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Energy of the amplitude mode in the bicubic antiferromagnet: Series expansion results
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Series expansion methods are used to study the quantum critical behavior of the bicubic spin-1/2 antiferro-
magnet. Excitation energies are computed throughout the Brillouin zone, for both the Néel and dimer phases. We
compute the energy of the amplitude/Higgs mode and show that it becomes degenerate with the magnon modes
at the quantum critical point, as expected on general symmetry grounds.
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I. INTRODUCTION

Experimental and theoretical studies of elementary ex-
citations in quantum antiferromagnets have, until re-
cently, focused on one-magnon modes—transverse fluc-
tuations of the spins about the spontaneously selected
ordering direction.

However, it was noted already some years ago [1] that a
mode involving longitudinal spin fluctuations is also present,
and may play a significant role in physical properties, par-
ticularly near a quantum critical point. In recent years many
papers have discussed this “amplitude” or “Higgs” mode [2–6],
from different perspectives and using different techniques.
Moreover, there are experimental observations of this mode
in at least two different materials [7–10].

In studies of quantum phase transitions, the spin-1/2
Heisenberg antiferromagnet on a square lattice bilayer has
played a major role. It is well known that this system has
an O(3) quantum critical point (QCP) at g = 2.522 . . . [11]
(where g is the ratio of interlayer versus intralayer cou-
pling), between an ordered Néel ground state and a dimerized
nonmagnetic ground state with singlet dimers on the rungs
between the planes. Using series expansions, we were able to
identify the amplitude mode in this system [12], to show that
it becomes gapless at the QCP, and thus restores the symmetry
between the number of soft modes in each phase at the QCP.
More recently, the bilayer system has been generalized to
three spatial dimensions, as a pair of coupled simple-cubic
lattices—the “bicubic” lattice [5,6]. Using quantum Monte
Carlo (QMC) simulations, these authors were able to locate
the QCP, with remarkable precision, at g = 4.8370 . . .. They
were also able to identify the amplitude mode, and to show that
its energy was in accord with general field theory predictions
[13]. The approach used in each of these papers was to
compute the dynamical spin structure factor S(k,ω) and a
suitably defined dimer structure factor D(k,ω) (denoted by
SB in Ref. [5]). The amplitude/Higgs mode is seen as a
rather broad peak, which sharpens and softens as the QCP
is approached.

The present work investigates the bicubic model using
series expansions at zero temperature. It thus represents an
extension of the work of Ref. [12] to the three-dimensional
(3D) bicubic system. Although this approach cannot match the

high precision of the QMC results, it does have the advantage
that the energies of excitations, magnon, and amplitude modes
in the ordered phase and triplon modes in the dimer phase
can be computed directly throughout the Brillouin zone as full
dispersion curves.

The organization of the paper is as follows: in Sec. II we
describe the method used for our calculations, and present
a summary of results. In Sec. III we discuss the results for
excitations in more detail, and show plots of the dispersion
curves for various values of the coupling g. In the final section
we summarize and draw conclusions.

II. SERIES EXPANSIONS

The bicubic lattice, shown in Fig. 1, consists of two simple-
cubic lattices, which we refer to as sublattices A and B, with
S = 1/2 spins at the vertices of each sublattice. Each spin is
coupled to its six nearest neighbors on its own sublattice with
an isotropic Heisenberg exchange interaction of strength J . In
addition adjacent A and B spins are coupled by an exchange Jd .

Thus the Hamiltonian of our model is

H = J

(1)∑
〈ij〉

Si · Sj + Jd

(2)∑
〈il〉

Si · Sl, (1)

where the sums are over bonds within and between sublattices,
respectively. All couplings are taken to be antiferromagnetic.

As noted above, this is a natural generalization to three
spatial dimensions of the much studied bilayer system. For
Jd = 0 we have two decoupled simple-cubic lattices, each of
which will exhibit Néel order at low temperatures, up to a
critical temperature TN . This phase will persist for nonzero Jd ,
up to a critical value gc = (Jd/J )c, at which point TN will fall
to zero and the system will enter a nonmagnetic dimer phase
with short-range correlations.

We use long perturbative series expansions to probe the bulk
properties of each phase at T = 0, as well as the energy spectra
of elementary excitations. High-temperature series expansions
could also be used to compute thermodynamic properties in the
paramagnetic phase and to find the variation of TN with g, but
we do not report on this here.

2469-9950/2018/97(17)/174421(5) 174421-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.174421&domain=pdf&date_stamp=2018-05-23
https://doi.org/10.1103/PhysRevB.97.174421


J. OITMAA PHYSICAL REVIEW B 97, 174421 (2018)

FIG. 1. Structure of the bicubic lattice. Thin solid and dashed lines
represent the two simple-cubic lattices. Thick solid lines represent the
Jd bonds.

A. Dimer phase expansions

To compute series in the dimer phase we separate the Hamil-
tonian as H = H0 + λV , where H0 represents the dimer terms
(for convenience we set Jd = 1 here, and V represents the
interactions within each sublattice). The expansion parameter
is then λ = J/Jd = 1/g. The unperturbed ground state is a
simple product state with singlet dimers |s〉 = 1/

√
2[|+−〉 −

|−+〉] on each Jd bond, and the V term allows this to evolve
into the true ground state. The ground-state energy E0 can be
computed as a power series in λ,

E0/NJd = −3/8 +
∞∑

r=1

erλ
r , (2)

where the number of spins is 2N , and the er are numerical
coefficients.

We use the “linked-cluster” method [14,15] to compute
this series, to order λ10. This method is well established,
and has been used successfully to study the bilayer system
[16]. The reader is referred to the expositions [14,15] for
technical details. The present calculation requires 1050 distinct
connected clusters with ten or fewer sites.

In Table I we give the values of the series coefficients to 12
significant figures. In principle they could be computed as exact
rational fractions but, for our purposes, this is unnecessary.

TABLE I. Coefficients of the dimer expansion for E0.

0 −0.375 000 000 000D + 00
1 0.000 000 000 000D + 00
2 −0.562 500 000 000D + 00
3 −0.281 250 000 000D + 00
4 −0.386 718 750 000D + 00
5 0.123 046 875 000D + 00
6 −0.222 802 734 375D + 01
7 −0.303 469 848 633D + 01
8 −0.210 607 910 156D + 02
9 −0.232 059 102 058D + 02
10 −0.203 792 628 050D + 03

To evaluate the energy as a function of g we use Padé
approximant methods [15]. This series is, in fact, rapidly
convergent, reflecting the short range of correlations in the
dimer phase, and even a naive sum of the available terms
suffices, except close to gc.

However, our main interest in the present work is the
excitation spectrum. In the unperturbed system an excitation
consists of exciting a single dimer from its singlet S = 0 state
to one of the three degenerate S = 1 triplet states, which
costs an energy of Jd . The V terms will then allow this
excitation to propagate through the dimer system, resulting
in a band of triply degenarate “triplon” excitations, with
an energy spectrum εtriplon(k). Pioneering work by Gelfand
[17] showed how excitation spectra could also be calculated
via a linked-cluster method, and this approach is also well
established [15].

The excitation energy is expressed in the form

ε(k) =
∑

r

γk(r)t(r), (3)

where the sum is over hopping vectors r on the lattice, the t(r)
are transition matrix elements, which are computed as power
series in λ, and the γk(r) are structure factors,

γk(r) = [cos(kxx)cos(kyy)cos(kzz) + permutations]/6. (4)

Our calculation, to eighth order, involves a total of 29 931
distinct clusters with all space types, with nine or fewer sites.

A figure showing the triplon spectrum (Fig. 3) and a
discussion are given in the following section.

B. Néel phase expansions

In the small g Néel phase we use a different separation H =
H0 + λV , with H0 consisting of the diagonal Sz

i S
z
j terms. This

is an “Ising expansion,” where the unperturbed Hamiltonian
exhibits antiferromagnetic Néel order, but without quantum
fluctuations, and the perturbation V restores these fluctuations
to recover the full quantum Hamiltonian. For technical reasons
it is convenient to introduce a transformation (Sx,Sy,Sz) →
(Sx,−Sy,−Sz) on alternate sites, to give a uniform fully
aligned unperturbed ground state. Then

H0 = −J

(1)∑
〈ij〉

Sz
i S

z
j − Jd

(2)∑
〈il〉

Sz
i S

z
l (5)

and

V = 1

2
J

(1)∑
〈ij〉

(S+
i S+

j + S−
i S−

j ) + 1

2
Jd

(2)∑
〈il〉

(S+
i S+

l + S−
i S−

l ).

(6)
Again we use linked cluster expansions to obtain series

for bulk ground-state properties and excitation spectra, as
power series in λ. In this case a separate calculation is
required for each parameter Jd (we set J = 1 for convenience),
and the series need to be evaluated at λ = 1 to regain the
isotropic Hamiltonian. Because of this we do not present series
coefficients, but they are available on request.

The magnon energies in the Néel phase are computed by
starting from a manifold of unperturbed states with a single
flipped spin. The perturbation V then allows these states to
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(a)

(b)

FIG. 2. Ground-state energy in the Néel and dimer phases (a), and
Néel phase order parameter (b), from series expansions. Uncertainties
are no larger than the size of points. The lines are a guide for the eye.
The thin vertical lines indicate the position of the QCP.

mix and propagate, leading to an “effective Hamiltonian”
matrix for each cluster. The transition amplitudes for the bulk
lattice are then obtained from these matrix elements, and the
magnon energies are finally given by an expression similar
to (3). Because of the reflection symmetry between the two
sublattices, the spectrum has two branches: one which is of
even parity under sublattice interchange, and the other of
odd parity. These can be described in terms of a wave-vector
component kp = 0,π in a fourth spatial dimension. The two
branches are related by

ε(kx,ky,kz,0) = ε(π − kx,π − ky,π − kz,π ). (7)

A similar feature occurs in the bilayer system [16].
Finally we consider the amplitude mode. This can be

regarded as a bound state of two magnons, in the sense
that it appears as a pole in the two-particle Green’s function
[1]. Hence the manifold of unperturbed states consists of
pairs of flipped spins on the Jd bonds. There is a technical
complication since the two-magnon sector has the same total
spin as the ground-state sector. This requires that the effective
Hamiltonian matrix for each cluster be fully block diagonal-
ized, using the so-called “multiblock method” [18], which is
computationally more demanding. Our calculation, to order λ8,

FIG. 3. Dimer phase triplon excitation energies along symmetry
lines in the Brillouin zone, for three value of the coupling constant g,
as g = 6.0,5.5,5.0 [from top to bottom at (π,π,π )].

requires a total of 1 122 545 distinct clusters with up to nine
sites.

III. RESULTS AND DISCUSSION

Although our main interest is in the excitations, it seems
worthwhile to display some results for the bulk energy and
order parameter. Figure 2(a) gives the ground-state energy as
a function of g in both the Néel and dimer phases. The two
curves meet smoothly in the vicinity g ∼ 5.0, but it is not
possible to determine gc from this plot with any degree of
precision. Figure 2(b) shows the Néel phase magnetization,
which is clearly vanishing as the QCP is approached. This
series becomes rather irregular near the QCP, with quite large
error bars. However, the behavior is as expected. It is worth
pointing out here that error bars, where shown in this and sub-
sequent figures are “confidence limits” based on consistency
between different Padé approximants, and not true statistical
errors.

In the previous section we described how the excitation
spectra in both the dimer phase and the Néel phase can be
computed. Here we will present our results, largely in the form
of figures, and discuss their significant features.

In Fig. 3 we show the energy of triplon excitations, along
a path in the cubic Brillouin zone, for three different values
of g.

As is evident, the excitation at k = (π,π,π ) softens as
the critical point is approached, as expected. To investigate
this more closely, we obtain a series for the energy gap �

and analyze this directly. The series coefficients are given in
Table II.

The series for the triplon gap can be summed directly using
Padé approximants. The resulting plot shows the gap vanishing
at a value gc = 4.85 ± 0.05. It is also possible to estimate gc

by identifying the physical singularity in the series from Dlog
Padé approximants. The highest-order central approximants
show a singularity at 1/g = 0.208 ± 0.001 with an exponent
of ∼0.6, from which one might conclude that gc = 4.81 ±
0.02. However, since this system is at the upper space-time
critical dimension for an O(3) critical point, we expect mean-
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TABLE II. Coefficients of the energy gap series in the dimer
phase.

0 0.100 000 000 000D + 01
1 −0.300 000 000 000D + 01
2 −0.150 000 000 000D + 01
3 −0.825 000 000 000D + 01
4 −0.206 350 000 000D + 02
5 −0.623 203 125 000D + 02
6 −0.196 127 929 688D + 03
7 −0.821 838 867 223D + 03
8 −0.305 614 173 882D + 04

field behavior with logarithmic corrections, of the form

� ∼
(

g

gc

− 1

)1/2

ln−ν

(
g

gc

− 1

)
. (8)

The QMC work [5,6] has shown that the logarithm term is
significant in the analysis, with an estimated ν ∼ 0.23. We also
find this in a more detailed analysis of the series, since the data
cannot be well fitted by a simple square-root form, although we
have not attempted to compute the logarithm term. However,
we can improve upon our raw Padé analysis by evaluating
approximants to the series for (1 − gc

g
)−1/2�, where we have

used the QMC value gc = 4.837. The data in Fig. 4 have been
obtained in this way, and the points are in excellent agreement
with the QMC results [5,6].

We now turn to the excitations in the Néel phase. In Fig. 5(a)
we show the energies of even parity one-magnon states along
a path through the Brillouin zone, for three values of the
parameter Jd . The results are quite well converged, except
near the 	 point (0,0,0). These are the Goldstone modes where
ε(k) = 0, but it is difficult to reproduce this using short series,
as has been noted many times in the past. An interesting feature
is the appearance of a dip at (π,π,π ) for small Jd , which
disappears for larger Jd . We have no physical explanation for
this. Otherwise the curves are relatively featureless. In Fig. 5(b)
we show the dispersion curves for the odd parity modes. While
these are related to the even parity modes via Eq. (7), the figure
allows us to see clearly that the odd parity magnon and triplon
become degenerate at the QCP.

In Fig. 6 we show the energies of the amplitude/Higgs mode
along the same path in the Brillouin zone, for values Jd =
3.0,4.75. A number of points can be made. (1) Throughout
most of the Brillouin zone, for these values of Jd , the amplitude
mode appears to be stable, reflected by the regularity of the
series and the absence of error bars. (2) Close to the 	 point
(0,0,0) the series become erratic, particularly for Jd = 3.0, less
so for Jd = 4.75 which is close to the QCP at Jd = 4.837. We
surmise that this is an indication that the amplitude mode is
not stable here. (3) For a smaller value, Jd = 2.0, the series
are highly erratic throughout the Brillouin zone (not shown in
Fig. 6). This would suggest that the amplitude mode becomes
less stable, the further we are from the QCP. This is fully in
accord with the QMC results [5,6]. (4) Comparing the curves
for Jd = 3.0 in Figs. 5(a) and 6 shows that the amplitude mode
has a significantly higher energy than the one-magnon mode.
This is again as expected. (5) The curves for Jd = 4.75 in
Figs. 5 and 6 are seen to be very close to each other. This

FIG. 4. Dimer phase energy gap at (π,π,π ) vs g. The points are
results of our analysis, with estimated errors no larger than the points.
The line is a guide for the eye.

reflects the expectation that at the QCP the amplitude mode
becomes degenerate with the magnons, as the SU(2) symmetry
is restored at the QCP.

(a)

(b)

FIG. 5. Excitation energies for even parity one-magnon modes
(a) and odd parity one-magnon modes (b), for a path through the
Brillouin zone, for three values of Jd , as shown. The lines are guides
for the eye.
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FIG. 6. Energy of the amplitude/Higgs mode along a path through
the Brillouin zone, for two values of Jd as indicated.

IV. CONCLUSIONS

We have used series expansion methods to investigate
the properties of a spin S = 1/2 “bicubic” Heisenberg anti-
ferromagnet, formed by coupling two simple-cubic lattices.
Recent quantum Monte Carlo studies of this system [5,6]
have confirmed the existence of a quantum critical point with
classical critical exponents, but with significant logarithmic
corrections. The QMC work has also found a clear signature of
the expected amplitude/Higgs mode as a broad low amplitude
peak in the magnetic structure factor at the ordering wave
vector, which sharpens and moves to lower energy as the QCP
is approached.

The present work provides an independent study of this
model, using a different method. Our results are in full
agreement with the QMC work, as far as the location and nature
of the QCP are concerned. In addition, the series method allows
us to compute complete dispersion curves for excitations
throughout the Brillouin zone, which the QMC approach is not
naturally suited to do. We have been able, thus, to compute both
magnon and amplitude mode energies in the ordered phase.

Previous identification of the amplitude mode in this model
considered only the ordering wave vector, where the mode
appears to be heavily overdamped and only sharpens close
to the QCP. Our results suggest that the mode is, in general,
sharper at other wave vectors in the Brillouin zone. We
conjecture that the poor convergence of the series is a signature
of instability in the mode, although this is a heuristic argument
only.

Our results are consistent with a scenario in which the
amplitude mode is not a well defined excitation far from the
QCP, but becomes more stable as the QCP is approached and
becomes degenerate with the magnon modes over the whole
Brillouin zone at the QCP. Thus the amplitude and the magnon
modes form a spin-1 multiplet at the QCP, in accord with the
restoration of SU(2) symmetry.
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