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Lack of a thermodynamic finite-temperature spin-glass phase in the two-dimensional
randomly coupled ferromagnet
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The search for problems where quantum adiabatic optimization might excel over classical optimization tech-
niques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies.
We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice
bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass
state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996)].
Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature
simulations [Phys. Rev. B 63, 094423 (2001)] suggesting the existence of a finite-temperature spin-glass transition.
Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when
corrections to scaling are large.
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I. INTRODUCTION

The advent of analog quantum annealing machines [1–14]
and, in particular, the D-Wave Inc. [15] D-Wave 2X quantum
annealer has sparked a new interest in the study of (quasi-)
planar Ising spin glasses [16–19] with finite-temperature tran-
sitions. While there have been multiple attempts to discern
if the D-Wave quantum annealers display an advantage over
conventional technologies [20–38], to date there are only a few
“success stories” [32,39] where the analog quantum optimizers
show an advantage over current conventional silicon-based
computers. Recent results [26,32] suggest that problems with
a more complex energy landscape are needed to discern if
quantum annealers can outperform current digital computers.
In particular, the search for salient features in the energy land-
scape [32], the careful construction of problems with particular
features [32,33,38,39], as well as the attempt to induce a
finite-temperature spin-glass transition for lattices restricted
to the quasi-two-dimensional topologies of the quantum chips
[40] have gained considerable attention. The quest for a finite-
temperature spin-glass transition in quasi-two-dimensional
topologies stems from the interest in creating an energy
landscape that becomes more complex and rugged already at
finite temperatures, such that thermal (sequential) simulated
annealing [41] has a harder time in determining the optimal
solution to an Ising-spin-glass-like optimization problem. On
the other hand, quantum annealing should, in principle, be
able to tunnel through barriers if these are thin enough. We
emphasize that the comparison between simulated annealing—
a well-known poor optimizer—and quantum annealing is
based on the fact that both methods are sequential in nature.
Comparisons to state-of-the-art optimization techniques [42]
have been performed and shed a more complete light on the
current situation.

Here we want to study the thermodynamic properties of a
model proposed byLemke andCampbell [43]—later analyzed

in much detail in Refs. [44–46]—that might have the desired
finite-temperature spin-glass transition and, most importantly,
be of a mostly planar topology that can easily be constructed
with current superconducting flux qubits. Our results show that,
unfortunately, for large enough system sizes the model is in a
paramagnetic phase at finite temperatures for a parameter range
where it is predicted to be a spin glass. We do note that this
would have been surprising, because there is solid evidence
that the lower critical dimensions of spin glasses is believed to
be between two and three space dimensions [47–49]—a value
below which any phase transition to a spin-glass state only
occurs at zero temperature.

The paper is structured as follows: In Sec. II we describe
the model and numerical details, as well as the current under-
standing of its properties, followed by results and concluding
remarks in Sec. III.

II. MODEL AND NUMERICAL DETAILS

In their letter [43], Lemke and Campbell argue that a
finite-temperature spin-glass transition can be induced in two-
dimensional planar topologies with next-nearest interactions.
To be precise, the model is a two-dimensional square-lattice
Ising spin glass with uniform ferromagnetic next-nearest inter-
actions of strength J , in addition to random bimodal nearest-
neighbor interactions of strength ±λJ . The Hamiltonian of the
model is

H = −
∑
〈i,j〉

JijSiSj − J
∑
〈〈i,j〉〉

SiSj , (1)

where in Eq. (1) Si ∈ {±1} represent Ising spins on a square
lattice with N = L2 sites (L is the linear dimension of the
lattice). J = 1 are ferromagnetic interactions between next-
nearest neighbors (denoted by 〈〈i,j 〉〉) and Jij = ±λJ are
nearest-neighbor bimodally distributed spin-glass interactions
(denoted by 〈i,j 〉). In our simulations we set J = 1. Depending
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TABLE I. Simulation parameters and estimates of the stiffness
exponent θ and breakup length � for different values of λ. For both val-
ues of λ we studied different system sizes L using parallel tempering
Monte Carlo. The lowest (highest) temperature simulated is Tmin =
0.4 (Tmax = 2.8) with NT = 50 temperature steps. Thermalization is
tested by a logarithmic binning; once the last three bins agree within
error bars we deem the system to be thermalized. For all systems, this
was the case after Nsw = 222 Monte Carlo sweeps. Furthermore, Nsa

samples were computed for each parameter combination. Note that
the estimate of θ for λ = 0.50 is taken from Ref. [46], whereas the
value for λ = 0.75 is estimated from the published data (see text for
details).

λ θ � L Nsw Tmin Tmax NT Nsa

0.50 0.59(8) 45 48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

96 222 0.4 2.8 50 104

128 222 0.4 2.8 50 104

0.75 0.23(1) 9 24 222 0.4 2.8 50 104

32 222 0.4 2.8 50 104

48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

on the relative strength of the interactions, i.e., the value of λ,
Ref. [43] states that a finite-temperature spin-glass transition
can be induced in two space dimensions. These results were
further expanded in Ref. [45]: A freezing temperature of Tc ∼
2.1 exists for λ = 0.5, a “slightly lower” freezing temperature
for λ = 0.7, and a zero-temperature freezing for λ = 1.5. We
do emphasize that these results were produced by relatively
small system sizes. Extensive numerical simulations by Parisi
et al. [44] find a crossover in the critical behavior for large
enough system sizes. First, from a seemingly ordered state
to a spin-glass-like state, followed by a second crossover
to a (possibly) paramagnetic state. This means that the true
thermodynamic behavior can only be observed if the system
sizes exceed a certain breakup length �.

However, a conclusive characterization of the critical behav-
ior, as well as the λ dependence of the breakup length � were not
discussed in detail until the extensive zero-temperature study
by Hartmann and Campbell [46]. By computing ground-state
configurations for intermediate system sizes and estimating
the stiffness exponent that describes the scaling of energy
excitations when a domain is introduced into the system,
they argue—based on zero-temperature estimates of the spin
stiffness—that there should be a finite-temperature spin-glass
transition for certain values of λ and linear system sizes L that
fulfill L > �. In particular, they estimate that for λ > λ∞ =
0.27(8) no ferromagnetic order should be present. Because
the breakup length � is large for λ ∼ 0.5 (� � 45), Ref. [46]
suggests studying systems with λ = 0.7 where � ≈ 10. On the
other hand, for λ = 0.90, the stiffness exponent θ = 0.09(5)
is very close to zero. Therefore, in this work we focus on the
cases where (i) we can simulate system sizes L � � and (ii)
the stiffness exponent θ is clearly positive, thus implying a
finite-temperature phase, i.e., λ = 0.50 and 0.75. A summary
of the properties of the model for these values of λ, as
well as the simulation parameters are listed in Table I. The
simulations were performed using parallel tempering Monte

Carlo [50] combined with isoenergetic cluster updates [51,52].
Note that we determine the estimated value of θ for λ = 0.75
by performing a linear fit to the data of Ref. [46] (quality of fit
∼0.58 [53]) and estimate θ (λ) ≈ 1.083(3) − 1.12(4)λ, valid
in the window λ ∈ [0.5,1.1]. Furthermore, by inspecting Fig.
7 in Ref. [46], we estimate that the breakup length for λ = 0.75
is approximately � ≈ 9.

To detect the existence of a spin-glass transition, we
measure the Binder cumulant g [54] of the spin-glass order
parameter q via

gq = 1

2

(
3 − [〈q4〉]av

[〈q2〉]2
av

)
. (2)

In Eq. (2), 〈· · · 〉 represents a thermal average over Monte
Carlo steps and [· · · ]av an average over Nsa realizations of
the disorder (see Table I for details). The spin-glass order
parameter q is given by

q = 1

N

N∑
i=1

Sα
i S

β

i , (3)

where “α” and “β” represent two copies of the system with
the same disorder. The Binder cumulant is dimensionless and
scales as gq = G[L1/ν(T − Tc)]. Therefore, if T = Tc, data for
different system sizes cross. If, however, there is no transition,
data for different system sizes do not cross. To rule out a
transition at a temperature not simulated, a finite-size scaling
of the data can be used. Finally, we also measure the average
of the square of the magnetization m2 ≡ [〈m2〉]av with

m = 1

N

N∑
i=1

Sα
i . (4)

Note that we measure the square of the magnetization because,
on average, m ≡ [〈m〉]av = 0. Furthermore, the magnetic sus-
ceptibility χm is related to m2 via χm = Nm2.

III. RESULTS AND CONCLUSIONS

We have performed large-scale Monte Carlo simulations
of the Hamiltonian in Eq. (1) for system sizes L � � and
λ = 0.50 and 0.75. Our results for the Binder cumulant—
which should display a crossing if there is a finite-temperature
transition—are summarized in Fig. 1. The Binder cumulant
for the spin-glass order parameter gq does not show a crossing
down to low temperatures for both values of λ studied. In
addition, a finite-size scaling of the data for λ = 0.75 shown
in Fig. 2 strongly suggests that Tc = 0. Furthermore, the
magnetization m2 as a function of the temperature T decreases
with increasing system sizes for both values of λ studied (see
Fig. 1). Based on these results, we conclude that the system
is in a paramagnetic state for both λ = 0.50 and 0.75 in the
thermodynamic limit.

Our results show that the model introduced in Ref. [43]
and studied in detail in subsequent publications [44–46] does
not exhibit a finite-temperature spin-glass transition in the
thermodynamic limit for values of the parameter λ where it is
expected to show such behavior. In agreement with the results
of Ref. [44], however for larger system sizes and and better
statistics, we show that, indeed, the thermodynamic limit is a
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FIG. 1. Binder cumulant gq for the spin-glass order parameter as a function of the temperature T for the model described in Ref. [43] with
λ = 0.50 (a) and λ = 0.75 (b) and system sizes L > �. In both cases the data show no crossing at any finite temperature studied, thus suggesting
that there is no finite-temperature spin-glass phase. Square of the magnetization m2 as a function of T for different system sizes for λ = 0.50
(c) and λ = 0.75 (d). The data decreases with increasing system size, i.e., the system is likely in a paramagnetic phase.
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FIG. 2. Finite-size scaling of the data shown in Fig. 1(b) for λ =
0.75 with Tc = 0.

paramagnetic phase at finite temperature. This also means that
deducing a finite-temperature behavior from zero-temperature
simulations can be dangerous when the system sizes are not in
the thermodynamic limit [46]. Given recent interest in inducing
finite-temperature spin-glass transitions in quasiplanar topolo-
gies [26], we conjecture that adding any set of interactions
that do not grow with the system size to a nearest-neighbor
lattice will likely not result in a finite-temperature spin-glass
transition.
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