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We present an analysis of neural network-based machine learning schemes for phases and phase transitions in
theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural
networks were previously found to be efficient in classifying phases and locating phase transitions of various
basic model systems. In order to rationalize the emergence of the classification process and for identifying
any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter
kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the
learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method,
to diagnose the learning parameters of neural networks. In particular, we study the classification process of both
fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain
wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY
model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks
trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We
discuss these findings in relation to similar recent investigations and possible further applications.
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I. INTRODUCTION

The use of machine learning approaches is in the focus of
several recent developments in theoretical condensed matter
research. In particular, neural networks have been suggested
for identifying phases of matter as well as phase transitions
[1–12]. One motivation behind such proposals is the ability
of appropriately designed and trained neural networks, as
universal function approximators [13,14], to identify patterns
from a large set of data [15]. In applications from condensed
matter theory, such data sets may consist of sample configura-
tions of a many-body system generated, e.g., by Monte Carlo
simulations. A key point of such machine learning approaches
would be to minimize the amount of preprocessing of the bare
sample configurations before feeding them into the learning
process and to thus leave it to the network to identify the
physically relevant features. As such, neural networks would
indeed be useful computational tools to detect unexplored
phases or phase transitions in condensed matter.

Within a setting known as supervised learning, the neu-
ral network is trained to distinguish different phases of a
many-body system, based on a large number of training
set configurations in combination with appropriate learning
schemes. The network’s internal classification should then
allow it to associate a previously unseen configuration to the
appropriate phase with a high fidelity. Consider for example
a system that exhibits two different thermodynamic phases,
which are separated by a thermal phase transition at a transition
temperature Tc. Given the value of Tc, one can explicitly label
each training batch configuration as belonging to either the
high or the low temperature phase. Depending on the neural
network design, rather high accuracies can indeed be achieved
by such supervised learning approaches in classifying a new
configuration as belonging to the high or the low temperature
phase [1].

For cases where the actual value of Tc is not known, various
schemes have been proposed that use neural networks to obtain
an estimate for Tc. In one such approach, the confusing scheme
[2], the neural network’s ability to identify patterns is combined
with the idea of labeling the training batch configurations
based on a guess value of the true Tc. The final estimate
for Tc is then obtained as the guess value, for which the
network shows an optimal test accuracy. Further variants of
this semiunsupervised learning scheme have been suggested
recently [7,10].

In general, various neural network designs can be consid-
ered for such classification tasks. Deep learning, wherein the
neural network exhibits a hierarchy of several internal layers
is particularly prominent for a broad range of applications
[16]. On the other hand, for various applications considered
in the condensed physics context of phase transitions and the
identification of phases of matter [1–12], it appears that also
networks with only a few hidden layers perform rather well. In
contrast to the complexity of deep learning networks, for such
shallow networks the classification mechanism resulting from
the training phase may still be rationalized to a satisfactory
degree upon examining the network’s connection weights and
filter kernels. As a further diagnostic tool to identify physical
parameters relevant for the classification process, we perform a
direct comparison of the network’s classification performance
to a simple threshold-value classification based on specific
physical observables (we will introduce this approach in
Sec. V). As we will show below, such diagnostic approaches
can provide insights into how the neural network classification
actually comes about in a given specific application. In the
following, we use the basic examples of the two-dimensional
Ising and XY models to perform such a diagnostic analysis of
different neural network-based learning schemes. We consider
several issues that may appear in attempts to employ such
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machine learning methods to study many-body phases and
phase transitions of more complex systems.

The remainder of this paper is organized as follows: In the
first part, we concentrate on the Ising model. In particular,
in Sec. II, we review the supervised learning approach based
on the most basic, fully connected neural network with a
single hidden layer. Here, we furthermore examine in detail
the classification process for a small number of neurons on
the hidden layer. Then, in Sec. III, we analyze how the
classification process differs, once a significant amount of low-
temperature configurations are included that contain extended
domain walls (EDW). In such EDW configurations, the system
is divided in two oppositely ordered extended domains, along
with domain walls that typically extend across the full linear
size of the system (the inset of Fig. 4 provides an example).
To correctly classify such EDW configurations, convolutional
neural networks (CNN) are more effective and we examine
in detail how the different filters contribute to the overall
classification procedure of a CNN in the presence of EDW
configurations. In the second part, we then consider the XY
model. First, in Sec. IV, we examine the classification process
of a CNN for the XY model in the context of supervised
learning. In Sec. V, we then examine the learning-by-confusion
scheme as applied to the XY model and also introduce a
threshold-value classification scheme that turns out to be useful
in order to understand both the behavior of the CNN as well
as the learning-by-confusion scheme for the XY model. We
expect this approach to be of value for the diagnostics of other
models, neural network designs, and deep learning schemes as
well. Finally, in Sec. VI we provide a summary of our findings
and a comparison to related recent work.

II. SUPERVISED LEARNING THE ISING MODEL

The two-dimensional Ising model has been considered
early on in the application of machine learning methods
in condensed matter physics. Here, we revisit in particular
the supervised learning approach for classifying Ising model
configurations into the high and low temperature phases by
using a simple fully connected feed forward neural network
[1]. For this purpose, we feed to the input layer the real space
spin configurations of an Ising model with N = L × L spins,
σj = ±1,j = 1,...,N , for a finite square lattice with periodic
boundary conditions, described by the Hamiltonian

HI = −J
∑

〈j,j ′〉
σjσj ′ , (1)

where we fix units in terms of the nearest-neighbor coupling
J = 1. For the analysis in this section, we generated spin
configurations at different temperatures, weighted by the
Boltzmann distribution, using the Wolff cluster algorithm [17].
This allowed us to efficiently generate a large number of
uncorrelated sample configurations over a wide temperature
range. Furthermore, in the low-temperature regime, the spin
configurations obtained this way do not exhibit extended
domain walls (EDW), i.e., the obtained low-temperature con-
figurations are strongly polarized either up or down. This turns
out to be important for the learning process. In the next section,
we analyze to what extent the learning process differs, once a
significant number of EDW configurations are present, e.g.,

when local spin updates are used instead to generate the spin
configurations.

In the following, we denote the signal of the j th input neuron
by xj , such that for a given spin configuration, xj = σj . The
fully connected neural network consists of a single hidden
layer with a number Nf of neurons. The activity zi of its ith
neuron is obtained upon applying an appropriate activation
function [15,18] h (such as the rectified linear unit ReLU(·) =
max(0,·) or the sigmoidal function σ (·) = [1 + 1/ exp(·)]−1)
to its activation ai , i.e., the linearly weighted summation of
the input signal, so that zi = h(ai), with ai = ∑

j wi,j xj + bi,

with an Nf × N weight matrix wi,j and the local bias bi .
The activity on the second, output layer with two neurons is
yl = softmax(a′

1,a
′
2), where a′

l = ∑
i w

′
l,izi + b′

l , for l = 1,2,
in terms of the softmax activation function [15], again with the
corresponding weight matrix and local biases. The ratio R of
the two output activities is then obtained as

R = y1

y2
= eb′

1−b′
2

∏

i

ezi (w′
1,i−w′

2,i ). (2)

In the following, the two output neurons correspond to the
high (l = 1) and low (l = 2) temperature phase, respectively.
Hence, R gives the ratio of the assigned probabilities for
classifying a given input configuration to the high- or low-
temperature phase. The classification task thus essentially
requires learning a threshold value for the activities zi , as the
above ratio is strictly monotone in every argument zi , which
are nonnegative numbers.

In previous studies, it was demonstrated that already a nar-
row hidden layer of only three (Nf = 3) neurons exhibits a high
overall classification accuracy [1]. The neural network was fur-
thermore found to rely on the magnetization m = 1

N

∑
j σj of

the input configurations to perform the classification. Namely
after training, each of the activations of the hidden units, ai ,
showed an essentially linear dependence on the magnetization
m of the input configuration, such that the neural network could
be said to have learned the magnetization. A network with
Nf = 100 neurons on the hidden layer exhibited a similar
behavior. These neurons were of four characteristic types,
being active either if the input configuration is dominantly
polarized up (or down), or being active if the input states is
either polarized up (or down) or unpolarized [1]. One may
indeed expect such an essentially equal distribution of a large
number of hidden neurons among the low number of different
characteristic types to result from the learning process with
random initialization of all weights and biases.

For a smaller number of hidden neurons, less symmetric
distributions of the hidden neurons among the four above types
can arise. Here, we examine the case of a neural network with
Nf = 4 hidden neurons and sigmoidal activation, which shows
a classification accuracy of 98% after training on a set of 50 000
configurations for an Ising model with L = 32 at temperatures
between T = 1 and T = 5 with a spacing of �T = 0.1. The
resulting classification correctness of the neural network in
the plane of the magnetization |m| vs the temperature T after
training is shown in Fig. 1. For the training phase, we used the
Adam method with a cross entropy cost function and for larger
networks also applied L2 regularization to avoid overfitting
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FIG. 1. Classification correctness of the Nf = 4 network in the
temperature T vs magnetization |m| plane of the input configurations.
Green (red) dots correspond to a correct (wrong) classification. The
vertical line denotes the exact transition temperature Tc.

[15,16,19]. All calculations were furthermore performed based
on TensorFlow [20].

For the Nf = 4 network, Fig. 2 shows the activations ai for
the hidden layer neurons as a function of the magnetization
m of the input configuration: For this specific network, one
neuron (labeled No. 1) apparently activates for configurations
that are dominantly polarized down, two neurons (No. 2 and
3) activate for configurations that are dominantly polarized
up, and one neuron (No. 4) activates for configurations that
are either unpolarized or dominantly polarized down. The
sigmoidal activation is beneficial for obtaining such linear
relations between the magnetization and the activations: The
neurons deactivate in one of the two cases of low-temperature
polarization, while in the other case their activity is limited,
since the sigmoidal function converges, in contrast to, e.g., the
ReLU activation function.

FIG. 2. Hidden layer neuron activations ai for each of the four
neurons i = 1,...,4 of the Nf = 4 network as a function of the
magnetization m of the input configuration.

No. 1 -9.3; -8.6; 9.1 No. 2 -9.3; -3.1; 4.9

No. 3 -8.0; -4.8; 3.7 No. 4 8.0; 4.5; -3.9

− 0.50

− 0.25

0.00

0.25

0.50

FIG. 3. Weight matrices wi,j of the Nf = 4 network. For each
neuron (label by its index i = 1,..,4), the weight matrix is shown
as a two-dimensional array of 32 × 32 values, corresponding to the
layout of the Ising model configurations. The numbers to the right of
each neuron i denote the local bias bi and the weights w′

1,i , w′
2,i that

connect this neuron to the high- and low-temperature neuron of the
output layer (in this order).

The final weight matrices wi,j of the above network are
shown in Fig. 3, along with the values of the local biases
bi , and the weights w′

1,i , w′
2,i , which connect neuron i to the

output layer. The featureless noise in the weights wi,j reflects
the translational invariance of the Ising model. From the signs
of the weights w′

l,j , we can furthermore identify neurons No.
1, 2, and 3 as low-temperature activating, while neuron No.
4 is a high-temperature activating neuron: This neuron has a
positive bias, so that for high-temperature (i.e., disordered)
input configurations, for which

∑
j wij xj ≈ 0, this positive

bias leads to its activation, which then contributes positively
to the activation of the high-temperature output neuron. For
low temperature input configurations, the color-coded weights
in Fig. 3 show a slight preference for neuron No. 1 towards
negative net polarization (blue) and for neurons No. 2 and 3
towards positive net polarization (red). This leads to the m

dependence observed in Fig. 2. Given similar local biases,
the approximately twice as large value of the weights to the
output layer for neuron 1 compared to neuron 4 ensure that
the low-temperature output neuron’s activation is enhanced for
dominantly negatively polarized input configuration.

On the other hand, for low-temperature input configurations
with a positive polarization, the fact that two low-temperature
active neurons (No. 2 and 3) are present ensures an enhanced
activation of the low-temperature output neuron, even though
the weights to the output layer for neurons No. 2, 3, and 4 are
of similar magnitude. We observed such a balance between the
output layer weights and the number of neurons of a specific
type to emerge from the learning process also in other trained
fully connected networks with a low number of hidden layer
neurons.
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FIG. 4. Classification correctness of the Nf = 4 network for the
Ising model with EDW configurations included, in the temperature T

vs magnetization |m| plane of the input configurations. Green (red)
dots indicate correct (wrong) classifications. The vertical line denotes
the exact transition temperature Tc. The inset shows a typical EDW
configuration with two vertical EDWs separating two oppositely
polarized spatial regions of similar size on the L = 32 lattice.

III. INCLUDING EXTENDED DOMAIN WALL
CONFIGURATIONS

In the supervised learning approach for the Ising model
that we reviewed in the previous section, the magnetization
m played a crucial role for the classification task. Being the
order parameter, m is indeed a natural quantity that allows the
network to distinguish between configurations from the high-
and low-temperature regime. With respect to applications of
such machine learning approaches to more complex physical
situations, one may thus ask how the neural network performs,
if the order parameter is not directly accessible from the
input configurations. How will the learning and classification
task proceed under such circumstances? In the case of the
Ising model, a simple means of eliminating the direct access
to the order parameter is to include EDW configurations in
the low-temperature regime, such as the configuration shown
in the inset of Fig. 4 for an L = 32 lattice. Such EDW
configurations often appear in Monte Carlo simulations based
on local updates and can persist over extended simulation time
scales. In more complex systems, such EDW configurations
may be unavoidable, for example, if only local update schemes
are available, or if thermalization is not fully controlled. How
does the neural network perform the classification task under
such conditions?

Here, we examine this question for the case of the Ising
model, using the Metropolis local spin flip algorithm to gen-
erate both learning and validation configurations. We consider
again a system with L = 32 within the same temperature
range as in Sec. II. It goes without saying that the network
from the previous section fails completely to correctly classify
any of the low-temperature EDW configurations. This is to
be expected, as during the training period this network was
not exposed to any such configurations. We thus consider
next a neural network that was trained on a data set that

No. 1 4.8; 2.4; -2.5 No. 2 4.1; 1.3; -3.9

No. 3 -4.3; -3.7; 3.6 No. 4 3.8; 1.1; -2.2

− 0.15

0.00

0.15

FIG. 5. Weight matrices wi,j of the Nf = 4 network for the Ising
system with EDW configurations included. For each neuron (label by
its index i = 1,...,4), the weight matrix is shown as a two-dimensional
array of 32 × 32 values, corresponding to the layout of the Ising model
configurations. The numbers to the right of each neuron i denote the
local bias bi and the weights w′

1,i , w
′
2,i that connect this neuron to the

high- and low-temperature neuron of the output layer (in this order).

includes EDW configurations. Figure 4 shows the classification
accuracy as a function of temperature for this Nf = 4 network.
Here, the low-temperature, low-|m| configurations are those
that exhibit EDWs. This network already classifies about
half of the EDW configurations correctly, but still shows
many wrong classifications of both low- and high-temperatures
configurations, with an overall accuracy of 96%.

In order to rationalize the behavior of this network, we
again examine the weight matrices wi,j , which are shown
in Fig. 5. One can identify traces of strip features in these
weight matrices, most apparently for neuron No. 1. In order to
exhibit these features more clearly, and to also improve on the
accuracy of the network, we included more low-temperatures
EDW configurations in the learning data set and furthermore
increased the number of hidden neurons to Nf = 16.

By including more EDW configurations into the learning
data set, we essentially enhance the awareness of the network
for such configurations. Note that this does not result in a bias
against the correct identification of non-EDW configurations.
By contrast, as demonstrated below, this approach actually
increases the overall classification accuracy in both the low-
temperature and the high-temperature regime.

The final weight matrices for this network are shown in
Fig. 6. We identify two striking features in these weight
matrices: (i) Each neuron exhibits a structure wherein a vertical
and a horizontal stripe of strong polarization in the weight
cross, and (ii) there is a similar number of such crossed-stripe
neurons of both positive (red) and negative (blue) weights.
These polarized domains in the weight matrices reflect the
predominantly vertical and horizontal orientation of domains
in the low-temperature EDW configurations. The neurons are
thus activated by regions in the input configuration that reside
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1. 0.9; 0.7; -0.7 2. 0.9; 0.6; -0.6 3. 0.9; 0.7; -0.7 4. -1.2; -1.0; 1.0

5. 0.6; 0.4; -0.4 6. -1.2; -1.0; 1.0 7. 0.9; 0.7; -0.7 8. -1.2; -1.0; 1.0

9. 1.0; 0.7; -0.7 10. -1.2; -1.0; 1.0 11. 1.0; 0.8; -0.8 12. -1.2; -1.0; 1.0

13. 0.9; 0.7; -0.7 14. -1.2; -1.0; 1.0 15. -1.2; -1.0; 1.0 16. -1.2; -1.0; 1.0

− 0.06

− 0.03

0.00

0.03

0.06

FIG. 6. Weight matrices wi,j of the Nf = 16 network for the
Ising system with EDW configurations included. For each neuron
(label by its index i = 1,...,16), the weight matrix is shown as a
two-dimensional array of 32 × 32 values, corresponding to the layout
of the Ising model configurations. The numbers to the right of each
neuron i denote the local bias bi and the weights w′

1,i , w
′
2,i that connect

this neuron to the high- and low-temperature neuron of the output layer
(in this order).

within an extended single domain. This allows the network
to also classify the low-temperature EDW configurations cor-
rectly. This is seen explicitly in Fig. 7. The overall classification
accuracy of this network is about 97%. Figure 6 exhibits
that the crossed-stripe structures for the different neurons are
distributed broadly across the spatial domain. For a larger
number of hidden neurons, a more refined resolution of the

1 2 3 4 5
T

0.0

0.2

0.4

0.6

0.8

1.0

|m
|

FIG. 7. Classification correctness of the Nf = 16 network for the
Ising model with EDW configurations included, in the temperature T

vs magnetization |m| plane of the input configurations. Green (red)
dots indicate a correct (wrong) classification. The vertical line denotes
the exact transition temperature Tc.

− 1.0 − 0.5 0.0 0.5 1.0
m

− 7.5

− 5.0

− 2.5

0.0

2.5

5.0

7.5

a
i

FIG. 8. Hidden layer neuron activations ai , i = 1,...,16 for the
Nf = 16 network as a function of the magnetization m of the input
configuration. Different colors denote the various neurons.

various EDW configurations is of course possible, e.g., for
a network with Nf = 64, an overall classification accuracy
of 98% can thus be achieved. As the weight matrices show
crossed-stripe structures of both signs and at various positions,
the network may be said to reflect both the Z2 symmetry
of the Ising model as well as its translational invariance.
Examining in Fig. 8 the activations ai of the various neurons
as a function of the magnetization m, we find no clear
overall relation between the hidden layer activations and the
magnetization apart from the regions of large magnetization
|m|. In a plot of the activations vs the energy E, cf. Fig. 9,
we also observe a rather broad overall distribution, which
however exhibits traces of a linear relation between the activa-
tions and the configurational energy. The network apparently
now performs the classification task based on a combined
representation of the energy and the magnetization for the
strongly polarized regime.

− 2.00 − 1.75 − 1.50 − 1.25 − 1.00 − 0.75
E/N

− 6

− 4

− 2

0

2

4

6

8

a
i

FIG. 9. Hidden layer neuron activations ai , i = 1,...,16 for the
Nf = 16 network as a function of the energy E of the input
configuration. Different colors denote the various neurons.
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FIG. 10. Classification correctness of the CNN with Nk = 8 filter
kernels of size 2 × 2 for the Ising model with EDW configurations
included, in the temperature T vs magnetization |m| plane of the input
configurations. Green (red) dots indicate correct (wrong) classifica-
tions. The vertical line denotes the exact transition temperature Tc.

Based on the above analysis, we expect that already a shal-
low CNN will be able to perform the classification task quite
efficiently, since after training, its filters can readily identify
the local contributions to the magnetization as well as the local
configurational energy. In the following, we demonstrate that
this is indeed the case. For this purpose, we trained a CNN with
Nk = 8 filter kernels in a single two-dimensional convolutional
layer, similar to the CNN layout of Ref. [1]. Each filter kernel
K (k), k = 1,...,Nk is a matrix of fixed size 2 × 2 and uses the
ReLU activation function. The output of this convolutional
layer is then passed on to a fully connected hidden layer with
Nf = 16 neurons. For each position j of the kth filter across
the input layer, a weight matrix w

(k)
i,j connects the output z

(k)
j

of this filter to the ith neuron of the fully connected hidden
layer. In the case of the CNN, the activation of the ith neuron
is thus given by ai = ∑

k,j w
(k)
i,j z

(k)
j + bi , with the local bias bi ,

and using ReLU activation. Finally, each neuron i of the fully
connected layer is connected through weights w′

1,i and w′
2,i to

the output layer with two neurons using softmax activation,
as above. After training on the previously used data set (i.e.,
including the low-T EDW configurations), the CNN exhibits a
high classification accuracy of 99%, as seen in Fig. 10, where
misclassifications are now constrained to the close vicinity of
the phase transition.

In order to understand how this CNN works, we examine
directly the filter kernels, which are shown in Fig. 11. Some
filters (in particular No. 3 and No. 8) collect a local average of
the input values, where the different signs of the filter kernels
reflect the Z2 symmetry of the Ising model. Most of the other
filters (consider in particular No. 1, 2, 4, 6, and 7) identify local
domain walls in the input data, with different orientations and
signs. After the ReLU activation, only positive gradients in the
corresponding direction are processed. For example, filter No.
1 can identify a local domain wall oriented along the vertical
direction.

Filter No. 1 Filter No. 2 Filter No. 3

Filter No. 4 Filter No. 5 Filter No. 6

Filter No. 7 Filter No. 8

− 0.100

− 0.075

− 0.050

− 0.025

0.000

0.025

0.050

0.075

0.100

FIG. 11. Filter kernels K (k) of the Nk = 8 CNN after learning the
Ising model with EDW configurations included.

The effects of the various filters on the input data can be
seen explicitly by examining the application of each filter to
a given input configuration. These are shown in Fig. 12, for
the specific input configuration that is shown in the bottom
right panel. One observes that the filters No. 3, 5, and 8
essentially propagate the averaged local magnetization of the
input configuration, whereas the other filters specifically locate
local domain boundaries. This is equivalent to calculating
the local energy, depending on whether two neighboring
spins are parallel or not. Upon summation, the network thus
estimates the configurational energy. In addition to the energy,
the network however also uses an estimate of the overall
magnetization, upon the summation of the output from the
other filters.

Input Data

Applic. of Filter 1 Applic. of Filter 2 Applic. of Filter 3

Applic. of Filter 4 Applic. of Filter 5 Applic. of Filter 6

Applic. of Filter 7 Applic. of Filter 8

− 0.060

− 0.045

− 0.030

− 0.015

0.000

0.015

0.030

0.045

0.060

FIG. 12. Application of the Nk = 8 filters of the CNN to the
input configuration shown in the bottom right panel prior to the
application of the ReLU function. After application of the ReLU
activation function, all blue regions (negative activation) will be set
to zero.
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No. 1 No. 2 No. 3

No. 4 No. 5 No. 6

No. 7 No. 8

− 0.16

− 0.08

0.00

0.08

0.16

FIG. 13. Weight matrices w
(k)
i,j of one of the neurons i from the

fully connected layer for each of the Nk = 8 filters of the CNN after
learning the Ising model with extended domain wall configurations
included. For each filter kernel (label by its index k = 1,...,8), the
weight matrix is shown as a two-dimensional array of 32 × 32 values,
corresponding to the layout of the Ising model configurations.

The way the network gathers all this information together
can be extracted from the example shown in Fig. 13. Here, we
display the weight matrices of one of the neurons from the fully
connected layer. Each matrix connects this specific neuron to
one of the Nk = 8 filters. The element-wise multiplications
are then summed up to form the activation of this neuron (for
this specific neuron, the local basis turned out to be zero).
Furthermore, with respect to its connections to the output
layer neurons, this neuron is low-temperature activating [more
specifically, its contributions to the output layer are 0.3 (0.7) for
the high (low) temperature active output-layer neuron]. This
fact can also be deduced from the following two features in
Fig. 13: (i) The weight matrices that relate to the domain-
boundary filters contribute negatively, and rather uniformly, to
the summation, while (ii) those related to the magnetization
contribute positively. Therefore, for a magnetization that is
nonzero locally, and a low amount of domain boundaries in the
input configuration, this neuron activates and contributes to the
prediction of the low-temperature phase. The other neurons of
this fully connected layer proceed similarly; in particular, the
neurons that activate the high-temperature output neuron have
weights of opposite signs (and are more noisy).

In summary, the CNN uses threshold parameters that es-
sentially consist of the energy and the magnetization, based on
which the final classification is made. The fact that the energy
plays an important role for the classification process of this
CNN can also be seen in Fig. 14, which shows the classification
correctness in the energy vs magnetization plane: A given
configuration is seen to be classified (correctly or wrongly)
to the low- or high-temperature phase based on a dividing
line at E/N ≈ 1.4. We expect energy estimates to be effective
for classification tasks of neural networks also in other cases,
given that a simple estimate of its value is accessible by filters

− 2.0 − 1.5 − 1.0 − 0.5
E/N

0.0

0.2

0.4

0.6

0.8

1.0

|m
|

FIG. 14. Classification correctness of the CNN with Nk = 8 filter
kernels of size 2 × 2 for the Ising model with EDW configurations
included, in the energy E/N vs magnetization |m| plane of the input
configurations. Green (red) dots indicate correct (wrong) classifica-
tions as low temperature configurations, and orange (blue) dots correct
(wrong) classifications as high temperature configurations.

that probe local gradients in the input values along different
lattice directions. A further example will be considered in the
following section.

IV. SUPERVISED LEARNING THE XY MODEL

Another basic model of statistical physics that exhibits a
finite temperature transition between two distinct phases is the
classical XY model, which is described by the Hamiltonian

HXY = −J
∑

〈j,j ′〉
cos(φj − φj ′), (3)

where the angles are constrained to the finite interval φj ∈
[0,2π ). We again consider an N = L × L sites square lattice
geometry with periodic boundary conditions and fix units to
J = 1. In the thermodynamic limit, this model exhibits a
Kosterlitz-Thouless transition at a transition temperature of
TKT = 0.893, which is driven by the proliferation of vortices,
topological point defects in the spin configuration [21]. Upon
lowering the temperature, these vortices confine into vortex
antivortex pairs, and below TKT the system shows an alge-
braic decay of the spin-spin correlations. In accord with the
Mermin-Wagner theorem [22], long-range order with a finite
order parameter is constrained to the zero-temperature limit.
The high-temperature phase instead shows an exponential
spatial decay of the spin-spin correlations, with a correlation
length that diverges exponentially upon approaching TKT.
The temperature region just above TKT is dominated by an
enhanced proliferation of entropy from the unbinding of the
vortex antivortex pairs. This results in a (nonuniversal) peak
in the specific heat at a distinct temperature of Tmax ≈ 1.1,
slightly above the actual phase transition at TKT , whereas the
specific heat C does not exhibit a peak at TKT [23]. While the
phase transition in the XY model is driven by vortices, i.e., by
topological defects, it is not clear to what extent their presence
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FIG. 15. Filter kernels K (k) of the Nk = 12 CNN after learning
the XY model spin configurations.

is also useful for the machine learning of this phase transition—
in particular, if the spin configurations are directly taken as
the input data, which would involve the least preprocessing.
Indeed, on a finite lattice, the XY model essentially appears
long ranged ordered well below TKT, e.g., the average value
of the magnetization |m|, where m = 1

N

∑
j eiφj for the XY

model, takes on finite values that reduce rather slowly with the
system size [12,24,25] as compared to, e.g., the Ising model.
Therefore, a neural network may still simply learn to use
the value of the finite-size magnetization to discriminate the
ordered from the disordered regime, as was suggested recently
in Ref. [12]. The magnetization in finite-size samples has also
been identified as a relevant quantity in other recent studies
of the XY model with unsupervised learning schemes, such
as in principle component analysis (PCA) or by variational
autoencoders [5,9,26].

To examine this issue in more detail for the case of a
shallow CNN, we consider here again the CNN with a single
convolutional layer and a kernel size of 2 × 2, that was used
in the previous section. For the input signal xj of the j th
input neuron in a given configuration of the XY model, we
rescaled the corresponding angle variable to xj = φj/π . In the
following, we consider in particular a system with L = 32, and
a training data set over a temperature range between T = 0.2
and T = 1.6, with a spacing of �T = 0.05, obtained using the
Wolff update scheme.

The final form of the kernels for a CNN with Nk = 12
filters is shown in Fig. 15. One can identify two major kernel
classes for this network: About half of the filters (No. 1,
2, 3, 6, 9, 12) apparently identify local differences in the
angles, along either vertical, horizontal, or diagonal lattice
directions. This provides an estimate of the local gradients
of the input configuration. We denote such filters as difference
filters. However, due to the branch cut of the angular variables
at the upper limit of the finite interval [0,2π ), the sole presence
of such difference filters would lead to the false identification of
large local angle differences: The network needs to learn that
neighboring angle variables which differ slightly across 2π ,
such as 2π − ε and 2π + ε (with ε � 1), actually represent

No. 1 No. 2 No. 3 No. 4

No. 5 No. 6 No. 7 No. 8

No. 9 No. 10 No. 11 No. 12

− 0.050

− 0.025

0.000

0.025

0.050

FIG. 16. Weight matrices w
(k)
i,j of one of the neurons i from the

fully connected layer for each of the Nk = 12 filters of the CNN after
learning the XY model spin configurations. For each filter kernel
(label by its index k = 1,...,12), the weight matrix is shown as a
two-dimensional array of 32 × 32 values, corresponding to the layout
of the XY model configurations.

only a small local gradient. We find that other filters in Fig. 15
(No. 5, 7, 10, 11) apparently serve this purpose and thus denote
them as correction filters. To illustrate this behavior, Fig. 16
shows as a representative example the weight matrices of one
of the three neurons from the fully connected layer for each
of the Nk = 12 filters. We observe dominantly positive matrix
elements for the difference filters, while the weight matrices
that connect to the filters No. 5, 7, 10, 11 are dominantly
negative and thus counteract the activation from the difference
filters (the other two filters, No. 4 and 8, in addition to having
small kernel values, contribute to the activation of the fully
connected layer through lower weight matrices and are thus
apparently less important than the other filters).

If one plots the contributions to the activation of this specific
neuron from the difference filters vs the energy of the input
XY model configuration, one obtains the positive data shown
in Fig. 17. Accordingly, the separate contributions to the
activation from the correction filters result in negative values in
Fig. 17. Moreover, both of these separate contributions to the
activation show a rather broad spread of values, in particular in
the low-energy region. Remarkably however, upon summing
the weighted contributions from all filters, cf. Fig. 17, the
resulting total activation of this neuron exhibits a narrow,
essentially linear scaling with the configurational energy.
Given that the rather broad spread seen in the contributions to
the activation from the difference filters is due to the presence
of local angle differences across the branch cut, these are thus
corrected for by the correction filters (the total result is indeed
very similar, if one sums over all filters except No. 4 and 8,
which have low weights). This combined information is then
processed further to the output layer in order to perform the
final classification task. Further insights into the workings of
the CNN for the case of the XY model can also be obtained
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FIG. 17. Total activation (squares, green), partial activation from
the difference filters (circles, blue), and partial activation from the
correction filters (triangles, orange) as functions of the configurational
energy E/N for one of the three neurons of the Nk = 12 CNN after
learning the XY model configurations.

by using it in the learning-by-confusion scheme of Ref. [2],
which we consider in the next section.

V. CONFUSION LEARNING THE XY MODEL

The learning-by-confusion scheme of Ref. [2] tries to esti-
mate the phase transition temperature Tc from the classification
performance of the neural network within a given temperature
range that contains Tc. For this purpose, the classification
performance of the network is monitored as a function of a
guess value T ∗ for the actual transition temperature as follows:
For a given value of T ∗ from the considered temperature win-
dow, each learning set configuration is labeled into a high- or
low-temperature class, depending on whether its temperature
T is above or below T ∗. Based on this labeling, one trains
the neural network as in the supervised learning scheme. After
training, the test accuracy for a given value of T ∗ is then given
by the relative number of test configurations that are correctly
classified by the neural network. Under the assumption that
the network is capable of learning an appropriate parameter
that relates to the physics of the phase transition, one expects
that the test accuracy of the classification procedure exhibits
a local maximum at a value of T ∗ close to the true Tc. This
is so, because for T ∗ equal to Tc, the network experiences the
least confusion in the behavior of the physical quantity and the
class assignment based on T ∗. Furthermore, for values of T ∗
near the end of the considered temperature range, the network
is being trained and tested on essentially one class only, so that
a high test accuracy will result. Hence, as a function of T ∗,
one expects a w shape to result in the test accuracy, thereby
providing an estimate of the actual transition temperature Tc

(up to finite-size effects) [2]. As we will show in the following,
one can employ this scheme also as a diagnostic tool for the
underlying neural network design.

Before applying for this purpose the confusion scheme to
the XY model, it will be useful to reconsider the case of
the Ising model [2]. The resulting w shape of the maximum
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FIG. 18. Test accuracy of the learning-by-confusion scheme for
the Ising model on a L = 32 lattice without low-temperature EDW
configurations. Also shown are the accuracies from the threshold-
value classification based on the magnetization |m| and the config-
urational energy E. The vertical line denotes the exact transition
temperature Tc.

achieved classification accuracy in the confusion scheme for
the CNN from Sec. III as a function of T ∗ is shown in Fig. 18.
Here, we first consider the case that no EDW configurations
are included in both the learning and the test configurations.
In this figure, we also compare the test accuracy of the CNN
to a simple threshold-value classification, based on specific
physical quantities. This is shown in Fig. 18 for two cases: the
magnetization |m| and the configurational energy E.

Both curves were obtained as follows: Consider a physical
quantity A (such as the energy E) that within the considered
temperature range increases with temperatureT (ifAdecreases
with increasing T , consider −A instead) and chose a threshold-
value A∗ of A for a given value of T ∗, such as, e.g., the
mean value 〈A〉T =T ∗ of A at T = T ∗. In the threshold-value
classification, the phase assigned to a test configuration is
then based on whether its value for A is larger or lower than
A∗, so that the test accuracy equals the relative number of
sample configurations for which the differences (A − A∗) and
(T − T ∗) have the same sign. Plotting this number as a function
of T ∗ provides the threshold-value classification accuracy
based on the considered observable A. In practice, we observed
that for a given value of T ∗, the accuracy of this classification
can be increased by optimizing the threshold-value A∗ in the
vicinity of 〈A〉T =T ∗ , e.g., by an iterative procedure. If the neural
network would base its classification directly on a physical
quantity A, one would thus also expect its test accuracy in the
learning-by-confusion scheme to follow the accuracy of the
threshold-value classification based on A.

For the Ising model, the test accuracy of the confusion
scheme in Fig. 18 actually rather closely traces the accuracy of
the threshold-value classification based on the energy E over
the full temperature range. This suggests that indeed the CNN
uses an estimate of the configurational energy to perform the
classification task, such that it may be said to have learned
the energy. Moreover, the threshold-value classification based
on the energy E is found to be more accurate than based
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FIG. 19. Test accuracy of the learning-by-confusion scheme for
the Ising model on a L = 32 lattice in the presence of low-temperature
EDW configurations. Also shown are the accuracies from the
threshold-value classification based on the magnetization |m| and the
configurational energy E. The vertical line denotes the exact transition
temperature Tc.

on the magnetization |m| for values of T ∗ above the critical
temperature, while in the low-temperature regime they perform
similarly well. This is due to the fact that above the transition
temperature the magnetization |m| exhibits a much weaker
temperature dependence than the energy E, so that the latter
can serve better as a threshold value in this temperature
region. If we repeat this procedure for the Ising model with
EDW configurations contained at low temperatures, we obtain
the results shown in Fig. 19. While the CNN still shows a
similarly high overall performance as in the absence of EDW
configurations, we find that the threshold-value classifications
based on the energy E and |m| now fall below the CNN
accuracy within the low-T ∗ region. This is due to the fact
that the CNN can correctly identify the EDW configurations,
while these configurations have an increased energy E due to
the domain walls, and a corresponding low value of |m|, as
discussed in Sec. III.

We may now return to the XY model. In Fig. 20, we compare
the test accuracy of the learning-by-confusion scheme with
the above CNN to the threshold-value classification based
on |m| and E. There are several points to be noticed here:
(i) The test accuracy for the CNN is rather shallow in the
low-temperature regime, and it is thus difficult to identify a
clear maximum in the test accuracy. This observation was also
made in Ref. [12], where the learning-by-confusion scheme
was applied to the XY model using a different neural network
design, (ii) in the low-temperature regime, the test accuracy
of the CNN tends to follow the threshold-value classification
based on the magnetization |m|, while it deviates from its more
pronounced suppression for larger T , (iii) the accuracy of the
threshold-value classification based on the energy E is higher
than the one based on |m|. It also shows a more shallow overall
behavior, and—up to a rescaling factor—traces the overall
shape of the test accuracy of the CNN. This observation is in
accord with the findings in the previous section: The filters of
the CNN provide a (branch-cut corrected) estimate of the local
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FIG. 20. Test accuracy of the learning-by-confusion scheme for
the XY model on a L = 32 lattice. Also shown are the accuracies
from the threshold-value classification based on the magnetization
|m| and the configurational energy E. The vertical line denotes the
exact transition temperature TKT.

gradients in the spin configuration. These local differences
enter the calculation of the configurational energy through the
cosine functions in H . While a spatial average of the local angle
differences provides a gross estimate of the configurational
energy, it is less accurate for the classification process than the
actual energy. We think that for this reason, the test accuracy of
the CNN traces the shape of the threshold-value classification
accuracy based on E, but falls below its higher accuracy.

Furthermore, the classification of the neural network after
training on a given value of T ∗ is based on the ratio R = y1/y2

of the activities on the output layer, which depends via Eq. (2)
on the activities of the fully connected layer of the CNN in the
exponents. If the latter indeed relate to a physical parameter
that the neural network has learned, then the output ratio R

should reflect the temperature dependence of this parameter. In
particular, one would expect the ratio R to exhibit an enhanced
temperature dependence where the physical parameter shows
a maximum change with temperature.

Based on this argument, we thus compare in Fig. 21 the
logarithmic derivative ∂ ln R/∂T of the ratio R with respect to
T , averaged over the considered range of T ∗ values and input
configurations, to the temperature dependence of the specific
heat of the XY model, C = ∂(E/N)/∂T , which quantities
the change in the energy E with temperature. We observe
a clear correlation between the behavior of the logarithmic
derivative of the ratio R and the maximum in the specific heat
at Tmax. This adds further support to the previous conclusion,
that the configurational energy, which relates to the local angle
differences in the XY model, is a relevant quantity for the
classification process of the trained CNN model. While at many
phase transitions, such as for the Ising model, the specific heat
peak, indicating the maximum change in the energy, indeed
coincides with the phase transition temperature, this is however
not the case for the XY model, where Tmax lies somewhat above
TKT, as mentioned already. This shows that a neural network,
when trained on the bare spin configurations of the XY model,
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FIG. 21. Logarithmic derivative ∂ ln R/∂T of the output layer
activity ratio R as a function of T , compared to the T dependence of
the specific heat C for the XY model for L = 32. For the calculation
of ∂ ln R/∂T , the logarithmic derivates were averaged over the
considered range of T ∗ values and input configurations. The vertical
line denotes the exact transition temperature TKT.

may not necessarily allow us to identify the true transition
temperature in the learning-by-confusion scheme.

In that case one may think that a more direct access to the
actual physics will be feasible if instead of the spin configura-
tions, one feeds the local vorticities to the input layer. Here, we
use the following procedure to identify for each plaquette of the
square lattice if a local vortex core is present: Denoting the four
spins at the corners of a plaquette p (in anticlockwise order)
as φp,1,...,φp,4, we calculate the differences along each edge
of the considered plaquette, �φp,1 = φp,2 − φp,1, �φp,2 =
φp,3 − φp,2, �φp,3 = φp,4 − φp,3, �φp4 = φp,1 − φp,4, and
shift each of these four values to the interval [−π,π ), via adding
integer multiplies of 2π accordingly. We assign a local value of
the vorticity kp to the considered plaquette upon summing the
four shifted angle differences �φp,i ∈ [−π,π ) and normalized
by 2π , i.e.,

kp = 1

2π

∑

i

�φp,i . (4)

We then used these plaquette vorticities as the input data to a
CNN input layer instead of the bare spin configurations. The
resulting T ∗ dependence of the test accuracy of the CNN (with
the same layout as before) is shown in Fig. 22. We obtain
a well developed w shape in this case. Similarly to the one
reported in Ref. [12], the w shape of the learning-by-confusion
scheme in Fig. 22 is skewed, even though here we used an
essentially symmetric temperature region around TKT. Also
included in this figure are the threshold-value classification
accuracies based on |m|, E, and the mean vortex density

ρv = 1

Np

∑

p

|kp|, (5)

where Np denotes the number of plaquettes. From Fig. 22
we see that the test accuracy of the CNN remarkably closely
follows the threshold-value classification based on the vortex
density, in particular in the low-temperature regime and with
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FIG. 22. Test accuracy of the learning-by-confusion scheme for
the XY model on a L = 32 lattice based on the vortex configurations.
Also shown are the accuracies from the threshold-value classification
based on the magnetization |m|, the configurational energy E, and
the vortex density ρV . The vertical line denotes the exact transition
temperature TKT.

a similarly skewed w shape. This indicates that this physical
quantity is closely related to the parameter that the network has
learned. In fact, this quantity is readily accessible to the neural
network upon averaging the values of kp from the input layer.
This result appears satisfying from a physical perspective—
even though of course, we did in this way perform quite some
preprocessing, guided by our knowledge of the underlying
physics of the model under investigation. However, the peak of
the test accuracy is still located above TKT. We can understand
this behavior by examining the temperature dependence of ρv .
This is shown in Fig. 23 along with its derivative ∂ρv/∂T and
the specific heat C. In accord with the already mentioned fact
that the specific heat peak at Tmax results from an enhanced
proliferation of free vortices, we observe that the maximum in
∂ρv/∂T is close to Tmax as well.
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FIG. 23. Temperature dependence of the vortex density ρV , its
derivative ∂ρV /∂T , and the specific heat C for the XY model on
the L = 32 lattice. The vertical line denotes the exact transition
temperature TKT.
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We thus find that in both cases, after training the considered
CNN on either the bare spin configurations or on vortices, the
learning-by-confusion scheme predicts a transition tempera-
ture T ∗ that is set by the value of Tmax instead of the actual
transition temperature TKT, due to the enhanced change at Tmax

in the relevant parameters that the system learns. Since Tmax

remains above TKT in the thermodynamic limit, we expect that
this behavior persists also if much larger system sizes would
be considered.

VI. DISCUSSION

In the first part of this study, we examined the classification
process of shallow fully connected and convolutional neural
networks for the Ising model, focusing on the effect of extended
domain wall configurations. By including such configurations
in the learning batch configurations, the fully connected
neural network learned to identify horizontally and vertically
striped domains. Increasing the number of hidden neurons,
the network can locate such patterns over a larger range of
positions and both polarizations. We found the convolutional
neural network to exhibit two major classes of filter kernels that
either propagate locally averaged values of the magnetization
to the fully connected layer or identify local domain walls in
the input configuration, which upon summation over the filter
positions represent an estimate of the configurational energy.
This information is used, along with the magnetization, to
obtain a highly accurate classification process.

In a similar convolutional neural network for the XY model,
we identified filters that detect local directional differences in
the spin configuration, while other filters apparently correct for
false identifications of large gradients across the branch cut in
the cyclic angle variables. Hence, for this convolutional neural
network the configurational energy (or an estimate thereof)
is again a relevant physical quantity for the classification
process. Additional insight was obtained from the learning-by-
confusion scheme. Its test accuracy can be directly compared to
a threshold-value classification method, which we introduced
as a means of directly assessing the relevance of specific phys-
ical observables for the network’s classification process. For
the XY model, we obtained in this way additional evidence for
the relevance of the local angle gradients for the classification
process of the considered convolutional neural network. Upon
examination of the derivative of the output level activity ratio,
we noticed a strong correlation with the specific heat peak.
This allowed us to extract a corresponding temperature value,
even though the test accuracy of the learning-by-confusion
scheme does not exhibit a pronounced w shape. However, the
specific heat peak of the XY model does not signal the actual
transition temperature but is located above TKT. This particular

property of the XY model keeps the learning-by-confusion
scheme based on the considered convolutional neural network
from identifying the actual transition temperature.

A neural network may thus be able to perform the classifi-
cation task with a high accuracy based on a (physical) quantity,
but this quantity need not relate in the anticipated way to the
actual phase transition. Of course, such issues may depend
in a delicate way on the network design and could possibly
be avoided by appropriately preprocessing the bare model
configurations before feeding them to the network. In this
respect, we however noticed that for the XY model the situation
was not improved upon by feeding the vortex configurations
to the input layer. In this case, the network readily learned the
vortex density, but the temperature dependence of this quantity
also does not identify TKT, since the most pronounced change
in the vortex density is due to an enhanced vortex proliferation,
corresponding to the specific heat peak. As a generic tool to
locate phase transitions such schemes may thus be difficult to
control, which would be an issue in view of models for which
the underlying physics is not that well understood yet.

On the other hand, here we focused our diagnostic approach
on rather shallow neural networks, for which we could readily
examine the inner structure in terms of weight matrices and
a small number of filter kernels. Even though the classi-
fication performance of these shallow networks proved to
be high, it may still be expected—given the relation to the
renormalization group [27,28]—that deep learning networks,
based on several convolutional layers and a more complex
network layout allow for (i) a hierarchy of physical parameters
for the classification process to emerge on increasing length
scales, and thus (ii) a higher level of robustness with respect
to the above mentioned issues. However, for the XY model,
Ref. [12] observed that a multilayer convolutional neural
network with an optimal design to identify vortices from the
bare spin configuration is only a locally stable solution of the
learning procedure. Monitoring the derivative of the output
activity ratio and the threshold-value classification scheme can
of course also be applied to such a multilayer network, as
well as to other complex neural networks, and may thus be
useful for further assessments of machine learning methods
for condensed matter theory research.
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