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Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids, we theoretically
study magnon-induced intrinsic friction of a domain wall in a one-dimensional ferromagnet. To this end, we start
by obtaining the hitherto overlooked dissipative interaction of a domain wall and its quantum magnon bath to
linear order in the domain-wall velocity and to quadratic order in magnon fields. An exact expression for the
pertinent scattering matrix is obtained with the aid of supersymmetric quantum mechanics. We then derive the
magnon-induced frictional force on a domain wall in two different frameworks: time-dependent perturbation
theory in quantum mechanics and the Keldysh formalism, which yield identical results. The latter, in particular,
allows us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and the
correlator of the associated stochastic Langevin force. The potential for magnons induced by a domain wall is
reflectionless, and thus the resultant frictional force is non-Markovian similar to the case of solitons in superfluids.
They share an intriguing connection to the Abraham-Lorentz force that is well known for its causality paradox. The
dynamical responses of a domain wall are studied under a few simple circumstances, where the non-Markovian
nature of the frictional force can be probed experimentally. Our work, in conjunction with the previous study on
solitons in superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe of
the microscopic degrees of freedom of the system.
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I. INTRODUCTION

Solitons, stable nonlinear solutions in continuous fields
theories, and their interactions with collective excitations have
attracted much attention in a broad range of fields such as
particle physics [1], optics [2], and condensed matter physics
[3] because of fundamental interest as well as practical appli-
cations. Quasiparticles, elementary quanta of collective exci-
tations, experience effective forces induced by the background
solitons. The dynamics of solitons are, in return, influenced by
the quasiparticles scattering with them. In particular, at finite
temperatures, the thermal bath of quasiparticles can generate
a deterministic frictional force and a stochastic Langevin
force on a soliton. These two forces are caused by the same
microscopic degrees of freedom, and, for that reason, are linked
by the general relationship, which is manifested through the
fluctuation-dissipation theorem [4,5].

Recently, Efimkin et al. [6], including one of us, have
studied the frictional force experienced by a bright soliton
in one-dimensional superfluids due to its interaction with
Bogoliubov quasiparticles. The Ohmic friction that is linear
in the velocity of the soliton is absent due to the integra-
bility of the considered system. Instead, the frictional force
is nonlocal in time and super-Ohmic in the low-frequency
regime, about which the authors made an intriguing connec-
tion to the Abraham-Lorentz force that has been known in
classical electrodynamics for its causality paradox [7,8]. In
addition, by using the Keldysh formalism [9], they obtained
analytical expressions for the quasiparticle-induced frictional
force and stochastic Langevin force on equal footing, which

allows them to explicitly verify the fluctuation-dissipation
theorem.

Motivated by this study on solitons in superfluids, we
reinvestigate an analogous problem in magnetism: the magnon-
induced frictional force on a domain wall in one-dimensional
ferromagnets, which is a classical example of topological soli-
tons in magnets [10,11]. See Fig. 1 for a schematic illustration.
The dynamics of magnetic domain walls and their interactions
with magnons have been extensively studied in magnetism and
spintronics because of fundamental interest as well as techno-
logical applications exemplified by the magnetic domain-wall
racetrack memory [12] and the magnonic domain-wall waveg-
uides [13]. For example, the injection of the magnon current
has been shown both theoretically [13] and experimentally [14]
to be able to drive a domain wall via the reactive spin-transfer
torque, offering a nonelectric knob to control a domain wall
that can be utilized in the recently developing field of insulator
spintronics [15]. The topic of interest in this paper is the
magnon-induced frictional and stochastic force of a domain
wall, which can give rise to, e.g., the thermal diffusion of a
domain wall that can be utilized in spin caloritronics aiming
at thermal information processing [16]. It is a multifaceted
phenomenon that involves several mechanisms, some of which
have been identified previously as follows [17–21]. First, in
1990, Bouzidi and Suhl [17] identified the frictional force on a
domain wall that is generated by the Cherenkov-type magnon
radiation which occurs only when the domain-wall velocity V

is above the radiation threshold velocity. Second, in 1992, in
the context of quantum diffusion of domain walls, Stamp [18]
identified a contribution of two-magnon scattering processes
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FIG. 1. Schematic illustration of a ferromagnetic domain wall and
its thermal magnon bath, which induces a non-Markovian frictional
force and a colored stochastic Langevin force on the domain wall.
X(t) represents the position of the domain wall; ξk parametrizes the
amplitude of magnon fluctuations. See the main text for details.

to the domain-wall energy dissipation that is of fourth order in
the domain-wall velocity ∝V 4 by accounting for the temporal
change of the domain-wall-induced potential for magnons due
to the motion of the domain wall. Third, Braun and Loss
[20] in 1996 studied the damping force on a domain wall
by taking account of the elastic scattering of magnons off
the domain wall, which originated in the kinetic part—the
spin Berry phase—of the Lagrangian unlike the previously
investigated interaction terms rooted in the potential energy
of the system. Due to the elastic nature of the considered
scattering, the resultant damping kernel vanishes below the
critical frequency given by the spin-wave gap. The associated
energy dissipation is of second order in the domain-wall
velocity ∝V 2. Fourth, Le Maho et al. [21] in 2009 studied
the effects of spin waves on the current-induced domain-wall
dynamics in metallic ferromagnets. They identified another
magnonic contribution to the energy dissipation that is of
fourth order in the domain-wall velocity ∝V 4 (in the absence
of a charge current), which is rooted in the magnon creation
and annihilation processes whose rates are proportional to the
domain-wall velocity squared.

In this paper we study the magnon-induced friction on a do-
main wall along the line of Braun and Loss [20], but extending
it by including the effects of the inelastic scattering of magnons
off the domain wall that were neglected therein. The resultant
magnonic contribution to the domain-wall dissipation kernel
is gapless, differing from the gapped one obtained in Ref. [20],
and it is of quadratic order in the domain-wall velocity ∝V 2,
similar to the result in Ref. [20] but differing from the others
[18,19,21] ∝V 4. More detailed comparison of our work with
the previous ones is given in Sec. V. Since the dissipation kernel
identified in this work is gapless and of second order in the
domain-wall velocity, it is expected to govern the sufficiently
slow dissipative dynamics of domain walls by dominating
the other contributions that are either of fourth order in the
domain-wall velocity or inoperative at low frequencies. To
integrate out the thermal magnon bath, Braun and Loss [20]
employed the Matsubara formalism [22] by working with
the imaginary-time Euclidean action. However, to recover
the real-time dynamics from the imaginary-time results, one
needs to perform the Matsubara analytical continuation, which
can be often cumbersome [9]. For this reason, instead of the
Matsubara formalism which lacks physical transparency as
stated in Ref. [23], we employ the following two methods
that keep the dynamics in real time: the Keldysh formalism

[9], which was used successfully for an analogous problem
in superfluids [6], and the time-dependent perturbation theory
in quantum mechanics [24], which provides an intuitive real-
time picture of the microscopic processes responsible for the
magnon-induced frictional force as will be shown below.

Specifically, we first identify a Berry-phase-induced cou-
pling between a domain wall and its thermal magnon bath,
with a focus on dissipative effects that have been overlooked
heretofore. Then, by integrating out the magnon bath, we derive
the following generalized Langevin equation [5,25,26] for the
dynamics of a domain wall:

MẌ(t) +
∫ t

−∞
dt ′η(t − t ′)Ẋ(t ′) = F (t) + ζ (t), (1)

where the frictional force, the second term on the left-hand side,
is induced by the aforementioned coupling. Here X(t) and M

are the position and the effective mass of a domain wall; η(t)
is the retarded response kernel [27]; and F (t) and ζ (t) are the
external and the stochastic (Langevin) forces on a domain wall.
The deterministic response kernel and the stochastic force are
linked by the quantum fluctuation-dissipation theorem via the
spectral function J (ω) as follows [4,5,25]:

η(t) = 2�(t)

π

∫ ∞

0
dω J (ω) cos(ωt), (2)

〈ζ (t)ζ (0)〉 = 1

π

∫ ∞

0
dω

h̄ωJ (ω)

tanh(h̄ω/2T )
cos(ωt), (3)

where �(t) is the Heavyside step function. Hereafter, the Boltz-
mann constant is set to unity, kB = 1, and the spectral function
J (ω) is the real dissipative part of the Fourier transform of the
response kernel J (ω) = Re η[ω] [28]. In the classical limit,
where the temperature is much higher than the characteristic
frequency of the dynamics T � h̄ω, they satisfy the classical
fluctuation-dissipation theorem 〈ζ (t)ζ (0)〉 = T η(|t |) [25,29].

There is no reflection of magnons scattering off a domain
wall [30], and thus there is no Ohmic frictional force [6,31].
However, a finite viscous force is induced by backreaction
of thermal magnons that are perturbed by the domain-wall
acceleration (i.e., temporal variation of the domain-wall ve-
locity), analogous to the reactive effects of electromagnetic
radiation on the motion of a charged particle [8]. The resultant
viscous force is non-Markovian and super-Ohmic in the low-
frequency regime similar to the case of superfluid solitons [32].
Although the predicted phenomenon is similar, our theory is
simplified in comparison to the superfluid counterpart in the
appropriate limit, where the quasiparticle-soliton scattering
process preserves the number of quasiparticles.

The paper is organized as follows. In
Sec. II we obtain exact solutions for a domain wall with
spin waves on top of it in a one-dimensional ferromagnet. We
then derive their interaction to linear order in the domain-wall
velocity and quadratic order in spin-wave amplitudes, which
stems from the spin Berry-phase term in the Lagrangian.
The identification of this interaction, which can be found in
Eq. (19), is our first main result. In Sec. III, by treating a domain
wall as a classical particle embedded in a magnonic quantum
bath, we derive the expression for the magnon-induced
response kernel η(t), which is our second main result that can
be found in Eq. (30), in two different ways. First, we employ
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the time-dependent perturbation theory in quantum mechanics
[24] to obtain the frictional force. This approach helps us
understand the force’s origin in that a domain wall loses its
energy to thermal magnons via inelastic scattering. Second, we
derive the Langevin equation within the Keldysh formalism
[9], which allows us to obtain explicit expressions for both
the frictional force and the stochastic Langevin force on
equal footing and thereby to verify the fluctuation-dissipation
theorem. Two independent approaches yield identical results.
In Sec. IV we discuss dynamic responses to an oscillating
force and experimental prospects to probe it, which can be
performed by time-resolved magnetic imaging techniques as
done for observing the GHz domain-wall oscillations [33]
and the GHz vortex-core oscillations [34] in NiFe thin films.
In Sec. V we compare our results with those of the existing
literature [17–21] in detail and discuss key approximations
made in our model. In Sec. VI we conclude the paper by
discussing an outlook on future work.

II. A DOMAIN WALL AND SPIN WAVES

Our model system is a one-dimensional ferromagnet, which
is described by the following Hamiltonian:

H =
∫

dx
[
An′2 + Ke

(
1 − n2

z

) + Khn
2
y

]
/2, (4)

where the three-dimensional unit vector n represents the
direction of the local magnetization and ′ is the spatial gradient
in the x direction. Here the positive coefficients A and Ke

parametrize the exchange stiffness and easy-axis anisotropy
along the z axis, respectively, and the nonnegative coefficient
Kh parametrizes hard-axis anisotropy along the y axis. The
dynamics of the magnet can be described by the following
Lagrangian:

L = −s

∫
dx a(n) · ṅ − H, (5)

where s is the spin density per unit length and a is the vector
potential for a magnetic monopole ∇n × a(n) = n. The first
term accounts for the effects of the spin Berry phase, which
governs the dynamics of the magnet [35].

The ferromagnet has two ground states, n ≡ ±ẑ, which are
uniformly polarized along the easy axis. A domain wall is
a solution that minimizes the Hamiltonian H for boundary
conditions n(x = ±∞) = ±ẑ, which is given by

cos θ0 = tanh

(
x − X

λ

)
, φ0 ≡ �, (6)

where λ ≡ √
A/K is the width of the domain wall, and θ and

φ are the polar and the azimuthal angles in the spherical rep-
resentation of n = (sin θ cos φ, sin θ sin φ, cos θ ) [10]. Here
X is the position of the domain wall, which parametrizes the
zero-energy mode associated with the spontaneous breaking of
the continuous translational symmetry; and � is the azimuthal
angle of the domain wall, which is either 0 or π in the presence
of the hard-axis anisotropy Kh > 0. In the absence of the
anisotropy, Kh = 0, the Hamiltonian H is invariant under spin
rotations about the z axis, and � becomes the parameter for the
zero-energy mode associated with the spontaneous breaking of
this continuous spin-rotational symmetry.

To simplify the subsequent discussions, we use natural units
of length, time, and energy, which are given by

λ =
√

A/Ke, τ ≡ s/Ke, ε ≡
√

AKe, (7)

respectively. These parameters have natural interpretations in
terms of domain-wall characteristics: λ is the domain-wall
width, 2ε is the domain-wall rest energy, and c ≡ λ/τ is the
domain-wall velocity for Cherenkov magnon radiation, which
refers to the phenomenon of magnon generation by sufficiently
fast domain-wall motion [36]. Also note that the product of the
energy and time scales is given by ετ = sλ, which represent
the total spin contained within the domain-wall width. The time
scale τ also sets the energy scale of a magnon as will be shown
below. Using these scales amounts to setting the parameters A,
Ke, and s to 1 and replacing the hard-axis anisotropy coefficient
Kh by a dimensionless number κ ≡ Kh/Ke. In this paper,
unless specified, we do not consider the extrinsic damping
of spin dynamics that can arise due to the coupling to the
nonmagnetic degrees of freedom, such as phonons or electrons,
in order to focus on our main interest, i.e., the intrinsic damping
due to magnons.

A. Spin waves on a static domain wall

The exact solutions of spin-wave modes on a static domain
wall are known [30,37], which we present below. To simplify
calculations, we set X = 0 and � = 0 in this section without
loss of generality. We start by expanding the Lagrangian
to the quadratic order in the deviations from the domain-
wall solution, which we describe by two variables: δn1 = δθ

represents the change of the magnetization in the plane of the
domain-wall spin texture and δn2 = sin θ0δφ represents the
change out of the plane. The first-order term is absent because
the domain wall is a stationary solution to the equations of
motion. The second-order term is given by

L2 = −
∫

dx(δn1δṅ2 + δn1H1δn1/2 + δn2H2δn2/2), (8)

where the first term is from the spin Berry phase and the
second and third terms are from the Hamiltonian. Here the
Hamiltonian densities are given by

H1 = − d2

dx2
+ [1 − 2sech2(x)] = a†a, (9)

H2 = − d2

dx2
+ [1 + κ − 2sech2(x)] = a†a + κ, (10)

where a ≡ d/dx + tanh x, and a† ≡ −d/dx + tanh x. The
equation of motion for spin waves is given by the following
“Schrödinger equation”:

d

dt

(
δn1

δn2

)
=

(
0 H1

−H2 0

)(
δn1

δn2

)
. (11)

Note that the Hamiltonian densities include the spatially
varying potentials as a consequence of the translational sym-
metry breaking due to a domain wall. The potential U (x) =
−2sech2(x), which is named after Pöschl and Teller [38],
has a remarkable property: waves pass through it without any
reflection as shown below.
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With the aid of the technique of supersymmetric quantum
mechanics [39], the above Hamiltonian densities can be related
to the following simpler ones:

H0
1 = − d2

dx2
+ 1 = aa†, (12)

H0
2 = − d2

dx2
+ 1 + κ = aa† + κ. (13)

These Hamiltonian densities are translationally invariant and
thus can be diagonalized by expanding the fields in terms of
plane waves ∝ exp(ikx). The corresponding spin-wave modes
are those of a uniform ground state and they are elliptical in
the presence of the hard-axis anisotropy κ > 0. Continuum
solutions to the original problem can be obtained by applying
the operator a† to these plane-wave solutions and it can be
shown that they share the same frequency.

The resultant continuum solutions to Eq. (11) can be
summarized as follows:

δn1(x,t) =
∫

dk

2π

√
2h̄ckRe[ξk(t)ψk(x)e−iωkt ], (14)

δn2(x,t) =
∫

dk

2π

√
2h̄c−1

k Im[ξk(t)ψk(x)e−iωkt ], (15)

where ck = [(1 + k2 + κ)/(1 + k2)]1/4 represents the elliptic-
ity of a spin wave mode at momentum k,

ωk =
√

(1 + k2)(1 + k2 + κ) (16)

is the frequency at momentum k, and ξk(t) is the complex-
valued amplitude that varies slowly on the time scale set by
the spin-wave gap ω0. The complex-valued function ψk(x) is
given by

ψk(x) = a†

1 − ik
eikx = tanh(x) − ik

1 − ik
eikx, (17)

which satisfies the orthogonality condition∫
dxψ∗

k (x)ψk′(x) = 2πδ(k − k′). With the above solutions,
the second-order Lagrangian term L2 is given by

L2 =
∫

dk

2π
(ih̄ξ ∗

k ξ̇k − εkξ
∗
k ξk), (18)

where εk ≡ h̄ωk is the magnon energy at momentum k.
Besides the continuum modes, there are also two local-

ized modes, δn1 ∝ ∂xθ0(x) = −sech(x) and δn2 ∝ sin θ0(x) =
sech(x), which correspond to the change of the magnetization
upon infinitesimal domain-wall displacement X �→ X + δX

and rotation � �→ � + δ�, respectively. The dynamics of
these modes will be treated explicitly in the next section by
promoting X and � to dynamic variables.

B. Spin waves on a moving domain wall

In order to study the interaction between the domain-wall
motion and spin waves, we allow the domain-wall position and
angle variables to be time dependent, X(t) and �(t). Since
our primary interest is in the coupling of the translational
motion of the domain wall and spin waves, we henceforth
focus on the case of a finite hard-axis anisotropy κ > 0,
in which the angle variable � becomes a slave mode of
the position variable X as will be shown below. By using
the expressions θ (x,t) = θ0[x − X(t)] + δθ [x − X(t),t] and

φ(x,t) = �(t) + δφ[x − X(t),t] in the Lagrangian L [Eq. (5)]
and expanding it to the linear order in Ẋ and the quadratic order
in δn1,δn2, and �, we obtain the following terms:

L = 2�Ẋ − κ�2 +
∫

dk

2π
[ih̄ξ ∗

k ξ̇k − εkξ
∗
k ξk] + ẊPm, (19)

where Pm is the total momentum of spin waves given by [40]

Pm =
∫

dkdk′

(2π )2
πkk′ξ ∗

k ξk′ei(ωk−ωk′ )t , (20)

with the momentum-space hopping amplitude

πkk′ = 1

2

(
ck

ck′
+ ck′

ck

) ∫
dx ψ∗

k (−ih̄∂x)ψk′ . (21)

Here we expanded δθ and δφ as the linear combinations
of the continuum spin-wave modes only by excluding the
zero modes, and disregarded the rapidly oscillating terms at
frequencies higher than the spin-wave gap ω0 by focusing on
slow dynamics. There is no linear term in the spin-wave field
ξk due to the orthogonality of the spin-wave eigenstates.

In Eq. (19), the right-hand side of the first line describes the
dynamics of the two generalized coordinates of the domain
wall X and � [41], from which we can obtain the equation
of motion for �: � = Ẋ/κ [10]. As stated earlier, �(t) is
completely determined by X(t) and thus is a slave mode of
it. Replacing � by Ẋ/κ transforms the right-hand side of the
first line to the domain-wall kinetic energy Ẋ2/κ , which leads
us to identify 2/κ as the effective mass M of the domain wall.
The second line describes continuum spin-wave modes. The
third line represents the linear coupling between the velocity of
the domain wall and the total momentum of spin waves. This
coupling is our first main result and constitutes the important
starting point for the subsequent development of the theory of
quantum friction of the domain wall. The total momentum of
the system is given by

P = dL

dẊ
= MẊ + Pm, (22)

where the first and second terms are the contributions from the
domain wall and spin waves, respectively. Both contributions
are rooted in the spin Berry-phase term in the Lagrangian,
which has already been identified as a source of the linear
momentum of a ferromagnet [42,43]. In Appendix A we
discuss an alternative way to derive the total momentum P

using the collective-coordinate approach [44].
By using the spin-wave solutions [Eq. (17)], we can obtain

the exact expression for the momentum-space hopping ampli-
tude πkk′ [Eq. (21)] whose last integral factor is given by∫

dx ψ∗
k (−ih̄∂x)ψk′ = 2πh̄k δ(k − k′)+ πh̄

2 sinh[π (k − k′)/2]

× k2 − k′2

(1 − ik′)(1 + ik)
. (23)

Let us make a few remarks on the hopping amplitude πkk′ . First,
it is Hermitian, πkk′ = π∗

k′k . Second, it has off-diagonal compo-
nents, reflecting the breaking of the translational symmetry due
to the domain wall. Third, the backscattering is absent, πk,−k =
0, similar to the case of Bogoliubov quasiparticles on top of
superfluid solitons [6], which stems from the integrability of
both systems.
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III. MAGNON-INDUCED FRICTION

In this section we derive the frictional force on the domain
wall, which is induced by its coupling to thermally excited
spin waves. The domain wall is treated as a heavy semi-
classical object, whereas thermal magnons, quanta of spin
waves, are considered to be light and form a thermal bath
for the domain wall, the justification of which is given in
Appendix B. To this end, we take two different approaches:
time-dependent perturbation theory in quantum mechanics
and Keldysh formalism. Two approaches are complementary.
The former allows us to obtain the frictional force with a
clear physical picture of its origin, but it does not provide
the fluctuation properties of the stochastic force directly. The
latter approach is computationally more demanding and thus
it can be more difficult to understand the physical origin
of the friction within it. However, the Keldysh technique is
powerful: it yields the frictional force and the correlator of the
stochastic force on equal footing, which allows us to check
for internal consistency. We will see below that the magnon-
induced friction is induced by the backreaction of the thermal
magnon gas perturbed by the domain-wall acceleration, which
is analogous to the reactive effects of electromagnetic radiation
on the equations of motion of a charged particle [8]. We here
focus on two-magnon scattering with a domain wall while
neglecting other scattering processes involving more magnons
by assuming magnons are sufficiently dilute.

A. Time-dependent perturbation theory

Let us first derive the frictional force by using the time-
dependent perturbation theory. Specifically, we seek the ex-
pression for the response kernel η(t) in the Langevin equation
(1). To treat thermal magnons as the quantum bath, we quantize
spin waves by promoting the complex scalar fields (ξk ,ξ ∗

k ),
which is the pair of canonically conjugate variables, to the
magnon annihilation and creation operators (ξ̂k ,ξ̂

†
k ). The term

V (t)Pm in the Lagrangian [Eq. (19)] that couples the domain
wall velocity V (t) and the magnon bath can be interpreted as
a time-dependent term in the Hamiltonian,

Ŵ (t) = −V (t)
∫

dkdk′

(2π )2
πkk′ ξ̂

†
k ξ̂k′ei(εk−εk′ )t/h̄. (24)

By treating this term as a domain-wall-induced perturbation on
the magnonic Hamiltonian within the time-dependent pertur-
bation theory [24], we can derive the probability that a magnon
at state k is found to be at state k′ after time t , which, in its
leading order, is given by

Pkk′(t) = 1

h̄2

∣∣∣∣
∫ t

0
dt ′ei(εk−εk′ )t ′/h̄πkk′V (t ′)

∣∣∣∣
2

. (25)

The transition rate of one magnon from k to k′ is the time
derivative of Pkk′(t), which is given by

Rkk′(t) = 2|πkk′ |2V (t)

h̄2

×
∫ t

0
dt ′ cos

[
(εk′ − εk)(t − t ′)

h̄

]
V (t ′). (26)

The transition rate is symmetric with respect to the momentum
exchange Rkk′(t) = Rk′k(t). Note that the foregoing history

of the domain-wall motion influences the transition rate of a
magnon via the last integral factor.

To derive the frictional force on the domain wall, we now
consider the energy gain of magnons during their scattering
off the domain wall, which is, by the conservation of the total
energy, identical to the energy loss of the domain wall. Using
the previous result on the magnon transition rate, the energy-
dissipation rate from the domain wall to the magnon bath is
given by

P =
∫

dkdk′

(2π )2
Rkk′(t)(εk′ − εk)fk (27)

= 1

2

∫
dkdk′

(2π )2
Rkk′(t)(εk′ − εk)(fk − fk′), (28)

where fk ≡ 1/[exp(εk/T ) − 1] is the Bose-Einstein distri-
bution function at momentum k. On the other hand, from
the Langevin equation (1) for the domain wall, the energy
dissipation rate is given by

P = V (t)
∫ t

0
dt ′η(t − t ′)V (t ′). (29)

By matching Eq. (29) to Eq. (27) in conjunction with Eq. (26),
we can obtain the expression for the response kernel:

η(�t) = �(t)

h̄2

∫
dkdk′

(2π )2
|πkk′ |2(εk′ − εk)(fk − fk′)

× cos

[
(εk′ − εk)�t

h̄

]
. (30)

The corresponding spectral function J (ω) in Eq. (2) can be
obtained by the Fourier transformation:

J (ω) = πω

2

∫
dkdk′

(2π )2
|πkk′ |2(fk − fk′)δ[h̄ω − (εk′ − εk)],

(31)

which can be considered as a manifestation of Fermi’s golden
rule [24]. The time-dependent perturbation theory allows us to
obtain the response kernel, but not the autocorrelation of the
stochastic force ζ . We, however, can invoke the fluctuation-
dissipation theorem to obtain it [5]. The physical picture of
the emergence of the frictional force is the following: Via
the interaction term W [Eq. (24)], magnons absorb the part
of the domain-wall energy, which, in return, gives rise to the
frictional force on the domain wall. Instead of the conservation
of the total energy invoked above, we can alternatively use the
conservation of the total linear momentum to obtain the same
result, the details of which can be found in Appendix C.

Figure 2 shows the plots of the response kernel η(t)
[Eq. (30)] and the real part of its Fourier transform J (ω) =
Re η[ω] at temperature T = ε0/10 and in the vanishing hard-
axis anisotropy limit κ = 0. The dissipation is nonlocal in time
and thus the associated stochastic force should have a colored
noise. In the limit of low frequency and low temperature,
h̄ω  T  ε0, the response kernel can be approximated by
a super-Ohmic one as follows:

J (ω) � h̄(1 + κ)e−ε0/T

π (2 + κ)2λ2
(ωτ )2 ≡ η0(ωτ )2, (32)
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FIG. 2. Plots of a response kernel in (a) the time domain η(t), and
(b) the frequency domain J (ω) = Re η[ω] at temperature T = ε0/10.
The solid blue lines show the numerical evaluations of Eqs. (30) and
(31). The dashed red line in the inset shows the analytical expression
for the low-frequency limit of J (ω) in Eq. (32).

which is written in physical units instead of natural units
for transparent interpretation. Since the response kernel is
second order in time derivative, the corresponding frictional
force is third order in time derivative: FAL ∝ ...

X. This force
FAL is known as the Abraham-Lorentz force, which has been
studied in the classical electrodynamics of a charged particle
coupled with its own radiation [7]. The Abraham-Lorentz force
is famous for causing the causality paradox, invalidating the
approximation taken above. See Sec. IV B for more discussions
on the Abraham-Lorentz force, which includes its proper
regularization suggested by Jackson [8]. In addition, note
that the response kernel J (ω) vanishes in the classical limit
h̄ → 0, which indicates the quantum nature of the origin of
the corresponding frictional force.

B. Keldysh formalism

In this section we use the Keldysh technique [9] to derive
both the frictional force and the stochastic Langevin force. Let
us first write down the action:

S = M

2

∫
dtẊ2 +

∫
dt

∫
dk

2π
[ih̄ξ ∗

k ξ̇k − εkξ
∗
k ξk]

+Ẋ

∫
dt

∫
dkdk′

(2π )2
πkk′ξ ∗

k ξk′ei(εk−εk′ )t/h̄, (33)

which is obtained from the Lagrangian L [Eq. (19)] after
replacing � with its classical solution Ẋ/κ = Ẋ/2M . By
closely following the approach taken by Efimkin et al. [6] for
solitons in superfluids, we will obtain below the quasiclassical
equations of motion for X as the saddle point of a one-loop
effective action in the Keldysh formalism, which corresponds
to an expansion of the action to the quadratic order in Ẋ  1.

We start by duplicating the dynamic degrees of freedom,
X → X+ ,X− and ξk → ξ+,k ,ξ−,k , where the variables with
subscripts + and − reside on the forward and the backward
parts of the Keldysh contour, respectively. The classical de-
grees of freedom are given by the average of the duplicated
fields: Xc ≡ (X+ + X−)/2 and ξc,k ≡ (ξ+,k + ξ−,k)/

√
2. The

quantum degrees of freedom are given by the difference be-
tween them: Xq ≡ (X+ − X−)/2 and ξq,k ≡ (ξ+,k − ξ−,k)/

√
2

[45]. In terms of the classical and the quantum components,

the Keldysh action is given by

SK = 2M

∫
dtẊcẊq

+
∫

dt

∫
dt ′

∫
dk

2π
ξ
†
k(t)Ĝ−1

k (t,t ′)ξ k(t ′)

+
∫

dt

∫
dkdk′

(2π )2
πkk′ξ

†
k(t) ˆ̇Xξ k′(t)ei(εk−εk′ )t/h̄, (34)

where ξ k ≡ (ξc,k,ξq,k), † stands for the Hermitian conjugation,

Ĝk(t,t ′) ≡ −i〈ξ k(t)ξ †
k(t ′)〉

≡
(

GK
k (t,t ′) GR

k (t,t ′)
GA

k (t,t ′) 0

)

= −ie−iεk (t−t ′)/h̄
(

(1 + 2fk) �(t − t ′)
−�(t ′ − t) 0

)
, (35)

and

ˆ̇X =
(

Ẋq Ẋc

Ẋc Ẋq

)
. (36)

Here GR,GA, and GK are the retarded, advanced, and Keldysh
Green functions, respectively. In the frequency domain, we
have

Ĝk(ε) =
(

GK
k (ε) GR

k (ε)

GA
k (ε) 0

)

=
(−2πi(1 + 2fk)δ(ε − εk) (ε − εk + i0+)−1

(ε − εk − i0+)−1 0

)
,

(37)

where 0+ represents an infinitesimally small positive number.
By using fk = 1/[exp(εk/T ) − 1], we can explicitly check
that the Keldysh Green functions satisfy GK (ε) = [GR(ε) −
GA(ε)] coth(ε/2T ), which constitutes the statement of the
fluctuation-dissipation theorem within the Keldysh formalism.

After integrating out the magnon modes, the details of which
is in Appendix E, we obtain the following effective action for
X:

SK
eff =

∫
dt

{
2Xq(t)

[
−MẌc−

∫ t

0
dt ′η(t − t ′)Ẋc(t ′) + ζ (t)

]}

+ ih̄

2

∫
dt

∫
dt ′ζ (t)C−1

s (t − t ′)ζ (t ′), (38)

where η(t) and Cs(t − t ′) = 〈ζ (t)ζ (t ′)〉 are given by Eqs. (2)
and (3), respectively, with J (ω) in Eq. (31). The results
within the Keldysh formalism is identical to the previous ones
obtained within the time-dependent perturbation theory. Here
we would like to comment on the origin of the stochastic
force ζ (t). It is an auxiliary field introduced by the Hubbard-
Stratonovich transformation [46] that is employed to remove
the quadratic-order term in the quantum component Xq . In
this sense, the stochastic Langevin force ζ (t) is rooted in the
intrinsic fluctuations of the system. The saddle-point solution
of the effective action with respect to the quantum variable
Xq gives the quasiclassical equation of motion for the
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coordinate Xc:

MẌc(t) +
∫ t

−∞
dt ′η(t − t ′)Ẋc(t ′) = ζ (t), (39)

which is identical to Eq. (1) in the absence of an external force.

IV. NON-MARKOVIAN FRICTION

We now discuss effects of the non-Markovian frictional
force on the dynamical response of the domain wall. In this
section we include the local-in-time extrinsic frictional force
and the associated white-noise stochastic force as additional
terms in the equations of motion, which we will contrast
with the magnon-induced non-Markovian friction in order
to facilitate the theoretical and experimental distinguishing
of the two frictional forces. In addition, we now return to
the physical units instead of the natural units [Eq. (7)]. The
resultant equation of motion for X is given by

MẌ +
∫ t

0
dt ′η(t − t ′)Ẋ(t ′) + γ Ẋ = F (t) + ζ (t) + ν(t).

(40)

Here F (t) is an external force on the domain wall, γ = 2αs/λ

parametrizes the Markovian frictional force rooted in the
local-in-time Gilbert damping [47], which is usually attributed
to dissipation to phonon bath, and ν(t) is the associated
stochastic Langevin force [48,49]. The Markovian frictional
force γ Ẋ can be derived from the Rayleigh dissipation function
R = α

∫
dx ṅ2/2 within the Lagrangian formalism, where α

is the dimensionless Gilbert damping coefficient [44,50]. The
stochastic force has a zero average 〈ν(t)〉 = 0, and a white
noise correlation

〈ν(ω)ν(ω′)〉 = 2πγ
h̄ω

tanh(h̄ω/2T )
δ(ω + ω′), (41)

as dictated by the quantum fluctuation-dissipation theorem
[4,5]. For high temperatures, T � h̄ω, it is reduced to the clas-
sical version: 〈ν(t)ν(t ′)〉 = 2γ T δ(t − t ′). The Gilbert damping
term γ Ẋ and the associated stochastic force ν(t) could be
absorbed into the other terms by the following transformations:
η(�t) �→ η(�t) + 2γ δ(�t) and ζ (t) �→ ζ (t) + ν(t), but they
are retained to be distinguished from the magnon-induced
effects.

A. Periodic force

Let us first consider a simple situation, where the domain
wall is subjected to a periodic external force:

F (t) = F0 cos(ωt). (42)

Application of a periodic magnetic field along the easy axis
H(t) = H0 cos(ωt)ẑ gives rise to this force with the magnitude
F0 = 2MsH0, where Ms is the saturation magnetization per
unit length. Then, the equation of motion gives the response of
the velocity

〈V (t)〉 = Re[μ(ω)F0e
−iωt ], (43)

where the complex mobility μ(ω) is given by

μ(ω) = 1

−iMω + η[ω] + γ
, (44)

and η[ω] is the Fourier transform of η(t). Therefore, by
observing the response of the domain-wall velocity V (t) to
an oscillating magnetic field, we can infer the non-Markovian
part of the frictional force ∝η[ω], which can be compared with
our results in Eq. (30).

B. Harmonic potential well

Let us now consider the dynamics of the domain wall
trapped in a harmonic potential well, which is described by
an external force F = −kX with a positive constant k. The
consideration of this case is motivated by an experimental
work by Saitoh et al. [51], in which the mass of a domain
wall trapped in an engineered potential well has been obtained
from its dynamic response to an oscillating electric current.
The dynamics of the domain wall at macroscopic time scales,
t � τ , is governed by the low-frequency part of the response
kernel, η[ω] with ωτ  1. In the limit of zero frequency,
ωτ → 0, the equation of motion (40) becomes local in time
after replacing η[ω] by its approximation [Eq. (32)]:

MẌ − MτAL
...
X + γ Ẋ = −kX + f (t), (45)

where τAL ≡ η0τ
2/M and f (t) ≡ ζ (t) + ν(t) represents the

sum of the two stochastic Langevin forces. The second term,
which is third order in time derivative, is known as the
Abraham-Lorentz force [7], which gives rise to the causality
paradox as follows. The response function χ (ω) in X(ω) =
χ (ω)f (ω) is given by

χ (ω) = 1

M(ω2
t − ω2 − iτALω3) − iγ ω

, (46)

where ωt ≡ √
k/M is the undamped frequency of the domain-

wall oscillation. This response function has a pole in the
upper half-part of the complex plane of ω. For example,
the pole is at ωAL ≈ iτ−1

AL for sufficiently small ωt  τ−1
AL

and γ  Mτ−1
AL . The pole in the upper half-plane implies

the existence of exponentially diverging solutions, thereby
causing the famous paradox of the Abraham-Lorentz force.
This paradox is an artifact of the approximation taking the
zero-frequency limit ωτ → 0. Indeed, the location of the
pole is where the zero-frequency limit is not valid, |ωALτ | =
(8π/κ)(sλ/h̄) exp(ε0/T ) � 1.

This problem can be regularized by treating the non-
Markovian friction as a perturbation to the zeroth-order equa-
tion of motion MẌ = F , by following Jackson [8]. The
regularization is executed by modifying the force term as
follows:

MẌ = F + τAL
dF

dt
= F + τAL

[
∂F

∂t
+ Ẋ

dF

dX

]
, (47)

which does not yield runaway solutions or acausal behavior.
According to Jackson [8], it is a sensible alternative to the
Abraham-Lorentz equation for small radiative effects. Then,
the equations of motion for F = −kX is given by

MẌ + (τALk + γ )Ẋ + kX = f (t). (48)

The corresponding response function is

χ (ω) = 1

M
(
ω2

t − ω2
) − i

(
τALMω2

t + γ
)
ω

, (49)
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whose poles are in the lower half-plane. Note that the effective
frictional force is sensitive to the trap frequency ωt , and, for that
reason, can be distinguished from the extrinsic Ohmic friction
force ∝γ . See Efimkin et al. [6] for an analogous discussion
on the friction of bright solitons in superfluids.

C. Experimental considerations

The magnon-induced effects can be inferred via the com-
plex mobility μ(ω) [Eq. (44)] of a domain wall subjected
to an oscillating magnetic field. The magnon-induced non-
Markovian friction is comparable to the Markovian fric-
tion stemming from the Gilbert damping when J (ω) ∼ γ =
2αs/λ. From the analytical expression of J (ω) in Eq. (32) and
its numerical calculation in Fig. 2(b), this criteria can be cast
as

(ωτ )2e−ε0/T ∼ αsλ

h̄
. (50)

Note that the right-hand side includes the factor sλ/h̄, which is
the total spin contained within the domain-wall width in units
of h̄.

To obtain numerical estimates for the temperature T and
the driving frequency ω that are suitable for probing the non-
Markovian friction, let us take the parameters of a long strip of
yttrium iron garnet (YIG) with thickness t = 5 nm and width
w = 20 nm: α = 10−4, s = 10−22 J s/m, A = 5 × 10−28 J m,
Ke = 9 × 10−13 J/m, and Kh = 3 × 10−12 J/m [52], where
the shape anisotropy [53] induced by the dipolar interaction is
taken into account [54]. Note that the coefficients A, Kh, and
Ke have units for the one-dimensional Hamiltonian [Eq. (4)],
which are multiplied from their three-dimensional bulk values
by the thickness t and the width w. This set of parameters
yield the domain-wall width λ ∼ 20 nm, the spin-wave gap
ε0 ∼ 80 mK, the characteristic time scale τ ∼ 100 ps, and the
aspect ratio κ = 4. The domain wall contains enough spin,
sλ/h̄ ∼ 2 × 104, to justify the assumption that the domain
wall is much heavier than magnons (see Appendix B for the
relevant discussion). Based on these estimates, the magnon-
induced non-Markovian friction and the Gilbert-damping-
induced Markovian friction will be comparable when the
temperature and the driving frequency are of the order of the
spin-wave gap, T ∼ 50 mK and ω ∼ 1 GHz. For temperatures
higher than the spin-wave gap, the magnon-induced friction
may dominate the Gilbert-damping-induced Markovian fric-
tion. In addition, in the high-T regime, where the equilibrium
distribution of magnons can be described by the Rayleigh-
Jeans, the magnon-induced friction would exhibit the algebraic
rather than exponential scaling with T . The investigation of
the frequency and temperature dependence of the complex
mobility μ(ω) [Eq. (44)] on an oscillating magnetic field,
which can be conducted by time-resolved magnetic imaging
techniques such as time-resolved scanning transmission x-ray
microscopy that were successfully employed to observe the
GHz domain-wall oscillations in NiFe thin films [33], will
allow us to probe the magnon-induced friction.

V. SUMMARY AND DISCUSSION

We have derived the deterministic frictional force and
the stochastic Langevin force on a domain wall in a

one-dimensional ferromagnet, which is induced by its coupling
to the quantum magnon bath, within the two different ap-
proaches: the time-dependent perturbation theory in quantum
mechanics and the Keldysh formalism. The derivation has been
facilitated by the availability of the exact solutions of spin
waves on top of a domain wall. We have studied the effects
of the non-Markovian friction on the dynamic response of a
domain wall and have discussed a possible experimental setup
to probe it.

Next, let us compare our works with those of the existing
literature. First, in 1990, Bouzidi and Suhl [17] studied how
a ferromagnetic domain wall driven by an external field can
lose its energy to magnons for a sufficiently strong magnetic
field, thereby self-limiting its velocity. This frictional force
arises only for fast-moving domain walls since it is rooted in
the Cherenkov-type magnon radiation that occurs when the
domain-wall velocity is equal to the common phase and group
velocities of a particular magnon. On the other hand, in this
paper, we have focused on the small domain-wall velocity
regime, where the frictional force is rooted in the scattering
of thermal magnons off the domain wall, and thus occurs for
any domain wall regardless of its velocity. We would like
to mention that spin-wave emissions by domain-wall motion
have been recently studied numerically by solving the Landau-
Lifshitz-Gilbert equation by several groups [55]. In addition,
the Cherenkov-type phonon radiation by a moving domain wall
[56], which is a phenomenon analogous to the Cherenkov-type
magnon radiation, has been observed experimentally in the
weak ferromagnet YFeO3 in 1991 [57].

Second, Stamp [18] in 1991 and Chudnovsky et al. [19]
in 1992 have studied the problem of the magnon-induced
diffusion of a ferromagnetic domain wall. Their interaction
term between magnons and the domain wall comes from
the Hamiltonian H [Eq. (4)], in which magnons experience
the velocity of the domain wall via the effective potential
well, i.e., ∝sech2(x − V t). The resultant dissipation kernel
associated with two-magnon scattering [58] is of fourth order
in the domain-wall velocity ∝V 4 [19]. On the other hand,
our interaction term [Eq. (19)] is from the spin Berry phase
and the corresponding energy dissipation is of quadratic
order in the domain-wall velocity, which should dominate the
aforementioned force for low-energy dynamics.

Third, Braun and Loss [20] studied a similar problem within
the Matsubara formalism [22] by mapping the model for a
ferromagnet to the sine-Gordon model in the limit of strong
hard-axis anisotropy Kh � Ke. Note that this assumption is
not made in our work. See Appendix D for a brief discussion
on the limit of strong hard-axis anisotropy. In addition, they
focused on elastic scattering of magnons off the domain wall
by disregarding the off-diagonal components in the scattering
matrix πkk′ , and, for this reason, the obtained spectral function
is finite at frequencies above the spin-wave gap. In our work we
have included the effects of inelastic scattering of magnons off
the domain wall and have thereby obtained a gapless spectral
function, which can be expected to govern the low-energy
dynamics of the domain wall.

Fourth, in 2009, Le Maho et al. [21] theoretically inves-
tigated the magnon contributions to current-induced domain-
wall dynamics, which include the magnon-induced frictional
force on the domain wall. They have focused on the interaction
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term, Eq. (45) of Ref. [21], that is linear in the magnon
operators and quadratic in the domain-wall velocity. As a
result, the energy-dissipation rate is proportional to the fourth
power of the domain-wall velocity as can be seen in Eq. (53) of
Ref. [21] in the absence of the current. On the other hand, we
have focused on the interaction term [Eq. (19)] that is quadratic
in the magnon operators and linear in the domain-wall velocity,
which yields the energy-dissipation rate proportional to the
second power of the domain-wall velocity. The latter frictional
force is expected to dominate the former for the low-energy
dynamics of domain walls, and vice versa for the high-energy
dynamics of domain walls. In addition, Le Maho et al. [21]
studied the renormalization of the domain-wall mass and width
by magnon contributions, which are not addressed in this
paper. At high temperatures, all the aforementioned magnonic
contributions to the domain-wall friction including ours will
be operative. The detailed quantitative comparison of all the
contributions in high-temperature regime is beyond the scope
of our work. Here we would like to mention that the generation
of the frictional force on a domain wall by other particles rather
than magnons have been also studied in the past. For example,
electron contribution to the frictional force on a domain wall
in a metallic ferromagnet has been studied in Ref. [59].

We have made a few approximations in the paper. First, we
have treated a ferromagnetic wire as a strictly one-dimensional
system by assuming uniform spin configurations across the
cross section, which is valid for sufficiently thin wires or low
temperatures. Second, we have assumed that the domain-wall
mass is much larger than the magnon mass, which is valid for
sufficiently long domain walls, i.e., λ � h̄/s. Third, we have
focused on only two-magnon scattering process with a domain
wall by assuming dilute magnon densities, which are valid
for temperatures much smaller than the ordering temperature
T  Tc. Fourth, the Gilbert damping, which is induced by
the coupling between the magnetization and the other external
degrees of freedom such as lattice, has been assumed to form
a featureless background for the magnetization dynamics by
being local in space and time in this paper, although it can be
nonlocal in both [60].

VI. OUTLOOK

The structure of our theory for the magnon-induced friction
of a domain wall in magnets is analogous to that for the
quasiparticle-induced friction of a soliton in superfluids [6],
which allows us to connect two different states of matter: mag-
nets and superfluids. The two states are represented by distinct
order parameters: the former by the three-dimensional vector
field n associated with the spontaneous rotational-symmetry
breaking and the latter by the complex-valued field ψ asso-
ciated with the spontaneous phase-symmetry breaking. The
link between them is the shared two-component description of
their dynamics, which consists of the coherent order-parameter
dynamics and the incoherent small-amplitude fluctuations. For
both a magnetic domain wall and a superfluid soliton, the
induced frictional force is a macroscopic manifestation of the
interaction between the two components. This link between
magnets and superfluids can be also found in the two-fluid
theory for spin superfluids in easy-plane magnets [61], which
has been recently developed motivated by the two-fluid theory

for superfluid helium-4 [62]. We envision that multicomponent
description of the dynamics of ordered media may serve as
a versatile link between different subfields of physics for
nonequilibrium phenomena.

We have developed the theory of the domain-wall friction
induced by the magnon bath in equilibrium based on the
Keldysh formalism. Since the Keldysh technique is applicable
to systems away from equilibrium, our theory can be a
good starting point to study similar problems further out of
equilibrium, e.g., the dynamics of a domain wall in the pres-
ence of a temperature gradient [13,63]. In addition, from the
generalized Langevin equation that we obtained in this work,
the generalized Fokker-Planck equation can be derived to study
the Brownian motion of domain walls, which would exhibit
anomalous behavior associated with the non-Markovian nature
of the viscous and stochastic forces [64].

The approach taken in this paper to study the magnon-
induced friction of a ferromagnetic domain wall can be also
applied to the following problems. First, it has been recently
shown that a magnetic domain wall in an elastic magnetic wire
can be driven by the phonon current [65]. In that work, the
scattering of phonons off of a domain wall has been already
worked out analytically, starting from which one may develop
a phonon version of our magnonic theory of the friction of a
domain wall. Second, an analogous theory can be developed
for the quantum friction of an antiferromagnetic domain wall
within the Keldysh formalism starting from our earlier work
on magnon-induced antiferromagnetic domain-wall motion
[37]. This study can complement the previous results obtained
by Ivanov et al. [49] within the time-dependent perturbation
theory. The Lagrangian of antiferromagnets is invariant under
the Lorentz-like transformations [66], which may facilitate the
development of the theory. Similar to the case of ferromagnets,
magnons pass through a domain wall without any reflection in
antiferromagnets [49], and thus the magnon-induced friction
is expected to be non-Markovian despite the existence of
the Lorentz-like invariance. Lastly, a system considered in
this work is a one-dimensional ferromagnet with easy-axis
anisotropy Ke > 0, which has two different ground states
and thus can harbor a topological soliton—domain wall—
interpolating them. However, in the case of an easy-plane
ferromagnet without easy-axis anisotropy Ke = 0, ground
states are continuously degenerate and thus there is no domain
wall. Instead, the system is known to support other types of
solitonic nonlinear excitations [11], whose magnon-induced
friction can be investigated within the same formalism used in
this work. In addition, the analogy between easy-plane magnets
and superfluids [67] may allow us to identify the magnetic
counterparts of the known results for the friction of superfluid
solitons [6,68].
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APPENDIX A: THE TOTAL MOMENTUM OF A
DOMAIN WALL WITH SPIN WAVES

We derive the total momentum of a domain wall with spin
waves on top of it by using the collective-coordinate approach
[44], which allows us to obtain the conserved momentum that
is independent of a gauge choice for the spin Berry phase [43].
The conserved momentum of a domain wall can be obtained
by the following expression:

P [q(t)] = −
∫ q(t)

q0

dq ′
i GXq ′

i
, (A1)

where X is the collective coordinate for the domain-wall
position, {qi} represents all the other collective coordinates
including the azimuthal angle � and spin-wave modes, q0 is
an arbitrary initial value of the collective coordinates, and GXqi

is the gyrotropic tensor given by

GXqi
= −

∫
dx n ·

(
∂n
∂X

× ∂n
∂qi

)
(A2)

=
∫

dx n ·
(

∂n
∂x

× ∂n
∂qi

)
. (A3)

The resultant conserved momentum is given by

P [�(t),q̃(t)] = −
[∫

dx n ·
(

∂n
∂x

× ∂n
∂�

)]
�(t)

−
∫

dxdq̃ ′
i n ·

(
∂n
∂x

× ∂n
∂q̃ ′

i

)
, (A4)

where {q̃i} are the collective coordinates for the continuum
modes besides the two localized modes described by X and
�. Here the first term is the contribution from a domain wall,
whereas the second term that we denote by Pm is the contribu-
tion from spin waves. By using the linear expansion n(x,t) ≈
n0(x) + δθ [x,q̃(t)]∂θn0(x) + δφ[x,q̃(t)]∂φn0(x) and perform-
ing an integration over q̃, we obtain the first term 2�, and the
second term as follows:

Pm[q̃] =
∫

dx

∫ q̃

q̃0

dq̃ ′
i sin θ0(x)

(
∂δθ [x,q̃′]

∂q̃ ′
i

∂xδφ[x,q̃′]

−∂δφ[x,q̃′]
∂q̃ ′

i

∂xδθ [x,q̃′]
)

(A5)

=
∫

dx sin θ0(x)
∫ q̃

q̃0

dq̃ ′
i

(
∂δθ [x,q̃′]

∂q̃ ′
i

∂xδφ[x,q̃′]

+∂{∂xδφ[x,q̃′]}
∂q̃ ′

i

δθ [x,q̃′]
)

(A6)

=
∫

dx sin θ0 δθ [x,q̃]∂xδφ[x,q̃], (A7)

to quadratic order in �, δθ , and δφ. Here we drop the contribu-
tion from the integrand [∂x sin θ0(x)] δθδφ that vanishes on the
time scale longer than the inverse of the gap frequency ω−1

0 , and
the boundary term (∝δθ [x,q̃0]∂xδφ[x,q̃0]) from the arbitrary
initial collective-coordinate value q̃0. In conjunction with the
spin-wave solutions in Eqs. (14) and (15), this conserved
momentum leads to our results in the main text, Pm (20), πkk′

(21), and P (22).

APPENDIX B: MASS OF A DOMAIN WALL
VERSUS MASS OF A MAGNON

We compare the mass of a domain wall and that of a magnon.
For more transparent discussions, we use the physical units
instead of the natural units [Eq. (7)] in this section. The mass
of a domain wall is given by

M = 2ε

κc2
, (B1)

where 2ε and c = λ/τ are its rest energy and characteristic
velocity, respectively. From the low-energy limit of the disper-
sion of a magnon [Eq. (16)],

εk = h̄

τ

[
1 + κ + (2 + κ)(λk)2

2

]
+ O(k3), (B2)

we can obtain the mass of a magnon:

m = h̄τ
√

1 + κ

λ2(2 + κ)
. (B3)

Their ratio is given by

M

m
= 4 + 2κ

κ
√

1 + κ

sλ

h̄
. (B4)

Note that sλ is the total spin inside the domain wall. When this
domain-wall spin is much larger than the spin h̄ of a magnon,
the mass of a domain wall is much heavier than the mass of a
magnon.

APPENDIX C: THE DERIVATION OF THE FRICTIONAL
FORCE BASED ON MOMENTUM CONSERVATION

Here we invoke the conservation of the total linear momen-
tum to obtain the magnon-induced frictional force on a domain
wall within the time dependent perturbation theory, instead of
the conservation of the total energy used in the main text. The
force on the domain wall is the rate of the momentum transfer
from the magnon bath to the domain wall, and it is given by

F (t) =
∫

dkdk′

(2π )2
Rkk′(t)h̄(k − k′)fk (C1)

= 1

2

∫
dkdk′

(2π )2
Rkk′(t)h̄(k − k′)(fk − fk′). (C2)

By using Eq. (26) for Rkk′ , we obtain

F (t) = 1

h̄2

∫ t

0
dt ′

∫
dkdk′

(2π )2
|πkk′ |2(fk − fk′)V (t ′)

× cos

[
(εk′ − εk)(t − t ′)

h̄

]
h̄(k − k′)V (t). (C3)

Here the last factor h̄(k − k′)V is the opposite of the change
of the domain-wall energy by assuming instant interaction:

�Edw = (�Pdw)V. (C4)

From the energy conservation, this should be equivalent to the
change of the magnon energy: h̄(k − k′)V = εk′ − εk . Then,
Eq. (C3) yields the same result for η(t) [Eq. (30)] that has been
obtained by invoking the energy conservation alone in the main
text.
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APPENDIX D: THE LIMIT OF STRONG
HARD-AXIS ANISOTROPY

Here we discuss the limit of strong hard-axis anisotropy
κ � 1 in order to compare our results with those obtained
by Braun and Loss [20]. First, let us begin with analysis
of spin-wave modes on a static domain wall. In this limit,
the Hamiltonian density for H2 [Eq. (10)] for δn2 can be
approximated by the hard-axis anisotropy constant H2 ≈ κ ,
which allows us to treat δn2 as a slave variable of δn1 and
integrate it out. By using the equations of motion δn2 ≈ δṅ1/κ ,
and representing δn1 by the small-angle field ϕ by following
Braun and Loss [20], we can obtain the Lagrangian in terms
of ϕ only:

L2 ≈
∫

dx[ϕ̇2/2κ − ϕH1ϕ/2]. (D1)

This Lagrangian corresponds to Eq. (5.11) of Braun and Loss
[20]. The solutions are given by Eq. (14) with the ellipticity
factor omitted and the dispersion is given by ωk ≈

√
κ(1 + k2).

Let us now consider a moving domain wall. To linear order
in Ẋ and the quadratic order in δn1, δn2, and �, the interaction
term between a domain wall and spin waves is given by

Lint = Ẋ

∫
dx(δn1∂xδn2)

≈ Ẋ

∫
dx(ϕ∂x∂tϕ)/κ, (D2)

where δn2 is replaced by δṅ1/κ by using the equations of
motion on the second line. The right-hand side on the first
line gives rise to our interaction term in Eq. (19), which is
valid for an arbitrary value of κ . The approximated one on the
second line, which pertains to the limit κ � 1, is the first term
in Eq. (5.12) of Braun and Loss [20].

APPENDIX E: DETAILS OF THE KELDYSH CALCULATION

In this Appendix we provide the details of the Keldysh calculation, for which we closely follow the approach taken by Efimkin
et al. [6]. After integrating out the magnon fields ξ from the Keldysh action [Eq. (34)] in the one-loop approximation, we obtain
the following effective action:

SK
eff = 2M

∫
dtẊcẊq +

∫
dtdt ′[Ẋc(t)�cq(t,t ′)Ẋq(t ′) + Ẋq(t)�qc(t,t ′)Ẋc(t ′) + Ẋq(t)�qq(t,t ′)Ẋq(t ′)], (E1)

where

�cq(t,t ′) = �qc(t ′,t) = − i

h̄

∫
dkdk′

(2π )2
|πkk′ |2[GA

k′(t,t ′)GK
k (t ′,t) + GK

k′ (t,t ′)GR
k (t ′,t)

]
, (E2)

�qc(t,t ′) = �cq(t ′,t) = − i

h̄

∫
dkdk′

(2π )2
|πkk′ |2[GK

k′ (t,t ′)GA
k (t ′,t) + GR

k′(t,t ′)GK
k (t ′,t)

]
, (E3)

�qq(t,t ′) = − i

h̄

∫
dkdk′

(2π )2
|πkk′ |2[GK

k′ (t,t ′)GK
k (t ′,t) + GR

k′(t,t ′)GA
k (t ′,t) + GA

k′(t,t ′)GR
k (t ′,t)

]
. (E4)

The absence of �cc is required by the causality. Note that �qc(t,t ′) = �qc(t − t ′) and �qq(t,t ′) = �qq(t − t ′). Using the explicit
forms of Green functions [Eq. (35)], we obtain

�qc(�t) = −2�(�t)

h̄

∫
dkdk′

(2π )2
|πkk′ |2 sin

[
(εk′ − εk)�t

h̄

]
(fk′ − fk), (E5)

�qq(�t) = 2i

h̄

∫
dkdk′

(2π )2
|πkk′ |2 cos

[
(εk′ − εk)�t

h̄

]
(fk′ + fk + 2fk′fk). (E6)

By performing the integration by parts on the action above, we get

SK
eff =

∫
dt

[
2Xq(t)(−MẌc) −

∫
dt ′ 2Xq(t)η(t − t ′)Ẋc(t ′)

]
+ i

h̄

∫
dtdt ′2Xq(t)Cs(t − t ′)Xq(t ′), (E7)

where η(t − t ′) = ∂t�qc(t − t ′)/2 ∝ �(t − t ′) and Cs(t − t ′) = h̄∂t ∂t ′�qq(t − t ′)/4i. By performing the Hubbard-Stratonovich
transformation for the last term by introducing an auxiliary field ζ , we obtain

SK
eff =

∫
dt

{
2Xq(t)

[
−MẌc −

∫ t

0
dt ′η(t − t ′)Ẋc(t ′) + ξ (t)

]}
+ ih̄

2

∫
dt

∫
dt ′ξ (t)C−1

s (t − t ′)ξ (t ′) . (E8)

The saddle-point solution to this action gives the quasiclassical equation of motion for the coordinate X:

MẌ +
∫ t

0
dt ′η(t − t ′)Ẋ(t ′) = F + ξ (t), (E9)

where ξ satisfies

〈ξ (t)ξ (t ′)〉 = Cs(t − t ′). (E10)
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The explicit expressions for η(t − t ′) and Cs(t − t ′) are given by

η(t − t ′) = η(�t) = �(�t)

h̄2

∫
dkdk′

(2π )2
|πkk′ |2(εk′ − εk)(fk − fk′) cos

[
(εk′ − εk)�t

h̄

]
, (E11)

Cs(t − t ′) = Cs(�t) = 1

2h̄2

∫
dkdk′

(2π )2
|πkk′ |2(εk′ − εk)2 cos

[
(εk′ − εk)�t

h̄

]
coth

[
h̄(εk′ − εk)

2T

]
. (E12)

In the classical limit, where the temperature is much higher than all the energy scales of the system, T → ∞, we obtain

Cs(t) = T η(|t |), (E13)

which is a manifestation of the classical fluctuation-dissipation theorem [29].
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