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Impact of thermal atomic displacements on the Curie temperature of 3d transition metals
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It is demonstrated that thermally induced atomic displacements from ideal lattice positions can produce
considerable effect on magnetic exchange interactions and, consequently, on the Curie temperature of Fe. Thermal
lattice distortion should, therefore, be accounted for in quantitatively accurate theoretical modeling of the magnetic
phase transition. At the same time, this effect seems to be not very important for magnetic exchange interactions
and the Curie temperature of Co and Ni.
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I. INTRODUCTION

Accurate and reliable ab initio modeling of finite tem-
perature properties of magnetic materials is a formidable
problem in solid state physics and materials science. One
of the major challenges is related to the absence of rele-
vant thermal magnetic excitations in the routinely used ver-
sion of density-functional theory (DFT) [1–3]. At the same
time, proper many-body approaches to magnetic excitations
[4–7] are highly computationally demanding, especially when
nonlocal correlations are essential.

A more tractable approach is to map the initial quantum
mechanical problem onto a semiclassical model, such as the
Heisenberg model, whereby the necessary model parameters
are obtained from a DFT calculation in the appropriate refer-
ence magnetic state. The magnetic thermodynamics, including
the Curie temperature, are then described by a Monte Carlo or
spin-dynamics simulation. Such an approach assumes that the
magnetic degrees of freedom are well separated from other
electronic excitations and lattice vibrations. Moreover, the
timescale of magnetic excitations is typically much smaller
than that of thermal lattice vibrations, which allows one to
model magnetic thermodynamics on a fixed crystal structure.

The parameters of such Hamiltonians are obtained in first-
principles calculations and may already include the contribu-
tion from the one-electron excitations. Besides, since the lattice
vibrational excitations are generally slower than the magnetic
ones, the effect of thermal lattice vibrations can be included
in the first approximation by using the corresponding finite
temperature lattice constant [8,9]. What is, however, missing
in the latter case is the proper adiabatic coupling between
magnetic excitations and lattice vibrations, as the magnetic
problem is still considered on a fixed ideal lattice of the system.

Clearly, this coupling can be important at high temperatures,
close to the melting transition. In particular, it has been demon-
strated that thermal atomic displacements at temperatures close
to the melting transition affect the electronic structure and
bonding in Mo, substantially changing the relative stability
of different crystal structures [10]. Recently, the effect of the

thermal atomic motion on the one-electron excitations has been
thoroughly studied by Zhang et al. [11]. Again, in some cases
the effect is quite large, although it is relatively small at the
temperature equal to the half of the melting temperature. Also,
the so-called disordered-local-moment molecular dynamics
(DLM-MD) simulations by Alling et al. [12] have revealed
a large impact of thermal lattice displacements upon the
electronic structure and local magnetic moments in Fe under
a certain constraint on the spin configuration. Specifically,
the electronic structure, particularly electronic and magnetic
energies, of the bcc and fcc phases turned out to be almost
indistinguishable at temperatures close to the melting point.

In this paper, we consider the effect of thermal lattice
displacements on the magnetic phase transition in bcc Fe,
fcc Co, and fcc Ni, assuming adiabatic coupling of magnetic
excitations to the thermal atomic motion. Among these three
materials, fcc Co has the largest ratio of Curie (Tc = 1400 K)
and melting (Tm = 1770 K) temperatures, tc = 1400/1770 ≈
0.79, followed by bcc Fe with tc = 1044/1811 ≈ 0.58 and
by fcc Ni with tc = 630/1730 ≈ 0.36. One would expect
Co to experience the largest impact of lattice vibrations on
magnetic properties. We show that in contrast to this naive
expectation, the strongest effect is observed in bcc Fe, where
the adiabatic lattice-magnetic coupling reduces the theoretical
Curie temperature by more than 30%. More so, a similar effect,
although to a much smaller extent, is observed even in fcc Ni
with its relatively low Curie temperature.

Our results are somewhat contradictory to the previous work
of Yin et al. [13], who found that thermal lattice vibrations
have very little effect on the Curie temperature, although
they produce a noticeable shift of the heat capacity relative
to the case when lattice vibrations and magnetic excitations
are decoupled. The magnetic exchange interactions in those
calculations have been obtained in supercell first-principles
calculations with atomic positions from classical molecular
dynamics (MD) simulations and for a magnetic configuration
with randomly assigned spin directions. A possible origin of
the difference with our results will be discussed below.
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II. METHODOLOGY

A. Magnetic model

All metals considered here are band ferromagnets exhibit-
ing various degrees of localization and itineracy: While bcc
Fe is mainly on a localized side, fcc Co, and, especially, Ni
are itinerant ferromagnets [14]. This determines our choice of
the models of the magnetic state close to the magnetic phase
transition as described below. However, since the magnetic
phase transition in these metals is largely related to the
reorientation of the local magnetic moments, it is determined
in the statistical simulations, using the simplest form of the
Heisenberg Hamiltonian:

H = −
∑

i,j

Jij eiej , (1)

where ei is the direction of the magnetic moment at site i; Jij

are the magnetic exchange interaction parameters for a pair of
atoms at sites i and j . The interaction parameters are obtained
in the relevant state [8,9], i.e., taking into consideration the
external and internal parameters of metals, including the lattice
constant and the magnetic state at a finite temperature near the
magnetic transition.

Specifically, the magnetic exchange interactions were deter-
mined at the Curie temperature experimental lattice constants:
2.904 Å in bcc Fe, 3.595 Å in fcc Co, and 3.543 Åin fcc Ni
[15]. The same lattice constants were also used in the MD
simulations, providing atomic configurations of these metals
at the Curie temperature. The magnetic exchange interactions
were calculated in the paramagnetic state (PM) [16]. However,
we used different models of the paramagnetic state for different
metals.

In the case of Fe, we assumed the localized behavior of
magnetic moments, neglecting longitudinal spin fluctuations
(LSF). This is a qualitatively reasonable model for bcc Fe
since its magnetic moments in the ferromagnetic (FM) and
PM states are rather similar: ∼2.2 and ∼2.0 μB, respectively.
In calculations of the magnetic interaction parameters, we
used the disordered local moments (DLM) approach [17] as
described below.

On the contrary, the magnetic moment of fcc Co and Ni
are very sensitive to the magnetic state [18]. In particular, the
magnetic moment of Ni vanishes in the straightforward DLM
modeling [19], while in Co it drops from ∼1.7μB in the FM
state to ∼1.0 μB in the DLM state (for the high-temperature
lattice constant). Therefore, in these metals, LSF play an
important role at high temperature in the paramagnetic state
and they should be accounted for in an appropriate way.

Here, we include them by minimizing the free energy of the
DLM-LSF state by assuming that its entropy is [20]

SLSF = 3 ln(m), (2)

where m is the average magnitude of the local magnetic
moment, which is valid in the high-temperature limit when
the LSF energy has a quadratic form. We also include the one-
electron excitations at the corresponding Curie temperatures
through the Fermi-Dirac distribution function.

B. Exchange-interaction-parameter calculations

The magnetic exchange interaction parameters were cal-
culated within the Green’s-function exact muffin-tin orbital
(EMTO) method [21] using the magnetic force theorem [22].
In particular, the Lyngby version [23] of the EMTO code was
used, which includes an efficient treatment of the magnetic
disorder and LSF. The DLM and DLM-LSF calculations were
done in the coherent potential approximation (CPA) [24].
The basis functions in the calculations were expanded up to
lmax = 2 but, for some of the cases presented below, results
were obtained using lmax = 3 to test the convergence. To
provide a better convergence with partial waves, the blowing-
up technique up to l = 4 was used in all the EMTO calculations
[21]. The integration over the irreducible part of the Brillouin
zone was performed using the Monkhorst-Pack grid [25],
corresponding to the 36×36×36 for the primitive-unit cells.
The local density approximation [26], was used in the self-
consistent calculations.

C. Finite temperature atomic structures

Atomic configurations at the Curie temperatures were ob-
tained in ab initio MD simulations by the projector augmented
wave (PAW) method [27,28] as implemented in the Vienna
ab initio simulation package (VASP) code [29–31]. For Co
and Ni, we used a 32-atom 2×2×2 supercell built upon the
cubic 4-atom fcc unit cell, while for Fe we used 54-atom
(3×3×3) and 16-atom (2×2×2) supercells based on the bcc
cubic 2-atom unit cell.

The NVT-ensemble MD simulations were carried out in
a canonical ensemble using the algorithm of Nose [32]. The
representative atomic configurations were chosen from the MD
runs separated by at least 1 000 MD steps at temperatures close
to the corresponding Curie temperatures. The time step was set
to 2 ps in all the MD simulations. The 4×4×4 Monkhorst-Pack
grid [25] was used in the Brillouin zone integration for the
fcc 32-atom and bcc 54-atom supercells, while the 8×8×8
grid was used for the 16-atom bcc supercell. Generalized
gradient approximation in the Perdew-Burke-Ernzerhof (PBE)
parametrization [33] was used in the PAW calculations.

As mentioned above, the lattice constants were chosen
to be equal to the experimental ones at the point of the
magnetic phase transition. The MD calculations were done
in the FM state. It seems that this is the only way to have
reasonable magnitudes of the local magnetic moments and
thus equilibrium volumes close to the experimental ones. The
latter is supported by the fact that the total average pressure
in calculations was found to be −13.9, −23.7, and 1.8 kB for
Co, Fe, and Ni, respectively. The use of the FM state in MD
simulations is important not only in the cases of fcc Ni and Co,
but also in the case of bcc Fe, as will be discussed below.

To check if such MD simulations provide a reasonable
account for the thermal lattice displacements at the corre-
sponding Curie temperatures, we have also calculated the mean
square atomic displacements in all three systems. They are

0.042, 0.022, and 0.066 Å
2

for Fe, Ni, and Co, respectively.
The results for Fe and Ni are in reasonable agreement with
model estimates from the experimental Debye-Waller factors

[34]: 0.05 and 0.03 Å
2
, respectively. We have not been able to
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FIG. 1. Magnetic exchange interaction parameters of Co (left), Ni (center), and Fe (right) at the first two coordination shells for three
different MD snapshots marked by blue, red, and black colors (32-atom supercells in the case of Co and Ni and 54-atom supercell in the case of
Fe, as described above). The distances are given in units of a lattice constant, a. The paramagnetic state in Co and Ni is modeled with LSF-DLM,
while in Fe using conventional DLM approach.

find data for fcc Co. However, the result for Co seems to be
reasonable, taking into consideration the proximity of its Curie
temperature to the melting point.

III. RESULTS

A. Magnetic exchange interactions

In Fig. 1, we show the magnetic exchange interaction
parameters obtained from the EMTO calculations for the MD
snapshots at the first two coordination shells for Co, Ni, and
Fe. One can notice that the thermal lattice displacements are
quite large in all simulations, which leads to the substantial
deviation of the magnetic exchange interactions for certain
pairs of atoms, even in the case of Ni at a relatively low
temperature 630 K. One can also see that for Co and Ni, the
interactions are mostly affected by the interatomic distance,
while in the case of Fe the behavior of the magnetic exchange
interactions looks more complicated with a large dispersion of
their values close to the nearest-neighbor distance of the ideal
bcc structure, r1−bcc = a/

√
3 ≈ 0.87a.

In Fig. 2, we compare the average magnetic exchange
interactions for the first few coordination shells in different MD
samples and the corresponding ideal structures (for specific
values, see Tables I and II in the Appendix). Taking into consid-
eration the restricted size of the MD samples and the number
of MD samples, we can talk only about qualitative effects.
Nevertheless, the effect of thermal lattice displacements is
clearly noticeable in the cases of Co and Fe. In particular, there
is a pronounced change of the magnetic exchange interactions
of Co at the first, third, and fourth coordination shells, which
provide the strongest contribution to Tc.

The most dramatic effect is observed in the case of Fe
for the nearest-neighbor magnetic exchange interactions, J1,
whose values in the MD samples drop by about 30% on
average from the value for the ideal bcc structure. What is quite
unexpected, however, is that the nearest-neighbor interaction
in the ideal bcc structure appears to be almost on top of all the
interactions in the MD samples at r1−bcc. Clearly, the magnetic
exchange interactions in Fe are very sensitive not only to the
corresponding interatomic distances but also to the deviation
of the local structure from the ideal bcc one.
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FIG. 2. Magnetic exchange parameters at the first few coordination shells for Co (left), Ni (center), and Fe (right) obtained in various MD
snapshots. The parameters for the snapshots are obtained as averages over atomic pairs corresponding to a given coordination shell. 〈MD〉
denotes an average over snapshots 1, 2, 3.
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FIG. 3. Curie temperatures for Co (left), Ni (center), and Fe (right) as obtained from MC simulations with parameters obtained in various
MD snapshots (see text). For each snapshot, a solid line corresponds to the values obtained using actual magnetic exchange parameters
(setup 1) and a dashed line corresponds to averaged magnetic exchange parameters (setup 2). The purpose of a dashed segment in the plot of
Tc for an ideal structure (setup 3) is to show convergence with respect to coordination shells.

Our results for magnetic exchange interactions in Fe MD
samples presented in Fig. 1 are actually qualitatively very simi-
lar to the results of Ref. [13] obtained in the LSMS calculations.
However, there is a quantitative difference because of different
methodologies employed: while a random configuration of
magnetic spins have been used in the calculations of magnetic
exchange interactions in Ref. [13], it is not equivalent to the
DLM-CPA model used here, which provides a homogeneously
random presentation of the paramagnetic state as discussed
below. As to the qualitative similarity, our calculations of the
magnetic exchange interactions in the FM state produce results
similar to the ones in the DLM state and to those presented
in Ref. [13] as well as in Ref. [35], where an amorphouslike
structure was considered. This suggests that this behavior of
magnetic interactions in Fe is generic.

B. Curie temperature

The Curie temperature calculations were performed by the
Monte Carlo (MC) method. 8×8×8 supercells of the 32-atom
unit cells representing snapshots of the MD simulations were
used in MC simulations in the case of Co and Ni, while for the
ideal fcc structure for these metals a 16×16×16 supercell was
used built upon the 4-atom fcc cubic unit cell. Similarly, in the
case of Fe, 8×8×8 supercells of the 54-atom MD snapshots
and a 20×20×20 supercell of the 2-atom bcc cubic unit cell
were used in the MC simulations.

The number of MC steps for the thermalization of spin
configurations was 20 000 and measurements were performed
during the next 25 000 MC steps at each temperature. The
temperature step was 5 K in all MC simulations. The Curie
temperature was identified by the peak of the heat capacity,
which is sufficiently accurate for a semiquantitative consid-
eration. A more precise calculation would require averaging
over MD samples, which has not been done because this goes
beyond the purpose of this paper.

For every metal, we obtain the Curie temperature within
three different setups:

(1) Actual MD snapshots with the magnetic exchange
parameters as obtained in EMTO calculations for every pair
of atoms (see Fig. 1);

(2) Supercells based on ideal crystal lattices (bcc or fcc)
with the interactions obtained from MD snapshots by averaging
over atomic pairs (shown in Fig. 2 and in Tables I and II in the
Appendix);

(3) Supercells based on ideal crystal lattices with the
interactions obtained for the corresponding ideal structure.

The results for the Curie temperatures are presented in Fig. 3
(for specific values see Tables III and IV in the Appendix).
First of all, one can see that the Curie temperature obtained
for actual MD snapshots can deviate noticeably from that for
a corresponding ideal structure. This result is independent of
whether we use inhomogeneous magnetic exchange interac-
tions (setup 1) or the ones averaged over atomic pairs (setup 2).
The difference between these two setups is, in fact, smaller than
the sample-to-sample variation, especially pronounced in Co
and Fe.

The strongest deviation from the ideal-structure values is
observed in Fe, in whichTc drops by about 400 K due to thermal
lattice displacements. This effect could have already been
inferred from the significant reduction of J1 (rightmost panel
in Fig. 2). Another important observation is an appreciable
sample-to-sample variation (∼200 K) of the Curie temperature,
which might be due to the neglect of LSF in the current mod-
eling of the paramagnetic state of Fe. Nevertheless, it is clear
that the magneto-lattice coupling is quite strong in this case
and an accurate ab initio modeling of the magnetic transition
in Fe should account for the thermal lattice displacements.

In contrast to the case of Fe, the results on Tc in Co might
appear surprising at first sight. As seen in the left panel of Fig. 2,
the magnetic exchange interaction at the first coordination
shell, J1, experiences an enhancement by almost 10l% due
to thermal atomic displacements. Given the high value of Tc

in the ideal structure, this could have resulted in a systematic
increase of the Curie temperature in the MD samples. And
indeed, this can be seen in the MC with only J1 taken into
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account (left panel of Fig. 3). However, as more coordination
shells are included, the increase of Tc practically vanishes (see
also values in Table III in the Appendix). This can also be
traced back to the exchange parameters, which reveal that the
reduced absolute values at the third and fourth coordination
shells have a compensating effect on the final value of the Curie
temperature. As a result, one may conclude that, despite their
large amplitude (up to 25% of the NN distance), thermal atomic
displacements play a relatively little role in the magnetic
transition in Co.

In this respect, a small but systematic reduction of Tc

in Ni seems unexpected. Unlike Co, the ratio of the Curie
to the melting temperature is quite small here (∼36%) and
the amplitude of the thermal atomic displacements is no
more than 16%. Also, the values of J1 for MD snapshots
are practically indistinguishable from the ones for the ideal
lattice. Nevertheless, a small systematic reduction of magnetic
interactions at higher coordination shells is sufficient to have
a noticeable impact on Tc.

IV. DISCUSSION

The values of exchange interactions Jij parametrizing
Hamiltonian Eq. (1) already include the magnitudes of the local
magnetic moments. It is thus tempting to ascribe the behavior
of the exchange interactions described above to the variations
of local magnetic moments induced by the thermal lattice
distortions. Below we consider the local magnetic moments
in MD samples of Fe and show that, as a matter of fact, such
variations are rather small and cannot be responsible for the
strong effect of lattice vibrations on the exchange interactions.

The subsequent subsection is devoted to a more detailed
analysis of the trends observed in the behavior of Jij . In
particular, we discuss the distance dependence of the magnetic
interactions.

A. Local magnetic moments

As has been mentioned above, the MD simulations were
done in the FM state. The reason is that all the considered
metals are band ferromagnets, whose magnetic moments are
very sensitive to the atomic structure and especially to the
magnetic state within the usual DFT calculations without
LSF. At the same time, in the paramagnetic state with LSF,
the latter are mostly responsible for the magnitudes of the
local magnetic moments, which become much more sensitive
to the temperature than to the local atomic and magnetic
structure structure. Since the LSF cannot be included in the
DFT-MD calculations using VASP, the best way to provide
stable magnetic moments is to use the FM state as a magnetic
configuration.

Subsequent EMTO-CPA calculations of the DLM-LSF
magnetic moments in the MD samples show that this is
indeed the case. For instance, the average DLM-LSF magnetic
moments in Co and Ni, which are 1.58 μB and 0.68 μB, are
very close to the average local magnetic moments in the FM
state, which are 1.69 and 0.62 μB, respectively. Besides, the
dispersion of local magnetic moments in the DLM-LSF state
is quite small: the magnetic moments of Co in all three MD
samples are between 1.50 and 1.65 μB (the average magnitude
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(r1nn + r1nnn)/2r1

0
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m
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FIG. 4. Local magnetic moments in one of the MD snapshots
obtained in the EMTO FM and DLM calculations The thick lines
indicate the average magnitude of magnetic moment in both cases.
Here, rnn and rnnn are the distances to the nearest neighbor and next-
nearest neighbor atoms for a particular atom in the sample, and r1 is
the radius of the first coordination shell in the ideal bcc structure.

is 1.58 μB) and in Ni the deviation from the average magnetic
moment does not exceed 0.02 μB.

Although the situation is a bit different in Fe, where LSF
are neglected in the DLM EMTO-CPA calculations, the effect
of the local atomic displacements on the magnitude of local
magnetic moments is relatively small too. In Fig. 4, we show
local magnetic moments obtained from EMTO calculations
in the FM and DLM states for one of the MD samples of
Fe having the largest dispersion of the magnitudes of the
magnetic moments. They are shown as functions of the average
of the shortest and next-shortest distance between a particular
atom and its two neighbors, which corresponds to the first
coordination shell in the ideal bcc structure. The distances are
normalized by the nearest-neighbor distance in the ideal bcc
structure.

One can see that the magnetic moments of only two atoms
deviate relatively strongly from the corresponding average
magnitudes. In fact, these two atoms form a nearest-neighbor
pair with the shortest interatomic distance (rnn/r1−bcc=0.804)
out of all three MD samples. In all the other samples, the lowest
magnitudes of the local magnetic moments in the DLM state
are 1.84, 1.78, and 1.84 μB. Thus, even in the case of DLM
calculations without additional enhancement by the LSF, the
magnitude of the magnetic moments exhibits a relatively small
dispersion.

These results for the local magnetic moments of Fe in the
DLM state for a MD sample are in stark contrast to the results
of the so-called DLM-MD simulations presented in Ref. [12],
where the local magnetic moments deviate strongly from their
average values and vanish almost completely on some of the
atoms. The reason for such a dramatic difference in the results
is related to the way a DLM-like constraint is imposed in
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FIG. 5. Orbital decomposition of the magnetic exchange interac-
tions in one of the Fe MD snapshots at the first two coordination shells
in the DLM (left) and FM (right) state. t stands for t2g , e for eg . Black
boxes denote t2g-t2g sector, red diamonds—eg-eg sector, and green
circles—mixed t2g-eg sector (see legend).

the DLM-MD approach. Specifically, while a distribution of
spin-up and spin-down atoms in a MD sample mimics complete
disorder on average, the spin configuration is static at any
given point of time, which results in very unfavorable local
magnetic environment (e.g., with an ordered antiferromagnetic
pattern on nearest neighbors) for some of the atoms. The
magnetic moments of such atoms will then be appreciably
reduced or completely suppressed in a strongly distorted bcc
structure because of the relatively “soft” and itinerant nature
of magnetism in Fe. Let us also note that we do not expect
that increasing the supercell size in the DLM-MD approach is
going to improve the behavior because the main problem of the
method is the violation of timescale separation for vibrational
and magnetic degrees of freedom.

On the contrary, in a genuine DLM-CPA calculation, each
atom “sees” a time-averaged spin configuration. Effective time
averaging (replaced by the configurational averaging within
CPA) is what distinguishes the DLM-CPA approach from
supercell calculations with static random spin distributions.

B. The origin of trends in magnetic exchange interactions

There is a very clear qualitative difference in behavior
of exchange interactions between Fe and Co/Ni. Ni can be
considered as the simplest case here, in which the exchange
integrals depend only on distances between pairs of atoms.
This reflects the itinerant character of magnetism with a weak
momentum dependence of the spin susceptibility.

Iron, on the other hand, is known to have a much stronger
momentum dependence of magnetic correlations [36], which
leads to a much more pronounced sensitivity of the exchange
interactions to deviations of bond directions from their ideal
positions in the bcc structure. Such a behavior implies a
strong orbital dependence of the magnetic response. And
indeed, this is what we observe when we decompose Jxc into
orbital contributions, as shown in Fig. 5. In agreement with
previous studies [37–39], the t2g and eg terms contribute with
different signs at the first two coordination shells, while the
positive value of J1 is largely determined by the strong t2g-eg

term, J te ≡ J t2g−eg . Moreover, it is the latter contribution that
exhibits the strongest dependence on the deviation of thermally

FIG. 6. Orbital decomposition of the magnetic exchange interac-
tions in one of Co MD snapshots at the first coordination shell in the
DLM-LSF (left) and FM (right) state.

disordered local structure from the ideal one. The interaction
parameter at the second coordination shell has a negligible
t2g-eg contribution, which is clear because in the ideal bcc
structure this term is forbidden by symmetry. The value of J2 is
thus mainly determined by the t2g term. This is consistent with
the observation made in Ref. [39], that the magnetic interaction
associated with t2g states are determined by the Fermi surface
and has long range. In contrast, the eg term has a localized
(tight-binding) character and it is short range.

The behavior of exchange interactions in Co is similar to
that of Ni, with a slight tendency toward the localized behavior
inherent to Co. The orbital decomposition shown in Fig. 6
reveals that t2g and eg contributions are almost the same at
the first coordination shell, which one would expect from an
itinerant ferromagnet. The interorbital term J te shows a strong
direction dependence, but unlike Fe, its contribution to the
exchange integral is rather small (less than 20%).

Despite disorder in atomic positions, the exchange interac-
tions exhibit a clear dependence on the distance between pair
of atoms. At the same time, one should be careful in defining
Jxc as a simple function of the distance, as it is often done in
model studies. For instance, by comparing the left and right
panels of Fig. 5, one can see that the distance dependence
is obviously different for different magnetic states (FM or
DLM). Moreover, even for a given magnetic state the exchange
interactions depend on other aspects of the electronic state,
such as, e.g., average electron density.

To demonstrate this, we calculate Jxc for the ideal bcc
structure as a function of volume, constraining the magnetic
moment to the one at the equilibrium volume. The resulting
interactions are shown as solid lines overlaying the scatter
plots in Fig. 5. Apart from the already pointed-out difference
between ideal-structure and MD-averaged values, it is clear
that the distance-dependence of the interactions in MD snap-
shots is noticeably different from the one observed for Jxc

obtained as functions of volume. This discrepancy is especially
pronounced in the DLM state (left panel of Fig. 5), where
J

eg−eg

1 as a function of volume shows an upward trend at
small distances but the corresponding interaction in a MD-
snapshot has a clear maximum around r = 0.8a. Given the
weak variation in the magnetic moments (Fig. 4) this tells us
that the magnetic exchange parameters are not only dependent
on the magnetic state, which has long been known, but they are
also affected by other quantities characterizing the electronic
state (e.g., electron density).
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TABLE I. Average magnetic exchange interactions (mRy) in Co
and Ni (DLM-LSF state) for the MD simulation samples and in
the ideal fcc structure at the experimental Curie temperatures and
lattice constants. The last column shows the effect of the basis on the
magnetic exchange interactions in the EMTO calculations.

C.s. MD-1 MD-2 MD-3 〈MD〉 fcc fcc (lmax = 3)

Co
1 1.177 1.202 1.172 1.183 1.107 1.097
2 0.040 0.049 0.036 0.041 0.038 0.033
3 0.088 0.088 0.102 0.092 0.134 0.132
4 −0.111 −0.098 −0.117 −0.109 −0.160 −0.160

Ni
1 0.537 0.542 0.545 0.541 0.544 0.540
2 0.002 0.004 0.003 0.003 0.002 0.002
3 0.063 0.065 0.065 0.064 0.070 0.069
4 0.030 0.031 0.031 0.031 0.034 0.037

V. SUMMARY

We have developed a computational approach for sim-
ulating high-temperature magnetic-phase transition in itin-
erant magnets, which couples adiabatically thermal lattice
distortions and magnetic excitations. This scheme consists
of three computational steps: (1) ab initio MD simulations
of the material at the given temperature, (2) first-principles
calculations of magnetic exchange interactions in the given
magnetic state within DFT, and (3) MC modeling of the
magnetic transition.

It has been applied here to calculations of the Curie temper-
ature in bcc Fe, fcc Co, and fcc Ni. The atomic configurations
have been obtained from the AIMD simulations in the FM
state at a temperature close to the Curie temperature. The MD
samples have been used for the calculations of the magnetic ex-
change interactions in the paramagnetic state modeled by DLM
for Fe and DLM-LSF in the case of Co and Ni. Although the
thermal atomic displacements lead to a large dispersion of the
magnetic exchange interactions in these metals, the strongest
effect on the average exchange interactions is in Fe, which
results consequently in the large drop of the Curie temperature.
This implies that an accurate modeling of the thermodynamic
properties of bcc Fe close to above the Curie temperature
should take thermal lattice displacements into account.

We also show that, at least in Fe, the magnetic exchange
parameters are not simple functions of the distance but they
generally dependent on other parameters of the electronic
structure. Although this information is not new per se, we
demonstrate here clearly that the distance-dependence of Jxc

TABLE III. The Curie temperature (Kelvins) of Co and Ni as a
function of the coordination shells included in the MC simulations.
The value in parentheses is the Curie temperature obtained for the
ideal fcc structure using the average magnetic exchange interaction
parameters. The last two columns present the results for the ideal
underlying structure using interactions from Table I.

C.s. MD-1 MD-2 MD-3 fcc fcc (lmax = 3)

Co
1 1115 (1180) 1145 (1195) 1120 (1160) 1105 1095
2 1155 (1205) 1180 (1235) 1145 (1190) 1130 1105
3 1390 (1435) 1420 (1465) 1460 (1460) 1500 1470
4 1235 (1280) 1275 (1320) 1260 (1290) 1260 1235

14 – – – 1280 1265

Ni
1 525 (535) 530 (540) 535 (545) 540 540
2 520 (535) 535 (540) 530 (545) 540 540
3 700 (710) 705 (715) 715 (715) 730 730
4 745 (735) 755 (760) 750 (765) 780 780

13 – – – 840 840

obtained from a MD snapshot for a fixed volume is different
from that obtained from a calculation for the ideal structure as
a function of volume.
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APPENDIX

In the Appendix, we provide tables containing the results
of calculations. Tables I and II present the magnetic exchange

TABLE II. Average magnetic exchange interactions (mRy) in Fe (DLM state) for the MD simulation samples and in the ideal bcc structure
at the experimental Curie temperature and lattice constant.

C.s. MD54-1 MD54-2 MD54-3 MD-16 〈MD〉 bcc bcc (lmax = 3)

1 1.260 1.389 1.180 1.284 1.277 1.828 1.818
2 0.202 0.207 0.176 0.189 0.194 0.219 0.189
3 0.017 0.032 0.020 0.022 0.023 0.083 0.082
4 0.003 0.006 −0.002 0.002 0.002 0.021 0.021
5 −0.104 −0.099 −0.098 −0.100 −0.100 −0.096 −0.097
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TABLE IV. The Curie temperature of Fe as a function of coordination shells included in the MC simulations similar to Table III. The last
two columns present the results for the ideal underlying structure using interactions from Table II.

C.s. MD54-1 MD54-2 MD54-3 MD16 bcc bcc (lmax = 3)

1 810 (805) 885 (895) 765 (755) 830 (830) 1175 1165
2 920 (930) 1015 (1005) 865 (860) 930 (940) 1310 1285
3 1010 (950) 1055 (1045) 895 (885) 965 (965) 1420 1380
4 1020 (960) 1080 (1070) 895 (885) 975 (975) 1470 1455
5 850 (855) 970 (975) 780 (785) 860 (865) 1375 1360

15 – – – – 1350 1300

parameters at the first several coordination shells for Co, Ni,
and Fe. The supercell-averaged interactions are shown for
various MD snapshots (for details, see Sec. II C). Also, the
values for a higher l-cutoff of the EMTO basis are given to
demonstrate convergence with respect to lmax. It is clear that the
error related to the l-cutoff is much smaller than the difference
between MD-snapshot and ideal-lattice values.

By comparing the typical values of the exchange parameters
averaged over MD snapshots with those of an ideal structure,
one can see that there is a strong reduction of the MD-averaged
interactions at the first coordination shell in the case of Fe.
This is in contrast to the case of Co, where the effect is very
small. In Ni, the difference between the MD-averaged and
ideal exchange parameters is even weaker but, as seen below,

it results in a small but systematic reduction of the simulated
Curie temperature.

Tables III and IV show the Curie temperatures extracted
from MC simulations with magnetic exchange interactions
obtained for MD snapshots or for ideal structures. For MD
snapshots, only exchange parameters for the first several (4–5)
coordination shells are taken into account. To make sure
that this is sufficient for convergence, we use Tc of an ideal
structure calculated with a large number of coordinations shells
as a reference. Also, values of Tc obtained with exchange
parameters averaged over an MD snapshot are shown in the
parentheses to demonstrate that the inhomogeneity of actual
snapshot interactions plays only a little role (mostly noticeable
in the case of Co).

[1] W. Hohenberg and P. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
[4] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev.

Lett. 87, 067205 (2001).
[5] V. I. Anisimov, A. S. Belozerov, A. I. Poteryaev, and I. Leonov,

Phys. Rev. B 86, 035152 (2012).
[6] A. S. Belozerov, I. Leonov, and V. I. Anisimov, Phys. Rev. B

87, 125138 (2013).
[7] A. S. Belozerov and V. I. Anisimov, J. Phys.: Condens. Matter

26, 375601 (2014).
[8] A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver,

Phys. Rev. B 70, 125115 (2004).
[9] A. V. Ruban, Phys. Rev. B 95, 174432 (2017).

[10] C. Asker, A. B. Belonoshko, A. S. Mikhaylushkin, and I. A.
Abrikosov, Phys. Rev. B 77, 220102 (2008).

[11] X. Zhang, B. Grabowski, F. Körmann, C. Freysoldt, and J.
Neugebauer, Phys. Rev. B 95, 165126 (2017).

[12] B. Alling, F. Körmann, B. Grabowski, A. Glensk, I. A.
Abrikosov, and J. Neugebauer, Phys. Rev. B 93, 224411 (2016).

[13] J. Yin, M. Eisenbach, D. M. Nicholson, and A. Rusanu,
Phys. Rev. B 86, 214423 (2012).

[14] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism
(Springer, Berlin, 1985).

[15] M. B. Stearns, in Landolt-Börnstein—Group III Condensed
Matter, edited by H. Wijn (Springer-Verlag, Berlin, Heidelberg,
1986), Vol. 19A, p. 24.

[16] It is worth noting the paramagnetic state close to the Curie
temperature is characterized by a magnetic short range order
with a large correlation length and the value of the spin-spin

correlation function of about 0.3 at the first coordination shell.
That being said, calculations for a ferromagnetic state with
magnetization of 0.2–0.3, which mimics to some extent this
magnetic short range order, show that the magnetic exchange
interactions remain very close to the ones obtained in the
completely disordered paramagnetic state.

[17] B. L. Gyorffy, A. J. Pindor, J. Staunton, G. M. Stocks, and H.
Winter, J. Phys. F 15, 1337 (1985).

[18] S. Shallcross, A. E. Kissavos, V. Meded, and A. V. Ruban,
Phys. Rev. B 72, 104437 (2005).

[19] A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson,
Phys. Rev. B 75, 054402 (2007).

[20] A. V. Ruban, A. B. Belonoshko, and N. V. Skorodumova,
Phys. Rev. B 87, 014405 (2013).

[21] L. Vitos, Phys. Rev. B 64, 014107 (2001); L. Vitos, I. A.
Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401
(2001).

[22] A. Liechtenstein, M. Katsnelson, V. Antropov, and V. Gubanov,
J. Magn. Magn. Mater. 67, 65 (1987).

[23] A. V. Ruban and M. Dehghani, Phys. Rev. B 94, 104111 (2016).
[24] B. L. Györffy and G. M. Stocks, in Electrons in Disordered

Metals and at Metallic Surfaces, edited by P. Phariseau, B. L.
Györffy, and L. Scheire (Springer US, Boston, MA, 1979),
pp. 89–192.

[25] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[26] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[27] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[28] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[29] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[30] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

174426-8

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevB.86.035152
https://doi.org/10.1103/PhysRevB.86.035152
https://doi.org/10.1103/PhysRevB.86.035152
https://doi.org/10.1103/PhysRevB.86.035152
https://doi.org/10.1103/PhysRevB.87.125138
https://doi.org/10.1103/PhysRevB.87.125138
https://doi.org/10.1103/PhysRevB.87.125138
https://doi.org/10.1103/PhysRevB.87.125138
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.95.174432
https://doi.org/10.1103/PhysRevB.95.174432
https://doi.org/10.1103/PhysRevB.95.174432
https://doi.org/10.1103/PhysRevB.95.174432
https://doi.org/10.1103/PhysRevB.77.220102
https://doi.org/10.1103/PhysRevB.77.220102
https://doi.org/10.1103/PhysRevB.77.220102
https://doi.org/10.1103/PhysRevB.77.220102
https://doi.org/10.1103/PhysRevB.95.165126
https://doi.org/10.1103/PhysRevB.95.165126
https://doi.org/10.1103/PhysRevB.95.165126
https://doi.org/10.1103/PhysRevB.95.165126
https://doi.org/10.1103/PhysRevB.93.224411
https://doi.org/10.1103/PhysRevB.93.224411
https://doi.org/10.1103/PhysRevB.93.224411
https://doi.org/10.1103/PhysRevB.93.224411
https://doi.org/10.1103/PhysRevB.86.214423
https://doi.org/10.1103/PhysRevB.86.214423
https://doi.org/10.1103/PhysRevB.86.214423
https://doi.org/10.1103/PhysRevB.86.214423
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251


IMPACT OF THERMAL ATOMIC DISPLACEMENTS ON THE … PHYSICAL REVIEW B 97, 174426 (2018)

[31] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

[32] S. Nosé, J. Chem. Phys. 81, 511 (1984); Prog. Theor. Phys.
Suppl. 103, 1 (1991).

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[34] M. Kumar and M. P. Hemkar, Nuovo Cimento B 44, 451
(1978).

[35] R. F. Sabiryanov, S. K. Bose, and O. N. Mryasov, Phys. Rev. B
51, 8958 (1995).

[36] P. A. Igoshev, A. V. Efremov, and A. A. Katanin, Phys. Rev. B
91, 195123 (2015).

[37] D. M. Korotin, V. V. Mazurenko, V. I. Anisimov, and S. V.
Streltsov, Phys. Rev. B 91, 224405 (2015).

[38] Y. O. Kvashnin, R. Cardias, A. Szilva, I. Di Marco, M. I.
Katsnelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau,
and O. Eriksson, Phys. Rev. Lett. 116, 217202 (2016).

[39] R. Cardias, A. Szilva, A. Bergman, I. D. Marco, M. I. Katsnelson,
A. I. Lichtenstein, L. Nordström, A. B. Klautau, O. Eriksson, and
Y. O. Kvashnin, Sci. Rep. 7, 4058 (2017).

174426-9

https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1143/PTPS.103.1
https://doi.org/10.1143/PTPS.103.1
https://doi.org/10.1143/PTPS.103.1
https://doi.org/10.1143/PTPS.103.1
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1007/BF02726807
https://doi.org/10.1007/BF02726807
https://doi.org/10.1007/BF02726807
https://doi.org/10.1007/BF02726807
https://doi.org/10.1103/PhysRevB.51.8958
https://doi.org/10.1103/PhysRevB.51.8958
https://doi.org/10.1103/PhysRevB.51.8958
https://doi.org/10.1103/PhysRevB.51.8958
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevB.91.224405
https://doi.org/10.1103/PhysRevB.91.224405
https://doi.org/10.1103/PhysRevB.91.224405
https://doi.org/10.1103/PhysRevB.91.224405
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1038/s41598-017-04427-9
https://doi.org/10.1038/s41598-017-04427-9
https://doi.org/10.1038/s41598-017-04427-9
https://doi.org/10.1038/s41598-017-04427-9



