superconductor. This value is less than
the pair potential bulk value due to the proximity effects. The
transport properties are quite different for an applied voltage
bias below and above the CB. This effect is also dependent
on the misalignment angle of the exchange fields, usually in
a nonmonotonic [39] way. Here, we examine the dependence
of the spin transport properties on the layer thicknesses, the
importance of which has been mentioned above, the interfacial
scattering strengths, and the applied bias voltage, including CB
effects. We hope to establish a broad understanding of how
sample quality and geometry affect spin transport results in
F1/N/F2/S systems so that they may then be compared to
experimental results.

In our calculations, we use a self-consistent solution to the
Bogoliubov–de Gennes (BdG) equations [51] to calculate the
pair potential, and then employ this potential in the transport
calculations via a transfer matrix method [39]. This method
correctly incorporates the normal and Andreev reflection and
transmission amplitudes of the electrons and holes. We evalu-
ate then the spin current, the STT, and the magnetization, all
as functions of position within the F1/N/F2/S heterostructure
and of the applied bias. We examine their dependence on the
misalignment angle φ. We also vary the layer thickness and the
interfacial scattering strengths within bounds similar to those
used in the study of the thermodynamic properties of similar
systems [50]. Our focus will be the analysis of the physical
parameters for experimental use, as well as on the underlying
physics of the spin transport.

Spin transport is considerably more complex than charge
transport. As opposed to the charge current, which is a constant
through the sample due to charge conservation, the spin current
varies with position, and this variation is related to the STT.
Furthermore, since spin is a vector the spin current is in prin-
ciple a tensor, although it does reduce to a vector in spin space
in the quasi-one-dimensional geometry we will consider here.
Thus all quantities are spatially dependent. Together with the
spatially oscillatory nature of the singlet and triplet amplitudes,
we find a strong and intricate dependence of spin transport
on the layer thicknesses. Furthermore, the proximity effects
are particularly influential on the spin transport properties, as
they relate to the spin pairing and the induced triplets. We
thus see a nonmonotonic dependence on φ, as well as a strong
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dependence on the interfacial scattering strengths. Interfacial
scattering generally inhibits the proximity effects but, because
there are several barriers, resonance features such as those
found for charge transport [39] can also arise. We will also
analyze the average of the spin transport quantities over each
layer: we have found this particularly useful in studying the
bias dependencies and in better establishing the underlying
physical principles at work. We hope through this work to
provide future experiments with some deeper context as to
how these parameters may affect their results.

After this Introduction, we briefly review our methods for
transport calculations in Sec. II. The results, as well as their
discussion, are presented in Sec. III. We summarize our work
in Sec. IV.

II. METHODS

A. The basic equations

The geometry of the system we study is depicted in Fig. 1.
The layers are assumed infinite in the transverse, x-z plane, and
have finite widths in the y direction. This assumption makes
the system quasi-one-dimensional. The magnetizations of the
outer (F1) and inner (F2) layers are misaligned by an angle
φ in the x-z plane. Below, we briefly summarize our methods
and procedures which are ultimately based in Ref. [51] and are
described extensively in Refs. [14,39].

The Hamiltonian appropriate to our system is

Heff =
∫

d3r

⎧⎨
⎩

∑
α

ψ̂†
α(r)H0ψ̂α(r)

+ 1

2

⎡
⎣∑

α, β

(iσy)αβ�(r)ψ̂†
α(r)ψ̂†

β(r) + H.c.

⎤
⎦

−
∑
α, β

ψ̂†
α(r)(h · σ )αβψ̂β(r)

⎫⎬
⎭, (1)

where �(r) is the pair potential, and h is the Stoner field. The
field h is taken along the z axis in the outer ferromagnetic
layer F1 and forms an angle φ with the z axis in the inner

FIG. 1. Scheme of the system studied. The exchange field of the
second ferromagnet F2 is rotated in the x-z plane by an angle φ. The
direction of the transport is in the y direction. The thicknesses are not
to scale (see text).

ferromagnetic layer F2. This field is then zero in the supercon-
ductor S and normal metal spacer N . We have assumed equal
magnitude of the fields h1 = h2 ≡ h since in the experiments
we are considering, the same material is employed for both
ferromagnetic layers. H0 is the single-particle Hamiltonian,
and it includes the interfacial scattering. The indices α and β

denote spin indices and σi are the Pauli matrices.
Performing a generalized Bogoliubov transformation, we

take ψσ = ∑
n (unσ γn + ησ v∗

nσ γ
†
n ) where ησ ≡ 1 (−1) for

spin down (up), and unσ (r) and vnσ (r) are the spin-dependent
quasiparticle and quasihole amplitudes. Due to the geome-
try of the system being quasi-one-dimensional, the spatial
dependence on r becomes a dependence on y alone. Then,
we can rewrite the eigenvalue equation corresponding to the
Hamiltonian given by Eq. (1) as⎛
⎜⎜⎜⎝

H0 − hz −hx 0 �(y)

−hx H0 + hz �(y) 0

0 �(y) −(H0 − hz) −hx

�(y) 0 −hx −(H0 + hz)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

un↑(y)

un↓(y)

vn↑(y)

vn↓(y)

⎞
⎟⎟⎟⎠

= εn

⎛
⎜⎜⎜⎝

un↑(y)

un↓(y)

vn↑(y)

vn↓(y)

⎞
⎟⎟⎟⎠. (2)

We use natural units h̄ = kB = 1. The quasi-one-
dimensional Hamiltonian is H0 = −(1/2m)(d2/dy2) + ε⊥ −
EF (y) + U (y) where ε⊥ is the transverse energy, so that
Eq. (2) is a set of decoupled equations, one for each ε⊥. The
energy bandwidth EF can in principle be layer-dependent. In
the S layer, for example, we write EF (y) = EFS ≡ k2

FS/2m.
U (y) is the interfacial scattering, which we take to be spin-
independent in the form U (y) = H1δ(y − dF1) + H2δ(y −
dF1 − dN ) + H3δ(y − dF1 − dN − dF2) where Hi are the scat-
tering strengths of the respective interfaces. These scattering
strengths are best characterized by the dimensionless param-
eters HBi ≡ Hi/vF , where vF is the Fermi speed in S. These
scattering parameters are quite essential to characterizing
possible devices, as even for clean interfaces, some scattering
due to residual surface roughness is inevitable. Transport
results turn out to be much more sensitive than thermodynamic
quantities to interfacial scattering.

All of the calculations must be done self-consistently to
preserve charge conservation [14,39]. The self-consistency
condition allows for the proper inclusion of the proximity
effect, which is of primary importance to our study. It can
be written as

�(y) = g(y)

2

∑
n

′
[un↑(y)v∗

n↓(y) + un↓(y)v∗
n↑(y)] tanh

(
εn

2T

)
,

(3)

where g(y) is the superconducting coupling constant in the
singlet channel and it is nonzero in the S layer only. The set
of eigenvalues is found for each ε⊥, and the index n in the
sum refers now to all eigenvalues; i.e., it includes summation
over ε⊥, while the prime symbol indicates that the sum is
limited to states with eigenenergies within a cutoff ωD from
the Fermi level. The self-consistency procedure is this: we
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start with a suitable choice for �(y), compute the quasiparticle
and quasihole amplitudes using Eq. (2), and obtain �(y) using
Eq. (3). Then we repeat this process, substituting the iterated
�(y) until the input of Eq. (2) matches the output of Eq. (3).
Self-consistency is fundamental in all transport calculations. It
is a prerequisite for charge conservation [14,52–54]. From the
Heisenberg equation we have

∂

∂t
〈ρ(r)〉 = i〈[Heff ,ρ(r)]〉, (4)

where ρ(r) is the charge density. In the steady state, and in our
geometry, we can rewrite this as

∂jy(y)

∂y
= 2eIm

{
�(y)

∑
n

[u∗
n↑vn↓ + u∗

n↓vn↑] tanh

(
εn

2T

)}
.

(5)

Charge conservation is preserved if ∂jy(y)/∂y is identically
zero, which is guaranteed when the self-consistency condition
Eq. (3) is applied. Another reason why transport is dependent
on self-consistency is more obvious: as the pair potential
changes, so does the energy spectrum within the supercon-
ductor. Proper inclusion of ordinary and Andreev reflection at
the interfaces is obviously necessary for a proper account of
the transport properties of heterostructures, and the variation
of the self-consistent pair amplitudes is most pronounced at the
superconducting interface due to proximity effects. Therefore,
it is mandatory that we calculate transport using a fully self-
consistent pair potential.

B. Spin transport quantities

The spin-transport-related quantities we consider are the
spin current, the STT, and the local magnetization. These are
all studied as functions of applied bias voltage V . We aim
to describe the position dependence of these bias-dependent
quantities within the multilayer structure, for a range of
relevant values of the geometrical parameters, including φ.
In our geometry the spin current is a vector in spin space:

Si ≡ iμB

2m

∑
σ

〈
ψ†

σ σi

∂ψσ

∂y
− ∂ψ†

σ

∂y
σiψσ

〉
. (6)

The spin current density is not a conserved quantity within
the ferromagnetic regions. We can relate its gradient to the
local magnetization m ≡ −μB

∑
σ ψ†

σ σψσ , where μB is the
Bohr magneton, by writing the continuity equation for the local
magnetization in the form

∂

∂t
〈mi〉 + ∂

∂y
Si = τi, i = x,y,z, (7)

where τ is the spin transfer torque τ ≡ 2m × h. In the steady
state, ∂mi/∂t is zero. This means that the spin current will not
be constant within the ferromagnetic layers, and that the local
magnetization, even in the steady state, is intrinsically tied to
the spin current via the STT.

We can write the magnetization and the spin current in terms
of the self-consistent quasiparticle and quasihole amplitudes.
In the low-temperature limit, the expression for the local
magnetization reads [14]

mx = −μB

[∑
n

(−vn↑v∗
n↓ − vn↓v∗

n↑) +
∑

εk<eV

(u∗
k↑uk↓ + vk↑v∗

k↓ + u∗
k↓uk↑ + vk↓v∗

k↑)

]
, (8a)

my = −μB

[
i
∑

n

(vn↑v∗
n↓ − vn↓v∗

n↑) − i
∑

εk<eV

(u∗
k↑uk↓ + vk↑v∗

k↓ − u∗
k↓uk↑ − vk↓v∗

k↑)

]
, (8b)

mz = −μB

[∑
n

(|vn↑|2 − |vn↓|2) +
∑

εk<eV

(|uk↑|2 − |vk↑|2 − |uk↓|2 + |vk↓|2)

]
, (8c)

where the first terms on the right side are the ground state local magnetization components, and the second terms denote the
bias-dependent contributions. We can define a direct analog of the spin accumulation by removing the first terms on the right side
δm(V ) ≡ m(V ) − m(0), revealing the change in magnetization due to the finite bias.

We can use the same procedure for the spin current components, Eq. (6), and expand in terms of the un and vn wave functions.
In the T = 0 limit the result is [14]

Sx = −μB

m
Im

[∑
n

(
−vn↑

∂v∗
n↓

∂y
− vn↓

∂v∗
n↑

∂y

)
+

∑
εk<eV

(
u∗

k↑
∂uk↓
∂y

+ vk↑
∂v∗

k↓
∂y

+ u∗
k↓

∂uk↑
∂y

+ vk↓
∂v∗

k↑
∂y

)]
, (9a)

Sy = μB

m
Re

[∑
n

(
−vn↑

∂v∗
n↓

∂y
+ vn↓

∂v∗
n↑

∂y

)
+

∑
εk<eV

(
u∗

k↑
∂uk↓
∂y

+ vk↑
∂v∗

k↓
∂y

− u∗
k↓

∂uk↑
∂y

− vk↓
∂v∗

k↑
∂y

)]
, (9b)

Sz = −μB

m
Im

[∑
n

(
vn↑

∂v∗
n↑

∂y
− vn↓

∂v∗
n↓

∂y

)
+

∑
εk<eV

(
u∗

k↑
∂uk↑
∂y

− vk↑
∂v∗

k↑
∂y

− u∗
k↓

∂uk↓
∂y

+ vk↓
∂v∗

k↓
∂y

)]
, (9c)
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where again the first terms on the right side are the spin current
density at zero bias, and the second terms are the contribution
from the applied bias. This calculation is independent of that
of the local magnetization. Thus we can verify the relation
between the STT and the spin current in Eq. (7), as has
previously been pointed out [14,39].

C. Transfer matrix method and spin transport

Here, we give a brief summary of our spin transport
calculation methodology. An extensive explanation has been
given in Ref. [14]. We review these methods primarily because
Ref. [14] focused on charge transport, and it is useful to clarify
how they extend to spin transport, which requires some extra
care.

The procedure to calculate the conductance G(V ) involved
merely evaluating the reflection and transmission amplitudes
governed by the continuity of the wave function and dis-
continuity of its derivatives. This has to be done at each
interface for both particles and holes, and for each spin, i.e.,
including both ordinary and Andreev reflection, as one would
do in elementary quantum mechanics. In the S electrode, the
procedure is [14] to divide it into arbitrarily thin layers, in
each of which the y-dependent self-consistent pair potential,
as previously determined numerically, can be replaced by a
constant.

In the expressions for the local magnetization Eq. (8) and
the spin current Eq. (9) we have two terms in the right sides.
The first is the equilibrium result, and can be calculated
straightforwardly by the methods of Sec. II A. The more
important terms are, of course, the bias-driven contributions.
To evaluate those we have to rebuild the wave functions so that
they correspond to the proper boundary conditions of injected
spin-up or spin-down particles (see, e.g., Eqs. (4) and (5) of
Ref. [14] or Ref. [39]). The method is in essence nothing
but the elementary quantum mechanical procedure of building
plane wave solutions out of stationary state wave functions, but
it is mathematically much more complicated. The procedure
is as fully described in Ref. [14] except for the presence of
the N layer, which can be included by a trivial extension
of either an F layer with h taken to be zero, or an S layer
with � = 0. The transfer matrix method simply transcribes the
continuity conditions for each amplitude, and the discontinuity
in the derivatives arising from the delta function interfacial
scattering, to each adjacent layer. From these rebuilt wave
functions the second terms on the right sides of the expressions
for m(y) and S(y) are straightforwardly calculated by adding
the appropriate contributions. This procedure is especially im-
portant in spin transport calculations, as the quantities involved
depend on position and the simple BTK [45] procedure that one
employs for the conductance does not apply.

III. RESULTS

A. General

We report on the spin transport quantities, specifically the
spin current, the spin transfer torque, and the bias-dependent
portion of the magnetization, which as mentioned above is a
measure of the spin accumulation. Each of these quantities
depends on the applied bias voltage V , which we normalize to

E ≡ eV/�0, where �0 is the bulk value of the pair potential in
bulk S material. These quantities depend also on the position
y within the sample. All lengths are normalized by kFS ,
and normalized lengths are denoted by the corresponding
capital letter, e.g., Y ≡ kFSy. All energies except for the bias
are normalized to the Fermi energy in S. The magnetiza-
tion components mi are normalized by −μB (N↑ + N↓), and,
correspondingly, the spin current Si is normalized [14] by
−μB(N↑ + N↓)EFS/kFS . The normalization of the scattering
strength parameters has been introduced above: values in
excess of unity correspond to a tunneling limit situation. We
will assume that the two ferromagnetic materials are the same,
and hence take the field strengths h1 and h2 = h to be equal. We
will use the value h = 0.145 in our dimensionless units. This
value was shown to be appropriate to describe the transition
temperature [50] of similar samples in which Co was the
ferromagnetic material. Similarly, we will assume that the
scattering strengths for the two N/F interfaces are the same
HB1 = HB2 ≡ HB . We will take the effective coherence length
of the superconducting order parameter to be �0 = 115 which
was found to be appropriate for samples in which the S layer
was niobium [50]. We set the superconducting layer thickness
to be DS = 180, which is large enough compared to �0 to
allow for superconductivity, but not so large that the proximity
effect is negligible within the superconductor. This has been
shown in previous results [39] to provide a more prominent
critical-bias feature in charge transport due to the variation in
the pair potential �(y). For the same reason, we also take the
low-temperature limit T → 0 in our calculations. We will also
fix the thickness of the outer ferromagnet to DF1 = 30 as we
have found that the results are less sensitive to this parameter.
We will consider variations of DN and DF2. We have assumed
that any band mismatch parameters are unity. Although this
is not generally true in real systems, in practice the effects of
such a mismatch can be incorporated into the effective value of
the scattering strength parameter when interpreting and fitting
data. This fitting procedure was shown to correctly predict the
thermodynamic properties in similar [50] spin valve systems.

Below, we will be showing results for six different sets of
the parameters DF2,DN,HB,HB3. For each set of parameters
we will examine the following vector quantities: the spin
current, the spin accumulation δm(V ), the spatially averaged
spin accumulation in S and N , and the spatially averaged
STT in both F layers. For the first two, we will examine
each component at low-bias, E = 0.6, and at high-bias values,
E = 2. We will study the quantities δmi ≡ mi(V ) − mi(0)
and τi as a function of the bias, rather than of position, by
averaging these quantities over a layer. Thus, for example
〈τi〉 ≡ 1/D�

∫
dYτi(Y ) where the integral is over the relevant

layer, of thickness D�. In all cases we plot the results for
several values of the angular mismatch angle φ. The number
of quantities involved for each set of physical parameters
is excessively large; therefore we focus on only the most
remarkable features and angular dependencies, and on their
distinctive behavior as a function of the physical parameters.

B. Ideal interfaces

In Fig. 2 we show the results for a physical parameter set
with ideal interfaces (zero interfacial scattering). The layer
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FIG. 2. Results for ideal interfaces. The layer thicknesses for the F1/N/F2/S layers are 30/40/25/180, respectively, and the interfacial
barriers HB and HB3 are both zero. The key for the angular dependence is in the upper right panel of set (d). See text for details. (a) Local spin
current. (b) Local spin accumulation. (c) Spatially averaged local spin accumulation. (d) Spatially averaged spin torque.

thicknesses for the F1/N/F2/S layers are 30/40/25/180,
respectively. This case can be compared with previous results
[39] obtained in some particular cases in the absence of the
normal metal layer N . The normal layer greatly reduces the
STT at the interfaces between the ferromagnets. We start by
examining the fundamental features of each quantity men-
tioned, as a baseline for comparison with subsequent figures.
The set of panels labeled (a) show the components of the spin
current as a function of position, and the set labeled (b) the
spin accumulation, also as a function of position. Sets (c) and
(d) refer to the spatially averaged spin accumulation and STT,
respectively, as functions of bias.

In Fig. 2(a), we examine the spin current components Si

(top to bottom) as a function of position Y at low to high bias
(E = 0.6, left and E = 2, right). The position of the interfaces
is indicated by vertical lines. The origin is taken at the F2/S

interface. Only a small part of the S layer is shown, as the
behavior of S is constant in S beyond the region included. In
each panel, we plot the results for seven values of the angle φ,
as indicated by the key in the upper right panel of Fig. 2(d). In
each case we see that the spin currents at φ = 0 and φ = 180◦
are constant, as there are no spin torques when h1 and h2 are

collinear. Furthermore, Sx for φ = 90◦ is constant in F2 since
h2 in this case is along the x axis. Similarly Sz is constant
for all φ in F1 since, with our choice of coordinates, h1 is
along the z axis. As the bias increases, the magnitude of the
spin current increases, except for the y component, normal to
the layers, which is nearly bias-independent. This is because
Sy is driven primarily by the static spin torque that exists
near the boundary of the ferromagnetic layers: this torque is
entirely in the y direction. We see that Sy = 0 for all φ and all
biases within the S layer. This is possibly because the excess
current in S is due to triplets, and there are none formed in
the y direction. On the other hand, the Sx and Sz components
within the superconductor become nonzero at high bias for all
angles φ.

These nonzero spin currents in S occur when the applied
bias is greater than the critical bias (CB). This bias corresponds
to a value smaller than �0: it represents the effective gap energy
that the superconductor provides near the interface due to the
singlet correlations. The singlet pair amplitudes have previ-
ously been shown to be angularly dependent, and the changes
in these amplitudes were shown to correspond with the change
in critical temperature (see, e.g., Ref. [55], Figs. 2 and 3).

174506-6



SPIN CURRENT AND SPIN TRANSFER TORQUE IN … PHYSICAL REVIEW B 97, 174506 (2018)

FIG. 3. A 3D representation of the spin current from Fig. 2(a)
at φ = 90◦ and E = 2.0. From left to right, the boxes comprise the
layers F1/N/F2/S, respectively. The spin current precesses about the
exchange field in F , while also dampening in F2. The orientation of
the field in S is rotated to 90◦ from the z axis.

The reduction or increase in the CB directly correlates to the
corresponding change in the singlet amplitudes and thus has a
nonmonotonic dependence on φ. This dependence of the CB
is due to the proximity effect between the F2 and S layers. The
angular dependence comes from the formation of triplet pairs
where there is angular mismatch in the system. In this case, with
perfect interfaces, the angular dependence of the CB is large,
confirming previous results for the charge current [39]. It can be
observed that at E = 0.6, the critical-bias values for each angle
are sometimes above and sometimes below that value of E. For
angles such that the CB is greater than the bias (E = 0.6 in this
case), the spin current is zero in the superconductor. However,
when the CB is lower than the applied bias, the excitations
have energy greater than the effective gap energy and at those
angles we find nonzero spin current in S.

By viewing the spin current in 3D, we can get a better grasp
of its overall orientation within the multilayer. In Fig. 3, in the
high bias limit and at φ = 90◦, we see that the spin current
rotates in the x-z plane from near the z direction in F1 to
an angle close to the mismatch angle φ in F2 and S. In the
ferromagnetic layers, we see the spin current precessing about
the exchange fields h1 and h2 in F1 and F2, respectively. The
precession in F2, however, is damped due to the proximity
effect of the superconductor, the current becoming constant
at the F2/S boundary. The spin current in the normal metal
layer is also constant, since there are no torques there. The
orientation of the spin current in N is rotated in the x-z plane
to an angle between 0 and φ, with a nonzero y-component that
is due to the net STT in both ferromagnetic layers.

In Fig. 2(b) we examine the x and z components of δm for
low to high biases (left to right) as functions of Y . The y com-
ponent is several orders of magnitude smaller and we do not
show it. The component δmx is zero for φ = 0 and φ = 180◦.
δmz is nonzero and only weakly φ-dependent in F1, whereas
δmx is oscillatory and small in this region. Furthermore, δmz

and δmx are nonzero and nearly constant with position in the
S region at large bias. In general the magnitude of the spin
accumulation δm(V ) is oscillatory everywhere at low biases,
but with small amplitudes. It oscillates in N and irregularly
rotates in the x-z plane, particularly for mismatch angles near
φ = 90◦. The overall magnitude increases with bias with very
little change in the angular dependence. The spin accumulation
vector tends to align with h2 within the superconductor: this is

similar to the spin current behavior. The magnitude of δm also
decreases, in all layers, as φ increases from 0 to 180◦.

In Fig. 2(c) we examine the spatial average (as defined
earlier in this section) of δm(V ) in the N and S layers (upper
and lower plots, respectively), as a function of bias. In both
regions, 〈δmx〉 vanishes for φ = 0 and φ = 180◦. In S we can
see a critical-bias behavior in 〈δmx〉, at which value the magni-
tude begins to rise quickly with bias, becoming approximately
linear. In both regions each component is nonmonotonic in
φ. In S 〈δmx〉 is maximized between φ = 60◦ and φ = 90◦
while in N it is most negative at φ = 150◦; 〈δmz〉 features a
similar but less dramatic critical-bias feature only in S, with
this component decreasing for angles φ > 90◦.

In Fig. 2(d) we consider the average spin transfer torques
as a function of E, as just done with the average spin
accumulation. We do so only in the ferromagnetic regions
where the torques are nonzero. The component τz is zero in the
outer ferromagnetic region F1, since the field h1 is along the
z direction, and it is not plotted: the angular key for the entire
figure is shown instead. The torque τ is always zero for φ = 0
and φ = 180◦, and τx = 0 for φ = 90◦ in F2: this follows from
our geometry. We see a strong critical-bias feature in the x

component in both F1 and F2, and also in the z components
in F2: the averaged torque is zero below the CB, and then
grows linearly with increasing bias. The x component in F1,
and the z component in F2, show similar behavior, with a steady
increase or decrease in value, respectively, for all angles, and
a maximum magnitude between φ = 90◦ and φ = 120◦. 〈τx〉
in F2 is different: it increases with E for angles φ < 90◦ and
decreases for angles φ > 90◦. 〈τy〉 has very different behavior
from both of the other components: it is nonzero at zero bias
due to the static ferromagnetic proximity effect. Because of
this, 〈τy〉 is nearly independent of bias, slightly decreasing
in magnitude in both ferromagnetic regions. It follows from
Eq. (7) in the steady state that the net change in spin current in
N and S is directly proportional to the average torque. Indeed,
the constant Sy in the normal metal can be described by the net
average torque τy in both ferromagnetic regions.

In this subsection we have analyzed the the spin current and
spin accumulation for the ideal interface case. Although such
perfect samples cannot be fabricated, much that is learned in
this simple case can be applied to more realistic systems. A
good part of the discussion for Fig. 2 will apply to the results
for other physical parameter values presented below. We have
seen that in the high-bias limit the spin current precesses in the
F layers about the respective internal exchange fields hi, while
being a constant in N and S with an orientation determined by
that of the neighboring exchange fields of the ferromagnets.
We also see that the in-plane components of the spin current
(Sx and Sz in our coordinate system) are bias-dependent, and
the plane-perpendicular component (Sy) is bias-independent.
The latter is due to the proximity effect between the two
ferromagnetic layers, which produces a torque solely in the
y direction without an applied bias. More remarkable is the
bias dependence in the x and z components of the spatially
averaged spin torque, which shows a critical-bias behavior of
its own. Above the CB value, the magnitude of the torque and
the spin current increases linearly, while below there is no bias
dependence. This is similar to the charge current behavior in the
tunneling limit. Consistent with this, there is no penetration of
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FIG. 4. Results for a nonzero tunneling barrier at the F2/S interface. The layer thicknesses are as in Fig. 2 and the interfacial barriers are
HB = 0 and HB3 = 0.9. See text for details. (a) Local spin current. (b) Local spin accumulation. (c) Spatially averaged local spin accumulation.
(d) Spatially averaged spin torque.

the spin current within the superconductor below this CB. The
spin accumulation behaves similarly to the spin current, but is
not constant in magnitude in N or S, nor in orientation within
N , and the overall behavior is highly oscillatory. The spatially
averaged local δm(V ) also features a CB feature, separately
from that of the torque. For this ideal case, the bias feature is
less pronounced than in the nonideal case (see below), but a
clear transition can be seen in the quasilinear bias trends below
and above the bias thresholds that are not obviously related to
those of the spin current features.

C. Interfacial scattering

We now turn on the effect of interfacial scattering. First
we consider, in Fig. 4, the case where only a barrier at the
F2/S interface exists, with a qualitatively large scattering
parameter value HB3 = 0.9. The layer thicknesses are as in the
previous figure. When the scattering is large at this interface,
the superconducting proximity effect is reduced. We compare
this case to the zero-scattering limit of Fig. 2 in order to
examine closely how the basic features of the proximity effect

influence the spin currents. The organization of the panels in
Fig. 4 is the same as in Fig. 2.

In Fig. 3(a) we see that the x and z components of the spin
current are now driven to zero, within numerical precision,
at low bias. This is due to the increase in the CB due to
the barrier, which weakens the proximity effect and thereby
makes it more difficult for the Cooper pairs to propagate out
of the superconductor and convert to long-ranged triplets. The
y component, however, is still nonzero due to the static spin
torques from the ferromagnetic proximity effect. Unlike in
the other cases discussed, Sy now increases significantly at
higher biases, although not as dramatically as the other two
components. In the high-bias regime, the system returns to
precessing about h in the ferromagnetic regions. S is also
rotated about the x-z plane, this time closer to the second
ferromagnetic field h2 which is oriented at an angle φ. The
overall magnitude of the spin current is of course reduced by
the barrier.

In Fig. 3(b) we see that the spin accumulation is significantly
decreased in magnitude within the superconductor at the low-
bias limit. The magnitude increases dramatically in S at high
bias, although it remains smaller than for perfect interfaces.
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FIG. 5. Results for nonzero barriers in the F1/N and N/F2 interfaces. The layer thicknesses are as in Figs. 2 and 4. The interfacial barriers are
HB = 0.5 and HB3 = 0. See text for details. (a) Local spin current. (b) Local spin accumulation. (c) Spatially averaged local spin accumulation.
(d) Spatially averaged spin torque.

Furthermore, we see that the magnitude of δm is highly os-
cillatory in the superconductor. The orientation remains fixed
to that of the exchange field h2. In the normal metal, the spin
accumulation rotates counterclockwise within the x-z plane
for φ < 90◦ and then reverses direction to become aligned
with the z axis again for φ = 180◦. The rotation in the x-z
plane is uniform throughout the N layer in the high-bias case,
but not for low-bias values. In the spatially averaged results of
Fig. 3(c) we note a remarkable feature in the superconducting
layer: a dramatic, sharp increase in the magnitude of 〈δm〉 at
the critical bias, after which the magnitude grows at a much
slower rate. The angular dependence remains approximately
the same as in Fig. 2(c). The low-bias spin accumulation is
heavily impeded by the high barrier. In Fig. 3 we show that
the average STT exhibits the same critical-bias features as in
Fig. 2(d). However, the high barrier causes the critical bias to
increase and to become nearly φ-independent. Its value is seen
to be E ≈ 0.85 in the results for 〈τx〉 (in both F1 and F2) and
for 〈τz〉 in F2. Furthermore, 〈τx〉 in F2 shifts to become almost
entirely negative. The y component is changed dramatically by
the barrier: 〈τy〉 steadily increases in magnitude with increased
bias for all angles except φ = 150◦. The static spin torque is

heavily reduced by the introduction of a large barrier between
F and S, which increases the pair potential at the interface.

In Fig. 5 we turn to the converse case where the scat-
tering potentials at both of the F/N interfaces are nonzero,
while the F2/S barrier is ideal, thereby complementing the
study in the previous figure. The layer thicknesses are again
30/40/25/180. For the interfacial barriers we take HB = 0.5
(a value not so high as to be in the tunneling limit) and
HB3 = 0. Thus, there is a full proximity effect between S

and F2. We now are interested in how the scattering within
the spin valve structure affects the spin transport. Perhaps
unsurprisingly, the introduction of these barriers turns out to
be very important, as the spin valve effect, which determines
much of the spin transport features, is quite sensitive to these
scattering potentials. In Fig. 5(a) we see that the spin current is
nonzero in the N region at low bias, as in the zero-barrier case.
Sy in N is now almost entirely bias-independent and its angular
dependence is symmetric about φ = 90◦, positive for φ > 90◦
and negative for φ < 90◦. Similarly, the φ dependence of Sx at
low bias is nearly symmetrical with respect to φ in all layers.
At high bias, we again see that the x and z components of
the spin current increase, penetrating the superconductor. Due
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to the significant interfacial scattering, the overall magnitude
decreases from the zero-barrier case, especially for the x and
z components.

In Fig. 5(b) we see that, in comparison to the corresponding
perfect interface case of Fig. 2(b), the angular dependence is
decreased in the normal metal layer, with more oscillations
in δmx about the zero value and a peak forming in δmz in
both the low and high bias cases. In Fig. 5(c) we see that the
average spin accumulation in S has an angular dependence and
critical-bias features similar to those found in the zero-barrier
case, but with decreased magnitude. An exception is for the
x component at φ = 150◦, which is significantly larger. In the
normal metal, 〈δmx〉 increases up to a φ-dependent CB, then
steadily decreases for increasing bias. 〈δmz〉 monotonically
increases with bias, and has a greater magnitude than 〈δmx〉.
In Fig. 5(d) we see significant differences in the behavior of
the average STT, as compared to the single high-barrier case
of Fig. 4(d). 〈τx〉 in F1 no longer features a CB behavior: it
is nearly constant with E. In both ferromagnets, 〈τy〉 is again
only weakly dependent on bias, with a slight increase in the F1

layer and a decrease in the F2 layer. The overall magnitude is
significantly smaller, in all layers and for all components, than
in the zero-barrier case. In F2, we see a remarkable symmetry
emerge in the angular dependence of the averaged τx and τz. For
〈τx〉, the values for φ = 30◦ and φ = 60◦ are both increasing
and positive, while those for φ = 120◦ and φ = 150◦ are
decreasing by an equivalent amount. Similarly, for 〈τz〉, we
see an equivalent decrease in value with increasing bias for
supplementary angles (φ = 30◦,150◦ and φ = 60◦,120◦).

In Fig. 6 we finally examine the relevant situation where
there are scattering barriers at all interfaces. Thus, in addition
to the two interfacial scattering barriers with HB = 0.5 in
Fig. 5 we include an additional scattering barrier at the
F2/S interface, with HB3 = 0.3. Although it is reasonable to
assume that efforts will be made to minimize the scattering at
this interface, unavoidable experimental limitations and wave
vector mismatch (as mentioned above) imply that one can
never assume that any barrier will perfectly vanish. The layer
thicknesses are as in the previous figures. The organization of
this figure is simplified, when compared to the previous ones.
The local spin current is not shown in Fig. 6 because it is very
similar to that in Fig. 5(a). We see then that the introduction of a
third barrier of intermediate size at the F2/S interface does not
significantly affect the spin current. The spin transfer torques
also remain unaffected: this is because the proximity effect is
not seriously inhibited by this additional barrier, and the spin
valve effect dominates the spin transport, in these cases. Hence,
the sets of panels corresponding to (a) and (d) in the previous
figures are omitted, and we focus in this figure on the spin
accumulation and its spatial average, panels (b) and (c) in the
previous figures, now in the top four and bottom four panels,
respectively. The color key for the φ dependence is as indicated
in Figs. 2(d) and 4(d).

In the top panels we see that δm in the normal metal
layer departs significantly from what we found in Fig. 5(b) at
HB3 = 0. In δmz we observe a transition from the single-peak
result seen in Fig. 5(b) to a triple-peak structure particularly
prominent for φ < 90◦. The x component also forms three
peaks at low and high biases in N , at all angles. As in the
previous cases, δm is rotated in the x-z plane in N . However,
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FIG. 6. Results with nonzero interfacial barriers at all interfaces.
The layer thicknesses are as in the previous figures, and the interfacial
barriers are HB = 0.5 and HB3 = 0.3. The top four panels are the
local spin accumulation, and the bottom four panels are the spatially
averaged spin accumulation. The color key for the angular dependence
is as in Fig. 2(d). See text for details.

these rotations are nonuniform, and strongly nonsinusoidal,
with the troughs aligning with the z axis while the peaks align
at an angle less than the mismatch angle φ.

In the bottom panels we see in 〈τi〉 an enhancement in the
critical-bias feature in S seen in Fig. 5(c), reflecting that the
low-bias conductance is depressed in this case [39]. There is
a steep growth in the magnitude of δm, averaged in S, at the
critical bias. In the normal metal, we see a behavior for 〈δmz〉
similar to that in Fig. 5(c) but with a remarkably different
angular dependence. For 〈δmx〉 in N we see a very different
high-bias behavior, where 〈δmx〉 increases dramatically at the
critical bias and then abruptly levels off to a flat or slightly
decreasing bias dependence. The behavior in the average δmx

in N is now much more similar to that of δmx or δmz in S.
The dependence of the spin current and δm(V ) on interface

quality, which we have considered in this subsection, is
particularly important, not only because ideal interfaces are
not possible, but also because interfacial quality cannot be
perfectly replicated between samples. Therefore, understand-
ing this dependence is vital to explain differences in measured
quantities of similarly constructed samples. We started with a
tunneling barrier between the F and S layers, which produced
results that differ greatly from the more ballistic, low-barrier
cases, both for the spin current and the spin accumulation.
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We find a stronger critical-bias behavior in the spin current
and torque, where the CB moves to unity in our units. This
is because of the weakening of the proximity effects in the
tunneling limit. The spin current is strongly driven to zero for
bias values below the CB. The spin accumulation in the S

region is similarly driven low below this value, but no such
strong CB feature is seen in the local δm(V ) within the normal
metal. The behavior in the tunneling limit directly contrasts
with that found for the intermediate barrier strengths of the next
two cases (barriers HB = 0.5, HB3 = 0 and HB = 0.5, HB3 =
0.3 respectively) whose spin current features are similar to each
other. We see a vanishing CB effect in the magnitude of the spin
current and torque in F , possibly due to resonance effects in
the intermediate barriers. However, we do still see a CB effect
in the penetration of the spin current into the superconductor,
as found for the ideal barrier case. In both cases, we also see
a prominent, although weaker, critical-bias effect in the local
δm(V ) in the S layer. However, we also see a CB effect in the
normal metal, absent in the tunneling case. The behavior of
the local spin accumulation in N depends on the value of HB3.
There is a regular oscillatory pattern in δm(V ) for nonzero
HB3 that results in three peaks that have a regular rotation in
orientation within the normal metal. This leads us to conclude
that the critical-bias behavior of the spin accumulation in N

is distinguishable from that of the spin current. We also see
a completely new phenomenon in the oscillatory local spin
accumulation that is bias-independent but dependent on the
physical parameters of the system.

D. Dependence on layer thickness

In the next two figures, Fig. 7 and Fig. 8, we consider the
dependence of the results on geometry, i.e., on layer thickness.
We examine a situation where the top four panels are the
local spin accumulation, and the bottom four panels are the
spatially averaged spin accumulation. The scattering barriers
are all nonzero and have the same values as in Fig. 6, namely
HB = 0.5 and HB3 = 0.3, but we now vary the intermediate
layer thicknesses of the normal metal, DN (Fig. 7), and then
that of the the inner ferromagnet, DF2 (Fig. 8). The layer
thicknesses of the F1 and S layers remain DF1 = 30 and
DS = 180 in both figures. In Fig. 7 we increase the normal
metal layer spacing from the previous value DN = 40 to
DN = 60, leaving DF2 = 25, while in Fig. 8 we decrease
the inner ferromagnetic layer thickness from DF2 = 25 to
DF2 = 15, while leaving DN = 40. Geometric changes can
strongly affect the transmission and reflection amplitudes, just
as they do in elementary quantum mechanics problems such as
that of transmission across two barriers, where the results can
depend drastically on the separation between the two scattering
centers. Here we examine how these rather minor changes
in the geometry affect the spin transport quantities. We have
found little change in the spin current and spin torque when
increasing DN ; thus in Fig. 7 we only include plots of the
spin accumulation and its average, following the scheme of
Fig. 6, in the top four and bottom four panels, respectively.
For Fig. 8, on the other hand, we include the results for spin
current and torque components as we find nontrivial changes
in the magnitude and orientation of the spin current, following
then the organizational scheme of Figs. 2, 4, and 5.
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FIG. 7. Results with an increased normal metal layer thickness,
emphasizing the DN dependence. The layer thicknesses for the
F1/N/F2/S layers are 30/60/25/180, respectively, and the interfa-
cial barriers HB and HB3 are 0.5 and 0.3, respectively. The top four
panels are the local spin accumulation, and the bottom four panels
are the spatially averaged spin accumulation. The color key for the φ

dependence is as in, e.g., Fig. 2(d).

In the top panels of Fig. 7 we observe a three-peak structure
for the spin accumulation in N similar to that found in the top
panels of Fig. 6, but with several distinctions. First, we see that
δmz has now fully transitioned to the three-peak behavior for
all φ and all biases. Also, the three-peak behavior is inverted
in δmx . Indeed, δm makes now a clockwise rotation in the
x-z plane in N , contrary to both the spin current and spin
accumulation behaviors we have seen thus far. The orientation
in S remains unaffected. We also see a significant increase in
the magnitude of δm in all layers for high biases, indicating
greater growth in the spin accumulation. In the bottom panels
we see a behavior in the average spin accumulation in S similar
to that in the bottom panels of Fig. 6, with increases to the x

component for angles φ = 30◦, 90◦, and 120◦. The behavior
in N is significantly different from that found in the previous
cases, where in the x component we now see no major critical-
bias behavior and a steadily decreasing bias dependence: this
is now similar to the behavior of the magnitude of the z

component. The z component has the usual steady increase
with bias, but the angular dependence is now most similar to
that in Fig. 5(c). We see then that the angular dependence is
very sensitive to both the layer thickness and the barriers.
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FIG. 8. Results with a decreased intermediate ferromagnetic layer thickness, emphasizing the DF2 dependence. The layer thicknesses for
the F1/N/F2/S layers are 30/40/15/180, respectively, and the interfacial barriers are HB = 0.5 and HB3 = 0.3. (a) Local spin current. (b)
Local spin accumulation. (c) Spatially averaged local spin accumulation. (d) Spatially averaged spin torque.

For Fig. 8 we revert to the full set of plots used, e.g., in
Fig. 2, with the same internal organization. In Fig. 8(a) we see
[when comparing with the results shown in Fig. 5(a) which,
as mentioned, are quite similar to those for the case shown in
Fig. 6] that when decreasing the intermediate ferromagnetic
layer spacing, the x and z components of the spin current
decrease quite significantly in the low-bias limit, but on the
other hand, they increase somewhat in the high-bias limit,
especially the Sx component. The orientation of S in the
superconductor is now rotated closer to the negative z direction,
much more significantly so for orientations with φ > 90◦.
This feature is complemented by Fig. 8(d), where the average
spin torque is seen to increase its rate of growth. This may
seem counterintuitive at first, but it is important to note
that the superconducting pair amplitudes are damped by the
ferromagnetic layer.

In Fig. 8(b) we see, comparing now directly with Fig. 6,
that decreasing DF2 changes the spin accumulation in N from
a three-peak to a two-peak structure with the same angular
dependence and greater magnitude. The peaks also show a
greater rotation in orientation compared to those in Fig. 6,
where the spin accumulation is more closely aligned to the

orientation of h2 than before. The troughs of these oscillations
are still oriented along the z axis. The overall magnitude of
the spin accumulation also increases dramatically with bias,
at a much greater rate than those in the systems discussed
previously, as can be seen in Fig. 8(c). However, 〈δmx〉 in N

steadily increases with bias, with a slight peak near the critical
bias. The average spin accumulation at angle φ = 150◦ does
not increase with bias, and remains an outlier.

In considering the geometry dependence in this subsection,
we have focused on the thickness of the intermediate layers, as
these tend to be the thinnest in actual systems and the impact
of small deviations in the design and fabrication process needs
to be understood. We have found previously that these layers
have the greatest impact on charge transport [39]. However,
we see almost no dependence of the spin current on the
normal metal layer thickness (see Fig. 6 and Fig. 7). This
is likely due simply to this layer being nonmagnetic. The
spin accumulation shows a similar critical-bias behavior and
a three-peak oscillating pattern in the normal metal layer, but
with a curious distinction: the orientation, and in general the
x component bias dependence, of δm(V ) reverses direction,
rotating δm clockwise in the x-z plane in N . This is in the
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opposite direction of the general rotation between the h1
and h2 exchange fields. We have not yet determined why
this may happen and it warrants further study. We do find
a strong dependence on the spin current on the intermediate
ferromagnetic layer thickness DF2. By decreasing DF2, we see
a reemergence of the CB effect in the spatially averaged torque,
as well as greater growth of the spin current magnitude with
bias. We also see a dramatic change in the spin accumulation in
N , where, comparing Fig. 6 to Fig. 8, changes in the oscillation
of the local spin accumulation occur, resulting in only two
peaks. These figures are for the same DN and the same value
of the exchange field. We conclude that the DF2 dependence is
the most important layer thickness quantity for the spin current
and spin transport torque properties of the system, whereas the
spin accumulation is highly dependent on both the DN and DF2 ,
in addition to the interfacial scattering dependence as was seen
in the previous subsection.

IV. CONCLUSIONS

We have investigated spin transport for F/N/F/S super-
conducting spin valves. Through our study, we have predicted
the main characteristics of the relevant spintronic quantities,
namely the spin current, the spin transfer torque, and the local
magnetization (a proxy for spin accumulation). We have done
so for multiple variations of the geometrical and interfacial
parameters of the spin valve. Our focus has been on clean
samples with thicknesses similar to those that have been fabri-
cated, and which include a normal metal spacer and reasonably
good interfaces. The material parameters employed, such as
internal field and coherence length, have been shown to be
valid for such samples where Nb is the superconductor, Cu
the normal spacer, and Co the ferromagnet: these values were
successfully used previously to quantitatively fit, using our
theoretical methods, the transition temperatures [50] of similar
spin valve heterostructures. This quantitative success makes us
confident as to the validity of the predictions presented here.
Our main results are given as a function of position within
the spin valve, and of the applied bias. We consider both
low-bias values and the high-bias limit where the bias exceeds
the bulk superconductor gap. We emphasize the dependence
of all results on the misalignment magnetization angle φ

between the F layers; the misalignment determines the triplet
pair formation, hence the range of the proximity effects and
indeed the valve action. Our analysis includes variation of
the interfacial scattering parameters and intermediate layer
thicknesses to better encompass a full picture of possible real-
world results. However, the parameter space is exceedingly
large with no possible extrapolation due to the oscillatory
behavior of many quantities and the complexity of the self-
consistent calculations required. Therefore, what we present
here is merely a subset of our results with the expressed purpose
of establishing the main characteristics of the outcomes and
exhibiting a glimpse of the richness and variety of what can be
done.

Our results are presented in detail in Sec. III. We begin by
discussing the the dependence of the results on the scattering
potential barriers that would be prevalent in even the most ideal
fabrication processes. Then, starting with a realistic geometry,
we vary the intermediate layer thicknesses while keeping

them within an experimentally realistic range. In our results
we see a distinct critical-bias behavior where, for a certain
value of the bias, which is in general φ-dependent and always
smaller than the bulk S gap value, the spin transport behavior
changes, with both the spin current and the spin accumulation
beginning to penetrate into the superconductor. By analyzing
the spatially averaged spin accumulation and STT within each
layer, we also see the critical-bias behavior featured in the
magnitude of these quantities. We are then able to analyze the
trends both above and below the critical bias. These averages
show distinct growth in the spin accumulation in S, and
also in N for certain sets of both interfacial scattering and
thickness parameters. The spin transfer torque also shares this
behavior within the ferromagnetic regions, with an additional
symmetrical behavior in the angular dependence when the
interfacial barriers are fully introduced.

We also observe, at fixed higher bias, the spatial precession
of the spin current within the ferromagnets due to the spin
transfer torque. The spin current precesses about the internal
field of the ferromagnet, with a decaying amplitude within
the intermediate F2 layer due to the proximity effect of the
superconductor. This results in both the spin current and the
spin accumulation being oriented within the superconductor at
an angle near the field misalignment angle φ, and at an angle
between zero and φ within the normal metal layer. This is only
one way in which the misalignment angle plays a factor. In-
deed, the critical-bias features are angularly dependent chiefly
because of the angular dependence of the triplet amplitudes,
resulting in a very complex and in general nonmonotonic
behavior in φ for all of our spin transport quantities. The
angular dependence of the critical bias was already exhibited
in our previous results [39] for the charge current, and they
correlate with the critical-bias features found in the averages.

Another noteworthy feature of the spin accumulation occurs
within the normal metal layer, where the system transitions,
as parameters vary, from a situation where the magnitude of
this quantity has a single peak at the center of the normal
layer, to multiple-peak behavior. We find that by varying
either the interfacial scattering parameters or the normal metal
layer thickness, we get a transition into a three-peak behavior.
Naively, one would assume this to be due to the to the normal
quantum mechanical effects of the spacial oscillations alone.
However, by varying the thickness of the intermediate ferro-
magnetic layer DF2, we see a two-peak behavior for the same
normal metal layer thickness and interfacial scattering values.
This is unique to these spin valve systems, which are highly
sensitive to the exact set of parameters, both geometrical and
physical. Indeed, the spatial spin current and spin accumulation
features cannot be extrapolated to trends within the set of
parameters we have analyzed. However, the average quantities
of the spin accumulation and spin transfer torque may be at
least sometimes extrapolated at high-bias values, as the spatial
averages tend to be quasilinear in this limit.

Thus, we have calculated both the spin current and spin
accumulation in superconducting spin valves for a set of
experimentally relevant parameters. The dependencies of these
quantities on the parameters (including the misalignment angle
φ) are complex, nonmonotonic, and extremely rich in features.
Many of these features are not yet fully understood, and only
the most prominent ones have been discussed in this work to
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a sufficient extent. In the greater context, we can make a few
general conclusions: The spin current and spin transfer torque
are the more stable quantities under small variations of the
physical parameters, when compared to the spin accumulation.
This suggests that reproducible experimental measurements of
the spin current can be more easily realized than those of the
spin accumulation. We see no penetration of the spin current
below the critical bias. We find a critical-bias feature in the
quasilinear growth of the spin current and spin torque both
above and below the CB. The value of the CB varies with φ, as
it does for charge current, which reflects that it is determined
largely by the equilibrium behavior of the pair potential. The
prominence of the features observed varies with interfacial
scattering and with the intermediate ferromagnetic F2 layer
thickness. The spin accumulation is highly dependent on the
physical parameters. The CB features of the local magnetiza-
tion are different from those of the spin and charge current, and
have a greater dependence on the interfacial barrier strengths.

We also see a peculiar behavior in the normal metal region:
regular oscillations and rotations of the spin accumulation
vector emerge when the interfacial scattering is nonzero. The
wavelength of these oscillations and their orientation depend
on the thickness of the F2 and N layers. This phenomenon
merits further study both theoretically and experimentally.

We expect these results to be a footstool on which more
understanding can be developed of the spin transport properties
of these nanoscale superconducting spin valves, both through
experiment and through continued theoretical work.
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