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Muon contact hyperfine field in metals: A DFT calculation
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In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density
functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon
site determination is especially useful for measurements performed in magnetic materials, where large contact
hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation
of muon’s hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-
wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state
effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic
compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such
as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the
spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known
limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced
Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012)]. We establish the accuracy of the estimated
muon contact field in metallic compounds with DFT and our results show improved agreement with experiments
compared to those of earlier publications.
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I. INTRODUCTION

Muon spin rotation spectroscopy (μSR) is widely em-
ployed to investigate new strongly correlated electron mate-
rials, whose spin and orbital correlations display interesting
temperature behavior that may show up directly in the exper-
imental muon decay anisotropy. A significant advancement
in modeling of μSR data stems from the knowledge of
the muon site, not granted a priori and often provided by
density functional theory (DFT) calculations since the advent
of high-performance computing (HPC). It allowed, just to
quote a few notable examples, the precise identification of
specific muon bonds in insulators [1,2], the identification of
deep and shallow hydrogen states in semiconductors [3,4],
the pressure-induced magnetic structure in MnP [5], and the
determination of infrequent subtle muon-induced effects in
rare-earth pyrochlores [6].

However, the crucial point that provides quantitative access
to electronic spin degrees of freedom is the full knowledge of
the muon couplings with its surroundings. The often missing
key ingredient is the contact hyperfine interaction, notably
relevant in metals. This quantity may be calculated by ab initio
techniques, but in practice the few published results date back
to the early developments of DFT.

Only the determination of the muon implantation site and
of the interaction constants between the muon and its atomic
surrounding give access to crucial material properties such as
the value of the ground-state ion magnetic moment in ordered
materials and possibly the magnetic structure as well. Although
μSR cannot compete with diffraction techniques for magnetic
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structure determination, there are cases where the latter are
not applicable (due to the presence of either strong incoherent
scatterers or neutron absorbers) [7] or not sufficient for a
complete determination [5]. A noteworthy example is provided
by the recent refinement of an additional structural parameter
in the zero-field cycloid state of MnSi and its skyrmion phase,
a nonvanishing phase between the two Mn orbits in the cycloid
[8,9], inaccessible to neutrons, whose determination by μSR
is made possible by the low symmetry of the muon site. The
knowledge of both site and contact couplings is essential for
this information to be retrieved.

Here we provide a demonstration of the effectiveness of
a DFT-based approach, validated by the comparison with
available experimental determinations. Five materials are se-
lected by this criterion from the literature, ranging from simple
magnetic metals, Fe, Co, Ni, to two additional chiral magnets
of current high interest, MnSi and MnGe. The list of metals
where the hyperfine coupling is experimentally known is
unfortunately scarce, since they require quite accurate and
time-consuming experiments on single crystals, and this is
actually an additional motivation for validating a more general
ab initio method.

The structure of the paper is the following: Section II
briefly reviews the experimental technique highlighting the
requirements for the theoretical approaches together with the
most significant recent improvements. In Sec. II we analyze
the different computational aspects that allow us to obtain con-
verged results. In Sec. III we discuss our results, distinguishing
the three elemental transition metals, Fe, Ni, and Co, used as a
benchmark of the theoretical approximations from the case of
the two additional metallic materials of current interest, MnSi
and MnGe.
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Finally, we discuss additional possible refinements to fur-
ther reduce the difference between calculated and measured
values.

II. μSR AND THE MUON COUPLINGS

μSR exploits the implantation of spin-polarized muons
to probe local properties of materials by means of the local
magnetic field at the muon, together with its dynamics on
the scale of the muon’s mean lifetime (∼2.2 μs). Notably,
this experimental technique makes predominant use of the
positive antiparticles (μ+). The basis of this technique lies in
the anisotropic positron emission at the muon decay, peaked
around the muon spin direction. The anisotropy is a hallmark
of weak interactions in the three-body decay, and the very
high muon spin polarization (almost 100%) relies on the
same violation in the two-body pion decay that originates this
probe particle. The evolution of the muon spin direction may
be thus detected over several microseconds, with very fine
time resolution, over an ensemble of individually implanted
particles. Thus, μSR may be considered akin to NMR, with
the advantage of a broader applicability and a nonresonant
broadband detection. The foremost applications are in su-
perconducting and magnetic materials, including very weak
magnets, thanks to the good sensitivity provided by the large
muon gyromagnetic ratio (∼135 MHz/T) [10,11].

Implanted muons thermalize in inorganic crystalline solids
almost invariably at interstitial sites in the lattice, so that the
detected internal field is that at an interstitial, extremely diluted
impurity. The experimental value of the muon local field,
including both its static value and its fluctuating dynamical
components, provides important clues towards understanding
the magnetic properties of the host material. The muon local
field both in superconductors and in magnetically ordered
materials yields the temperature dependence of the order
parameter, critical fluctuations are reflected in relaxation rates,
and the presence of additional phase transitions is easily
detected, just to quote a few examples. All these properties
are directly accessed from the μSR spectra without any prior
knowledge of the muon site and the details of its couplings.

In the following we shall refer explicitly to the investigation
of magnetic materials, a specialty of μSR. Typically, here
any refinement of the analysis does require additional a priori
knowledge of the muon implantation site.

Ab initio DFT prediction of the muon site has been success-
fully employed in several studies, starting from the early pio-
neering investigations to the present, more extensive, although
not yet everyday use, as detailed in a few reviews on the subject
[1,12,13]. Site assignment is the key initial ingredient in the not
infrequent cases where the internal magnetic field is dominated
by the distant dipole contribution, which requires only the
knowledge of the site in order to be computed by a classical
sum over the dipole moments of the host lattice [10,11,14].
Thus, the comparison between predicted and measured local
field can validate the muon site assignment, and in turn, this
assessment yields, e.g., a measure of the magnetic moment
values. However, additional local field contributions exist and
they are not negligible in many cases. Thus, a nontrivial ab
initio calculation of the couplings, besides its intrinsic value,
in some cases is crucial for the site validation itself.

The contributions to the experimental local field, besides
the already mentioned dominant dipolar sums, include another
trivial term that is shape dependent (demagnetization) and
proportional to the macroscopic sample magnetization [11].
We shall concentrate here on the contributions that require a
quantum-mechanical description of the host electrons in the
vicinity of the probe. In a localized spin magnet, they may
give rise to direct transferred and super-transferred couplings,
depending on whether the wave-function overlap between the
muon probe and the magnetic ion is direct or through the
polarization of the wave functions of intervening ligands. In
metals, the conduction electrons provide an example of the first
kind, giving rise to a contact interaction term that results in a
spin density at the muon site. For the purpose of this paper
we will focus only on the contact hyperfine interaction at the
muon.

In the absence of external magnetic field and within a
nonrelativistic quantum-mechanical description, the local field
resulting from the interaction between the muon and an s

electron at distance re−μ → 0 from the muon is described by
the following Hamiltonian [15]:

H = 2μ0

3
γeγμh̄2SμSeδ(r), (1)

where μ0 is the vacuum permeability, γe and γμ are the electron
and muon gyromagnetic ratio, respectively, while Se and Sμ

are their spin operators. It has been assumed that the muon is
pointlike. In the collinear spin approximation, by integrating
over the electron coordinates, the contact hyperfine field at the
muon Bc is [16]

Bc = 2
3μ0μBρs(rμ), (2)

where μB is the Bohr magneton, and the spin density ρs is
defined as (ρ↑(rμ) − ρ↓(rμ)), with ρ↑ and ρ↓ being the density
associated to each spinor component at the muon site rμ. This
equation was used to evaluate the contact field at the muon
with the spin polarization obtained from DFT simulations.

The first principle theory of the hyperfine parameters for
both heavy and light nuclei in magnetic materials is in principle
well understood and has been studied since the mid 1960s
[17–27]. Various approaches were proposed to improve the ac-
curacy of the calculated contact fields, but these investigations,
in particular for the muon in metals, were undertaken when
computing resources were orders of magnitude less powerful
than today. Their results are compared with our calculations
in Sec. III. More recently valuable theoretical improvements
[28–33] have established DFT as the standard for the
calculation of NMR shift parameters, most reliably in
nonmagnetic insulators. However, these improved methods
were never directly applied to the muon case in metals. The
main difference, as already noted, is that the location of the
nuclei is extremely well known from diffraction, whereas
the determination of the muon site is part of the same DFT
problem, requiring in addition large supercells to represent the
ideally diluted impurity while keeping an accurate description
of the bulk sample. With the current availability of HPC it
is well due to extend these modern methods to muon studies
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in metallic systems in order to establish their accuracy and
applicability.

Calculation details

The pseudopotential and plane-waves (PW) basis approach
as in the QUANTUM ESPRESSO suite of codes were used for
our calculations [40]. PW-based codes have a number of
important features, namely, good parallel performances, good
accuracy for the description of the bulk material, and simplicity
of the basis set. The plane-wave basis is generally used
to describe artificially smooth pseudo wave functions, thus
avoiding the strong oscillations in the core region. Nonetheless,
the projector augmented-wave (PAW) method introduced by
Blóchl [3,27,41,42] allows one to approximate the all-electron
density using a frozen-core reconstruction starting from the
pseudo wave function. In the context of the PW basis, the PAW
reconstruction method is therefore the method of choice for an
accurate evaluation of Eq. (2). Since periodic boundary condi-
tions are implied in the description of the bulk system, the effect
of the extremely diluted muons in the material must be modeled
within the supercell approximation, which reduces the artifi-
cial interactions between the charged impurities. It must be
carefully verified that these artificial interactions of the muon
periodic images are negligible on the quantities under study.

For all the calculations in this work, the plane-wave cutoffs
were always above 100 Ry, granting a convergence on total
energy (threshold 10−4 Ry) and spin density, while the
exchange-correlation functionals were treated within the
semilocal generalized gradient approximation (GGA) using
the Perdew-Burke-Ernzerhof (PBE) formalism [43]. The cal-
culations were done in the scalar relativistic approach, neglect-
ing spin-orbit coupling. The scalar relativistic approximation
is sufficient for the theoretical calculation of the muon contact
field, since hydrogen (hence the muon) has a small nuclear
charge and the contact field is predominantly due to on-site
contributions of s-like states surrounding the muon [26,44,45].
The Marzari-Vanderbilt [46] smearing function was used.

A uniform Monkhorst-Pack [47] mesh was used for the k

points. The convergence of the contact field depends strongly
on the density of the mesh of k points. A 16 × 16 × 16 mesh
grid was used for the unit cell of the transition metals and a
12 × 12 × 12 grid for the unit cell of the B20 compounds.
The mesh sizes were selected following a systematic test to
ensure independence of the size used to the spin density and
total energies. These grids were downscaled proportionally for
each supercell size.

The first step for all calculations involves the optimization
of the structure and the correct reproduction of the electronic
and magnetic properties of the pristine material. The next step
involves investigating the extent of the lattice distortion around
the muon and its influence on the electronic and magnetic
properties of the nearest neighbors. The muon was introduced
as hydrogen while maintaining a neutral cell considering that
in metals, positive charges are effectively screened by the
conduction electrons, enforcing charge neutrality of the whole
system [1,2,12].

Before systematically comparing calculations with experi-
mental values, let us further notice that we expect our results
to overestimate the experimental absolute value, in view of

FIG. 1. Convergence of the muon contact hyperfine field Bc with
the distance between muon periodic images for host systems of Fe, Ni,
and Co. The x,y,z dimensions are the supercell sizes with reference
to the unit cells.

the light mass of the muon, which results in relatively large
amplitude of zero-point vibrations [48]. The muon behaves
as a quantum oscillator, and the extent of its wave function
is completely neglected in the static contact field from the
DFT approach. The experimental value should be compared
to the average over the muon wave function, whose accurate
determination will be addressed separately and is beyond the
scope of the present paper.

III. RESULTS AND DISCUSSION

The appropriate size of the supercell for each of the
materials was carefully determined considering convergence of
the total DFT energies, distortion of the lattice and magnetic
coupling in the vicinity of the muon, and in particular, the
calculated contact hyperfine field, as shown in Fig. 1. The
plot shows that this quantity converges at the 3 × 3 × 3 cell
level; however, we will compare results on the transition metals
obtained with 4 × 4 × 4 cells. Following the same systematic
tests, a 2 × 2 × 2 cell was used for the B20 compounds.
Incidentally, in these metals convergence is achieved when the
muon periodic replica are above 8.48 Å apart.

Next, we address the issue of whether the relaxation of
the host atoms in the supercell including the muon has a
significant effect on the quantity of interest. This is obtained
comparing muon contact field values Bc with and without
atomic relaxation. The results indicate that the relaxation
around the muon significantly affects only the positions of the
nearest-neighbor ions. The distortions are short ranged and
small because the positive charge of the muon is screened
by the electron cloud in metals, a fact that is directly shown
in Fig. 4 (see Appendix). Furthermore, Fig. 2 shows that the
direct effect of relaxation on the value of Bc is tiny compared
to the deviation between experiment and theory at this level of
approximation. However, the reported results in this work are
those of the relaxed lattice.

Finally, we want to determine the relative accuracy of the
pseudo-wave-function (PS) spin densities compared to those
obtained by the PAW reconstruction (PR) method described
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FIG. 2. Calculated muon contact hyperfine field Bc for unrelaxed
(unrlx) and relaxed host atoms + muon at fixed cell volume (rlx)
compared to the experimental value (Exp).

in Sec. II. These are reported in the last two columns of
Table I as ρPS

s (rμ) and ρPR
s (rμ), respectively, and the cor-

responding contact field is plotted in Fig. 3 and compared
with the experimental values. The pseudo wave functions
give results remarkably close to the experimental values, even
though they do not include the actual core electron density.
It should be noted, however, that this is probably due to an
error compensation between the approximated core electronic
density and the missing zero-point vibration corrections. In
addition, the overshooting of all estimations obtained with
PR is in agreement with the fact that corrections due to
zero-point vibrations may lead to a reduction of the absolute
value (as mentioned in Sec. II), thus systematically improving
the agreement with the experimental data for all the compounds
reported in Fig. 3.

A. Fe, Co, Ni

We have investigated the accuracy of the calculated mag-
netic moments and the effects of the muon on them. The ex-
perimental total magnetic moments of the transition 3d metals,
shown in Table I, are well reproduced within the conventional
GGA-DFT. The tabulated magnetic moments were estimated
with the Löwdin population analysis [49]. With the muon im-

FIG. 3. Muon contact hyperfine field Bc calculated with the
spin densities from the pseudo wave function (PS) and from the
all-electron reconstruction with the PAW method (PR) compared to
the experimental value (Exp).

purity in the lattice, the moments of the nearest-neighbor host
magnetic ions are negligibly perturbed. These perturbations
contribute to no appreciable change of the calculated contact
field. As we will further discuss, the contact field depends
strongly on the accuracy of the calculated spin moments.

The first important result obtained is that the calculated spin
imbalance at the muon, shown in Table I, is negative for all the
considered metals, in agreement with experiment and with the
simple notion that the majority spin electrons are in a direction
opposite to the bulk magnetization at the muon. Furthermore,
the deviations reported in Table II are on average 0.14 T and
always within 0.2 T. This may be considered a rather good
agreement, compared to results from the earlier works, since
the averaging due to the muon’s vibration is not included yet.

Admittedly, many of these earlier works [18,20,22,51]
estimated the spin density at the muon site by a simple rescaling
of the spin density of the bulk material at the position of the
known muon site with an empirical spin enhancement factor
that mimics the perturbation induced by the interstitial muon.
This is clearly an unpractical ad hoc solution that impairs the
ab initio method. They thus failed to establish the accuracy of
the method over several materials.

TABLE I. Spin-only magnetic moment for each magnetic ion (without the muon) for the conventional GGA calculation mGGA, the
experimental value mexp , and the reduced Stoner theory calculation (see Sec. III B) mRST in units of μB ; muon sites [24,34–38] in fractional
coordinates; calculated spin density at the muon in atomic units of (a−3

0 ) resulting from the pseudo wave function ρPS
s and the PAW reconstructed

value ρPR
s .

Host metals a mGGA mexp
b mRST Muon site ρPS

s (rμ) ρPR
s (rμ)

Fe - bcc 2.17 2.22 0.50, 0.25, 0.00 −0.0179 −0.0238
Co - hcp 1.585 1.72 0.33, 0.67, 0.25 −0.0111 −0.0150
Co - fcc 1.645 1.59 0.50, 0.50, 0.50 −0.0109 −0.0139
Ni - fcc 0.638 0.606 0.50, 0.50, 0.50 −0.0020 −0.0028
MnGe 2.014 1.83 1.84 0.552, 0.552, 0.552 −0.0162 −0.0217
MnSi 1.00 0.4 0.401 0.541, 0.541, 0.541 −0.0031 −0.0042

aThe MnGe and MnSi structure are of P 213 space group (cubic) with the Mn atom at (0.138, 0.138, 0.138) crystal unit position.
bSee Refs. [37–39].
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TABLE II. Calculated static contact hyperfine field at the muon
Bc by PAW reconstruction together with results from other works,
experimental values Bexp

c , and deviations �exp = Bexp
c − Bc.

Bc [T]

Host metals This work Other works exp �exp[T ]

Fe-bcc −1.25 −0.94 [18] −1.11 [34] 0.14
Fe-bcc −1.01 [50]
Fe-bcc −1.44 [24]
Fe-bcc −1.03 [25]
Co-hcp −0.79 −1.34 [18] −0.61 [35] 0.18
Co-hcp −0.57 [50]
Co-fcc −0.73 −0.46 [24] −0.58 [24] 0.15
Ni-fcc −0.15 −0.69 [18] −0.071 [36] 0.08
Ni-fcc −0.059 [50]
Ni-fcc −0.13 [24]
Ni-fcc −0.31 [20]
Ni-fcc −0.059[21]
MnGe −1.14 −1.08 [37] 0.06
MnSi −0.22 −0.207 [38] 0.013

In the earlier calculations, the large deviations between cal-
culated and experimental contact field values (on average) were
consistently attributed to the lack of muon zero-point motion
correction. Our more accurate results indicate that the effect of
the zero-point motion is needed but its extent is much smaller.

B. MnGe and MnSi

The muon implantation sites for MnSi and MnGe [37,38]
are reported in Table I. Their zero-field magnetic structure,
actually a spin spiral, was approximated by a collinear ferro-
magnetic state, since in both cases the pitch [37,38,52–54] is
much longer than the lattice parameter.

The conventional DFT-calculated spin-only moment,
mGGA, deviates significantly from the experimental total mag-
netic moment for both B20 compounds and for MnSi in
particular. This is a consequence of the poor standard DFT
description of spin fluctuations in the magnetic ground state,
especially for itinerant electron systems. This also affects the
calculated spin density at the muon. For MnSi mGGA = 1.0μB ,
while the experimental value is mexp = 0.4μB . Notably, the
ratio of these two values matches the ratio of the calculated
and experimental contact fields for the calculated spin density
of −0.0107 (a−3

0 ). This is also the case for MnGe (see Table I),
with calculated spin density −0.0251 (a−3

0 ). Thus, the accuracy
of the calculated contact field is heavily influenced by how
well the host ground-state magnetization is reproduced by
DFT. A simple but non–ab initio way to predict experimental
contact field values would consist in rescaling the fields by the
ratio mexp/mGGA or constraining the total moment of the bulk
material [55] to the known experimental value.

Ab initio approaches have been discussed in the literature
for MnSi. Attempts to obtain the experimental local moment
by the reduction of the lattice constant within the local
density approximation (LDA) [56] work only for unphysical
lattice constant values. Hubbard U correction (DFT+U) to
redistribute electrons between the majority and minority chan-
nels [57,58] acknowledge unphysical results in the pressure

dependence of the magnetic moment (and we checked that the
spin density at the muon departs from experiment).

A different approach was proposed by Ortenzi [59], who
implemented a reduced Stoner theory (RST) modification to
the exchange-correlation functionals. This approach involves
the reduction of the ab initio Stoner parameter in the conven-
tional spin-polarized DFT by a spin-scaling factor (ssxc) in the
exchange-correlation potential. With this approach, the energy
gain due to spin polarization within the conventional Stoner
interaction criterion is reduced.

This method is variational and it adjusts the magnitude of
the spin polarization for all standard functionals. We reim-
plemented it in the QUANTUM ESPRESSO code and obtained
mRST ≈ mexp with ssxc values of 0.83 and 0.95, respectively,
for MnSi and MnGe, as in Table I. The band structure remains
negligibly changed, although bands are shifted in energy
accordingly to the reduced Stoner parameter. Our results for
the contact field, in good agreement with experiments, were
obtained with spin densities calculated from this approach and
are summarized in Table II.

IV. CONCLUSIONS

We have reviewed and validated a systematic approach to
the calculation of the muon’s static contact hyperfine field in
metals to aid in μSR data analysis and understand the contact
contribution to the hyperfine field of light impurities in metals.

We have successfully established the accuracy of the es-
timation of the muon contact field in metallic compounds
with DFT. The pseudopotential DFT approach within the PAW
formalism is good even for itinerant magnets, notoriously
difficult systems.

The results may be affected by poor DFT reproduction of
the magnetic moment which is common for these systems.
The RST method allows a variational approach that may well
reproduce the experimental results (both the magnetic moment
and spin density) without forcing unphysical values of the other
lattice quantities.

Our final results are obtained for an infinite muon mass
and do not account for its finite zero-point vibrations. The full
treatment of this aspect is beyond the scope of the present
work, but we know that it has to reduce the absolute value of
the static spin density. Therefore, the fact that the calculated
value |Bexp

c | − |Bc| is consistently small and negative agrees
with the expected effect of zero-point vibrations. With this
in mind the agreement between calculation and experiment is
satisfactory at this level of approximation.

We conclude that DFT calculation of contact hyperfine
fields is a viable assistance to μSR data analysis. Its standard
implementation may well replace expensive, time-consuming,
and often not readily available single-crystal measurements in
the future.
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FIG. 4. Atomic displacement in the presence of the muon in a
relaxed supercell vs the distance of each atom from the muon. Red
lines are a guide to the eye showing the exponential decay.
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APPENDIX: SHORT-RANGE DISTORTION DUE
TO THE MUON

The range of the lattice strain introduced by the interstitial
muon defect may be directly quantified by comparing the
position of each atom in the pristine material with their position
in the supercell DFT calculation, after lattice relaxation with
the muon. Figure 4 shows the difference of these two quantities
versus the distance from the muon site. The top four panels
display the result for the 4 × 4 × 4 cell of the elemental metals,
with a clear exponential decay on a length scale λ < 1.25 Å.

The data for the 2 × 2 × 2 cell of the B20 compounds are
more scattered, as expected in view of the presence of two
different species. Interestingly, Si and Ge show a decaying
displacement with λ < 3.0 Å, whereas Mn ions show no
systematic deviation, perhaps indicating a much shorter value
of λ.
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