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Conversion of spin current into charge current in a topological insulator: Role of the interface
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Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a
two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect
(IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the
interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to
be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016)]. However,
we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate
in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and
the IEE length is always less than the original mean free path in the TI without the interface. We show that both
the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission
time. The correction becomes significant when the transmission time across the interface becomes comparable
to or less than the original momentum scattering time in the TI. This correction is similar to experimental results
in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface
with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating
insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge

current conversion and a limitation to the conversion efficiency due to the quality of the interface.
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I. INTRODUCTION

Manipulation of spin current by charge transport and vice
versa are the central goals of spintronics, where spin-orbit cou-
pling (SOC) plays an important role in connecting the charge
with spin degree of freedom [1,2]. Topological insulators (TIs)
have gained considerable attention as a strong SOC material
having an insulating bulk and metallic surface states with a
Dirac cone dispersion [3]. The spin and momentum of the
two-dimensional (2D) surface states of a three-dimensional
(3D) TT are helically locked in the Fermi contour. Because of
spin momentum locking, a 3D spin current density injected
onto the surface of a TI will produce a 2D charge current
density on the surface, which is known as the inverse Edelstein
effect (IEE) [4]. Recently, the IEE was shown experimentally
by spin pumping [5,6], in which a spin current is produced by
ferromagnetic resonance and is injected through a nonmagnetic
metal layer onto the surface of the TI, and a surface charge
current is obtained as shown in Fig. 1. The spin charge
conversion efficiency is measured by the IEE length defined
as the ratio of the 2D charge current density on the surface
of the TI to the 3D spin current density injected through the
interface. In a theoretical paper by Zhang and Fert [7], it was
calculated that the IEE length is exactly equal to the mean
free path in the TI independent of the transmission rate across
the interface. However, we find that the IEE length will be
modified due to the interface transmission rate, and define a
modified IEE relaxation rate that will be determined by the
momentum scattering rate and the interface transmission rate.
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We show that the transport relaxation rate in the TI also is
modified by the interface transmission rate.

In this paper, we calculate the transport in a TI/metal bilayer
using the spinor Boltzmann equation following Zhang and
Fert [7], and solve the spinor distribution function for the
TI surface states. However, in this work we (i) consider the
general Boltzmann equation incorporating an inhomogeneous
diffusion term to show a modification of the transport re-
laxation time due to the finite interface transmission time;
(i) obtain the solution to the distribution function in the
steady-state homogeneous case showing a modification of the
IEE relaxation time because of the finite interface transmission
time as well; (iii) derive the expression for the transmission
time across the interface considering both the case in which the
interface is smooth so that the in-plane momentum is conserved
during tunneling, and the case where the interface is rough
so that the tunneling is momentum randomizing; (iv) show
different dependencies of the spin current density across the
interface on the in-plane and the out-of-plane components of
the spin electrochemical potential in the metal even under the
same physical assumptions as Zhang and Fert [7]. Furthermore,
in the appendixes, we provide an alternate approach based
on the quantum kinetic equation using the Keldysh Green’s
function that reproduces the results of the semiclassical Boltz-
mann equation. Our main result is a modification of the IEE
relaxation time in the presence of strong tunneling across the
interface, which is consistent with the experimental findings of
IEE relaxation time on Rashba 2D electron gas (2DEG) with
strong SOC [8-10], where the IEE relaxation time is found to
be shorter for an interface to a metal as compared to an oxide.
This result shows the crucial importance of the interface in
obtaining a better spin-to-charge current conversion.
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FIG. 1. Spin-to-charge current conversion on the surface of a TI
by spin pumping experiment: a rotating magnetization M(¢) around
the y direction in the ferromagnetic metal (FM) produces a spin
current density J; in the z direction injected to the nonmagnetic metal
(NM) with spins oriented along the y direction. The injected spin
current density J; onto the surface of the TI from the NM through
the interface produces a charge current density J. in the x direction
on the surface of the TI due to the spin momentum locking of the TI
surface states on the Fermi contour as shown on the right.

II. THEORY

We start with the spinor Boltzmann equation for the surface
states of the TI in a TI/metal bilayer, given by

018y + V- VRrE, = Z Tip(fk — 8p) + Z App 8y — 8p):
k P

ey

where fi and 8, are the nonequilibrium spinor distribution
functions for metal and the TI surface states, respectively. Here,
k is the 3D momentum of the states in the metal and p is the
2D momentum of the TI surface states. The velocity operator
for the surface states is v = (1/h)dH /op = vg(0 X Z), where
H = hvgp o - (Z x P) is the Hamiltonian of the surface states,
vr is the Fermi velocity, Z is the unit vector along the surface
normal direction, o is the vector consisting of three Pauli spin
matrices, p is the magnitude of p, and p = p/p is the unit
vector along the momentum direction. The first term in the
left-hand side of Eq. (1) represents the time derivative and the
second term represents diffusion in the 2D surface of the TI,
where T is the time and R is the 2D position vector on the TI
surface.

Because we find the interface tunneling rate is crucial in the
transport, we will elaborate on the derivation of the interface
tunneling rate and the assumptions made therein. The first term
on the right-hand side of Eq. (1) represents tunneling across the
interface with the tunneling probability 'y, given from Fermi’s
“golden rule” as 'y, = (27r/h)|Tkp|28(ek — €p), where Typ is
the tunneling matrix element between the metal and the TI
surface states given by |Tip|> = | (¥1c(X) x| Viun (0) [ p () 1p)
where Vi, (1) is the tunneling potential, and r is the 3D position
vector. The orbital parts of the wave functions are vy p(r), and
the spin parts of the wave functions are yy p. If the interface is
considered to be rough enough to randomize momentum, and
the tunneling potential is assumed to be spin independent and
steplike in the surface normal direction, the interface potential
can be modeled by Vi,(r) = vy E{VZSIS(rH — R,S)‘/t(z), where

the roughness of the interface is modeled by Ns randomly
distributed short-range § potentials at positions Rl.S at the
interface, rj is the component of r parallel to the interface,
and Vi(z) is a steplike function along the z direction. The
orbital parts of the wave functions are assumed to be of
the form Y p(r) = @k p(r))ék p(z), where the ¢ p(r))’s are
considered to be plane waves. After an averaging over the
random distribution of the tunneling centers Ris, we obtain

nvinsC,

hA
where ng = Ng/A is the roughness defect density of the
interface, A is the surface area, and the overlap of the wave
functions of the surface states and the metal in the tunneling
region is Cy = |(§k(z)|Vt(z)|§p(z))|2, which is presumed to be
independent of the momentum of the electrons tunneling across
the interface [11]. The tunneling potential is considered to
be spin independent, so the spinor dependent part in Eq. (2)
arises from the projection operator %[00 40 - (Z x Pp)] which
projects states to the upper band of the TI Hamiltonian [7]. The
interface tunneling probability given by Eq. (2) is completely
momentum randomizing, as considered by Zhang and Fert [7].
Here, we further consider the case of a smooth interface, in
which the tunneling potential can be modeled by Vi, (r) =
v.Vi(z) to be constant everywhere on the interface, and the
tunneling probability becomes

Fp = [oo +0 - (2 % P)] 5(ex — €p), @)

Tv:C,

C

hA

[o0 +0 - (2 x P)] 27)*8(k; — P) S(ex — €p),
3)

implying that the in-plane momentum k; is conserved in the
tunneling process. The rough and the smooth interface assumed
are the extreme limits of the interface roughness model with a
Gaussian distributed surface roughness potential. However, our
main result is the modification of the transport scattering time
as well as the IEE relaxation time due to the finite transmission
time across the interface, which remains valid in either case;
only the interface transmission time depends on the nature of
the interface.

The second term on the right-hand side of Eq. (1) denotes
scattering between the state p and p’ of the TI surface
states due to defects or impurities close to the interface,
with the scattering probability Apy given by Fermi’s golden
rule as Apy = (27/1)|Upy |*8(€p — €p), Where Upy is the
scattering matrix element between the state p and p’ given
by [Upp > = ([(¥p(0)] Vais(®)] ¥y (1) ) xp xpr) - Here we
model a short-range spin independent disorder potential by
Viis(r) = u()Z;V;l(S(r” — Ri.)Vd(z), where Ri.’s are the posi-
tions of the Ny impurities in the direction parallel to the surface,
and Vy(z) represents an average value of the impurity potential
due to the impurities near the interface. After averaging over the
random impurity positions parallel to the surface, the scattering
matrix element is evaluated to be [Upy > = (u3n;Cq/A)3(1 +
p - P’), where n; = Ni/A is the impurity concentration, Cq =
[(6p(2) 1 Va(2)I&p (), and [(xplxp)I> = 5(1 + p - P') where
Xp satisfies o - (2 x P)xp = xp. So, we have

Ckp =

nu%niCd

App = HA

(1+p-p)3ep — ep). “
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Because the band structure of the surface states is isotropic in
the p space within the considered energy range, the conserva-
tion of energy also implies conservation of the magnitude of
momentum in the scattering process.

The solution to Eq. (1) can be obtained by considering
fio = F2+ 8 fand g, = 80 + 82, where f0 = fep(ei)op and
2y = 5lo0+0 - (2 x P)] fin(ep) are the equilibrium distri-
bution functions for the metal and the TI surface states,
respectively, where frp is the Fermi-Dirac distribution. We can
write 8 fii = (fooo +f - 0)8(ex — €r) and 8, = h(0)8(ep —
€r), which amounts to considering quasiparticle excitations at
the Fermi energy €. We consider fj and f are independent of
the solid angle €2 in the Fermi surface of the metal, and h(®)is
a function of the angle § = tan™!( Dy/ px) in the Fermi surface
of the TI surface states, reflecting the dispersion relations of
the metal and the TI, respectively. Performing the summa-
tions over momentum by the following integrations: Xy —
V [ Ni(ex)dex [ dS2/(4m) (where V = Ad is the volume of
the metal, A is the surface area of the bilayer, and d is the
thickness of the metal) and X, — AfNP(ep)depfdQ/Qn)
[where Ny(ex) and Np(ep) are the per spin density of states
(DOSs) of the metal and the TI surface states, respectively],
and an integration over €, of Eq. (1) gives

dh(®) + vr o - [2 x Vrh(9)]

1 "
= —loo+0 -z x Pl fooo + -0 — h(B)]

Tt

+ti<<1 + b BIAE) — h©O))o- 8
P

Here (...)p denotes the average over the angle 6, t, is the

interface transmission time, and 7, is the momentum scattering

time. In the case of a rough interface with momentum random-

izing tunneling, the interface transmission time is defined from

Eq. (2) as

1 2nC
— =3 IO — ) = T3, CNpd /B, (6)
Tt " hA

with N3p being the 3D DOS of the metal at the Fermi level. In
the case of a smooth interface, the interface transmission time
is redefined from Eq. (3) as

1 7v>C
— =) =28k — pr)d(ex — €r)
T . hA

= 7v;CNipd/h, ©)

where pr is the Fermi momentum in the TI, and N;p is the
one-dimensional (1D) DOS of the metal at the Fermi level
with the condition that the in-plane momentum is conserved,
ie., p% + kz2 = kl%, with kg being the Fermi momentum in the
metal. So, for a smooth interface, tunneling is possible if the
cross section of the 3D Fermi surface is larger than the 2D
Fermi surface, i.e., kg > pg. For large 2D Fermi surface, i.e.,
Pr > kg, there will be no tunneling (1/7; = 0) if the interface
is smooth. From Eq. (4), we define the momentum scattering
time as

1 In;C
— =3 T (6, — e) = wudmCaNe/hy (8)
7 - hA

where Nr is the 2D DOS of the TI surface states at the Fermi
level.

The solution for A(9) is obtained by considering that the
nonequilibrium distribution function for the surface states has
a spinor form that is proportional to the upper band projection
operator of the TI surface states Hamiltonian, i.e., fz(@) =
ho(@)[og + o - (Z x P)], where hy(0) is a scalar function times
identity in spin space and can be written in terms of s- and
p-wave components, i.e., ho(0) = hs + P - h,, with i and h,
being independent of 6. Taking the trace of Eq. (5) in the spin
space and integrating out the s- and p-wave components, we
obtain

v 2
dhs+ Ve by = 2 (L2 _p), (9a)
2 T\ 2
2/t 2 1
orh, + veVRrhs = —( = x2 ) — [ = + — )h,. (9b)
T\ 2 T 21,

The charge density n and the current density J. on the
surface of the TI are given by

n= (;6) Xp:Tr((Sgp) = —2€NFhs, (103)
J. = (_Ae) > " Tr(vég,) = —eNpvgh,. (10b)
P

The charge density ny and the spin density sy (in the unit
of charge —e) in the metal are given by

= SO W = 2eNfo, (1)
k

Sm = % Y Tr(a8fi) = —2eNspf. (11b)
k

We define the charge electrochemical potential 1 in the
metal by the relation ny = 2¢*Nsp o, where the factor of 2 is
for spin degeneracy (as N3p is the per spin DOS), and define the
spin electrochemical potential u by the relation sy = € N3ppt.
From Egq. (11) we obtain fy = —uo and f = —ep /2. Using
Eqg. (10), the following diffusion equation in the TI is obtained
from Eq. (9a),

2
drn+ Vg -Jo = ;(ezNFuo —n). 12)
t

Fourier transforming Eq. (9b) to the frequency domain (dr —
—iw) gives the charge current density in the TI,

2
Je = a_ 1601_”) |: — vF;tr Vgrn + ezNFvF%r(% X 2)}
(13)
where 7 is the transport relaxation time defined as
1 1 2
— =+ —. 14)

T 2T, T

[The factor of 2 in 2/7; could be absorbed in the definition
of 7, in Egs. (6) and (7) by redefining the DOS of the metal
considering both the spins.] In the absence of tunneling from
the metal, the transport relaxation time in the TI is rt? =21,
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where the factor of 2 is due to the increasing attenuation
of scattering with increasing scattering angle because of the
helical spin momentum locking in the T1, including elimination
of direct backscattering where the spin components of the
initial and final electronic states are orthogonal. The first
term in the right-hand side of Eq. (13) represents diffusion,
with the diffusion constant D = v}t,/2 being modified by the
transmission rate across the interface through the redefined
transport relaxation time given by Eq. (14). The spin current
density J, through the interface (in the unit of charge current
density) is given by

(—e) A .
Jo="—r %j Tr[o Tip(fi — &)1

2
= —(ezNFUF%L —Zx Jc) (15)

VETt

III. RESULTS AND DISCUSSIONS

Now we solve the nonequilibrium distribution function for
the TI surface states under steady-state spatially homogeneous
conditions as per Zhang and Fert. The assumption of a slowly
varying in position charge electrochemical potential in the
metal with respect to the electrochemical potential (or equiva-
lently the nonequilibrium charge density ») in the TI surface is
valid since the metal has much higher conductivity than the TI
surface. In the appendixes, we show that under the assumption
of a homogeneous charge electrochemical potential 1 in the
metal, the charge density n and the charge current density J.
on the TI surface becomes homogeneous in the case of a short
circuit between the two ends of the surface of the TI if either
the applied spin electrochemical potential p in the metal or the
applied spin current density Js from the metal to the TI surface
through the interface is assumed to be homogeneous. Under
this homogeneous condition, we also show (in the appendixes)
that the applied position-independent charge electrochemical
potential o in the metal will be balanced by a position-
independent nonequilibrium charge density n = > Ngu, (i.e.,
a position-independent electrochemical potential) in the TIL.
(Moreover, in the case of spin pumping experiments, a purely
spin electrochemical potential is applied in the metal, and both
o and, thus, n vanish. However, what follows does not depend
on these quantities vanishing.) The charge current density J,.
in the TI for a position-independent nonequilibrium charge
density becomes

2
= ——(u) x 2), (16)
T

where p = py+ 1z, where p; =p-2. Substituting
Eq. (16) into Eq. (15), we find the spin current density J;
through the interface to be

e*Ng 2t e Np
= 1+ =2 2. 17
4, + 1 ( + T )'M" + Tt s an

I

We also have derived the diffusion equation in the TI, as well
as the expressions for the charge and spin current densities,
from a full quantum-mechanical kinetic equation based on
nonequilibrium Keldysh Green’s function, which is provided
in the appendixes. We note that the expression for the spin

current density in Eq. (17) derived here differs from the one
in the previous work of Zhang and Fert [7] on which we
build, despite the fact that we started with the same physical
assumptions as theirs. Equation (17) indicates that the spin
current density is induced by both the in-plane () and out-of-
plane (1) components of the spin electrochemical potential.
The coefficients for both terms are different from each other.
Furthermore, the coefficient for the in-plane component in
Eq. (17) differs from that provided by Zhang and Fert [7]. This
difference becomes significant when the interface transmission
time is comparable to or smaller than the momentum scattering
time. The physical and practical significance of the difference
will be addressed as part of the discussion below.

Now we consider the physical meaning of the coefficients
in the expression of Js given in Eq. (17). It can be seen from
Eq. (17) that the spin current density across the interface
is directly proportional to the interface tunneling rate 1/t
if we consider the pure out-of-plane component of the spin
electrochemical potential (i.e., uy = 0). In addition, in the
case of a pure in-plane component of the spin electrochemical
potential (i.e., u1 = 0) in both limits of z,, 7, > 7, and
7, K T, the spin current density across the interface also is
proportional to the interface tunneling rate and, thus, depends
on the barrier thickness, although the proportionality constant
varies by a factor of 2 between these two limits. The spin
current to charge current conversion efficiency is measured by
the IEE length defined as Ajgg = |J.|/|Js], which is found to
be, in the case of a pure in-plane spin electrochemical potential,

(18)

where Anr = vpT, is the mean free path in the TI. If the
orientation of the spins in the spin current injected from the
metal to the TI surface is purely out of plane, ie., uj =0,
from Eq. (16), there will be no charge current on the T1 surface,
because the spins of the carriers on the TI surface can only be
oriented in plane, since we have assumed an ideal helical Dirac
Hamiltonian for the TI surface states with spins locked to the
momentum on the 2D surface. In a real T1 system, there will be
hexagonal warping present, and in the thin film of TI there can
be an additional gap opening around the Dirac point, which will
provide a nonvanishing out-of-plane component to the spins of
the TT surface states. In these cases, the charge current on the
TI surface will be nonzero and will depend on the degree of
the nonidealities of the Hamiltonian if the injected spins are
out of plane. However, the ideal model of linear Dirac cone
dispersion for the TI surface states remains valid if the Fermi
level lies away from the bulk bands, and away from the Dirac
point in the thin TI films. In the experiment, the orientation
of the spins in injected spin current through the interface is in
plane, so the IEE length is always less than the mean free path,
i.e.,, AIEE < Amf, because of the correction factor (1 + 27,/7) in
Eq. (18) withnonzero and finite 7, and ;. This correction factor
can be viewed as a modification of the IEE relaxation time Tigg,
which is defined by Ajgg = vpTigE. SO, the IEE relaxation time
can be written as

— =t (19)
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FIG. 2. Variation of normalized transport relaxation time and
normalized IEE relaxation time with the normalized transmission rate
in our calculation and as calculated by Zhang and Fert [7].

Physically, both Eqgs. (14) and (19) exhibit an additional
momentum and spin-relaxation term in the helically locked
TI surface states due to exchange of electrons across the
interface, apart from scattering within the TI, that modifies the
transport relaxation time and the IEE relaxation time in the TI,
respectively. [The relaxation is a result of injection (extraction)
of electrons from (to) the TI with a tilted-in-p-space Fermi level
to (from) the flat-in-k-space spin electrochemical potential p in
the metal, which promotes injection and extraction of electrons
of opposite spin and momentum.] We find that the effects
of the interface on the relaxation times are directly related
through the interface transmission rate as shown in Fig. 2.
In Fig. 2, we have plotted the variation of relaxation times
normalized with respect to the momentum scattering time
(i.e., the normalized transport relaxation time /7, and the
normalized IEE relaxation time tigg/7p) with the normalized
transmission rate 7,/7. It is clear from Eq. (12) that the
interface conductance is proportional to 2¢ Ng/1;, and so the
variation of the relaxation times with the transmission rate in
Fig. 2 also shows the variation with the interface conductance.
Zhang and Fert only pointed to a modification of the IEE re-
laxation rate due to the hybridization of the states of the TT and
the metal (as well as the bulk of the TI) through modification
of the momentum relaxation rate 1/, [through the overlap
integral Cq in Eq. (8)], which, of course, remains relevant
to this work as well. We find that such hybridization also
modifies the IEE relaxation rate through interface transmission
characterized by the rate 1/t [through the overlap integral C; in
Egs. (6) and (7)], with the resulting correction given by Eq. (18)
becoming significant when the interface transmission rate 1/t
between the metal and the TI is comparable to or greater
than the momentum relaxation rate 1/1,. The hybridization
of the states depend on the thickness and quality of the tunnel
barrier. Our finding is important because an absence of a tunnel
barrier between the TI and the metal will lead to a higher
interface transmission rate (limited only by the Landauer-
Buttikier formula in the case of an ideal interface [12]) and,
thus, a lower IEE relaxation time 7igg than when a tunnel
barrier is present at the interface. This result could explain the
experimental observation of a short Tigg at an interface with a

metal, such as in the interface between topological insulator
a-Sn/Ag or the Rashba 2DEG at Bi/Ag interface, but a longer
71 for Rashba 2DEG at STO/LAO oxide interface. In a recent
experiment on the Edelstein magnetoresistance of the Rashba
2DEG at the BiyO3/Cu interface [13], a phenomenological
model was used for the total relaxation time of spin states in
the Rashba 2DEG/metal interface consisting of spin-relaxation
time at the interface and spin-relaxation time out of the
interface into the metal. Our theory gives an explanation of
the phenomenological model that has been used to explain the
Edelstein magnetoresistance of the Rashba 2DEG, in which
the spin-relaxation time at the interface is equivalent to the
momentum scattering time on the TI surface in our model.
(The momentum relaxation time is same as the spin-relaxation
time on the TI surface because of the spin momentum locking
on the TI surface.) The spin-relaxation time out of the interface
into the metal is equivalent to the interface tunneling time
across the interface. Further experiments on TI/oxide interfaces
compared to TI/metal interfaces will be of interest to see the
effect of the interface transmission rate in the spin to charge
current conversion efficiency on the TI surface.

IV. CONCLUSION

In summary, we have studied the spin charge transport
of a TI surface state coupled to a metal through a tunnel
barrier and derived various parameters related to the transport,
including the transport relaxation time [z, of Eq. (14)], the
IEE relaxation time [tgg of Eq. (19)], and the spin-to-charge
current conversion efficiency [Ajgg of Eq. (18)] of the bilayer
when the metal has a pure spin bias. We found that the
interface transmission rate plays a crucial role in determining
the transport relaxation rate, the IEE relaxation rate, and the
spin-to-charge current conversion efficiency. In particular, we
found that reducing the barrier thickness to the point that
the interface transmission and the momentum relaxation rates
are comparable reduces the spin-to-charge current conversion
efficiency. However, increasing the barrier thickness reduces
the absolute spin injection. Thus, performance optimization
will require careful barrier design.
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APPENDIX A: DERIVATION FROM QUANTUM KINETIC
EQUATION USING KELDYSH
GREEN’S FUNCTION

The spin charge dynamics of the TI surface states coupled
to the metal through a tunnel barrier can be obtained from
the quantum kinetic equation written in terms of the Keldysh
Green’s function. We follow the approach given by Kopnin
et al. [14] and Kopnin et al. [15]. To start with, we consider

174406-5



DEY, PRASAD, REGISTER, AND BANERJEE

PHYSICAL REVIEW B 97, 174406 (2018)

the full system Hamiltonian

Hy = Hs + Hp + Ht + Hy. (A1)

Here, the TI surface states Hamiltonian Hg is given by
Hs = 2 f d*Raj(R)[es(R) — eoolupap(R),  (A2)

where €s(R) = —ihvpo - (Z X VR), R is the 2D position vec-
tor on the TI surface. al (R), ag(R) are the creation and anni-
hilation operators on the TI surface with the spin index («, 8),
and these operators are normalized to the thickness A of the TI
surface states such that the equal time anticommutator satisfies
{aa(R),aL(R/)} = 17'8(R — R')8,4, and repeated spin indices
will imply summation over them. The impurities on the TI
surface are modeled by the disorder Hamiltonian Hp which is

Hp = A / d*Ral(R)Vp(R)a,(R), (A3)

where Vp(R) = VOZ?/;,(S(R - RI]») represents short-ranged
spin independent disorder potential, and the integration of the
envelope function of the surface states of the TI over the surface
normal direction is already included in the average value Vj.
The coupling of the TI surface states to the metal through the
tunnel barrier is described by a tunneling Hamiltonian Hr,
which captures the transmission of the electron in and out of

the TI surface states as

Hr = A f d’R / d*r[b}(r) T, (r,R)ag(R)

+al (R)T,5(R1)by(r)], (A4)
where bl(r), bg(r) are the creation and annihilation opera-
tors in the metal satisfying the equal time anticommutator

{ba(r),bTﬂ(r’)} = 38(r —r')éyp, r is the 3D position vector

in the metal, and the tunneling matrix obeys Tjﬂ(R,r) =
Tg‘a(r,R). The creation and the annihilation operators in the
metal and on the TI surface anticommutes with each other,
ie., {aa(R),bL(r’)} = 0. We consider the tunneling to be
instantaneous, and also we will assume a spin conserving and
site-to-site (local) tunneling at the interface, in which case
the tunneling matrix can be written as T,z (r,R) = t(R)3(r) —
R)8(2)848, where #(R) already includes the overlap of the
envelope functions in the metal and the surface states of the
TI. We consider the Hamiltonian in the metal given by

Hy = f EPrblOem(r) — eroo + Unlugbp(),  (AS)

where ey(r) = [ﬁ(—ith)2 + €p]op with m being the effec-
tive mass of the conduction band in the metal and €, being the
band offset of the bottom of the conduction band in the metal
with respect to the Dirac point of the TI surface states, and
Um = Uyop + Us - 0 where Uy is any applied electrochemical
potential in the metal and Uy is an applied spin potential in the
metal.

We consider the following nonequilibrium Green’s func-
tions defined in the Schwinger-Keldysh time contour:

1(G8)ap(R1,T1:R2, 1) = (T2de(R1. T )af (R, T2)).
i(G1ap(r1,71:Re, 1) = (Tebo (11, T)a (R, 12)),

I(GM)ap(T1,T1312,T2) = (bea(l‘l,fl)b,z(l'zyfz)% (A6)

Here Gy is the Green’s function for the TI surface states, Gt
is the mixed Green’s function for tunneling, and Gy, is the
Green’s function in the metal neglecting the back reaction of
the TI surface states, i.e., Gy satisfies

(GM)ay (01, TGy p (X1, T15 12, T2)
= hé(r; — r2)d(r1 — 12)dug, (AT)

where (Gy)~!(r,7) = ihd; — em(r) + Up. From the Heisen-
berg equation of motion for the creation and annihilation
operators, the equation of motion for the mixed Green’s
function can be derived as

(GM);;(I'I7f1)(GT)yﬁ(rl’Tl§RZaTZ)
= A/dzR’ Toy (r1,R)(Gs), (R, 71; Ry, 72).  (AB)
Equations (A7) and (A8) give
(GT)ap(r1,715R2,12)
A /1 32 ! 337 )
= dt'd*R'd’r' (Gy)au(r1, 1157 ,7)
x T, (', R)(Gs)p(R',7; Ry, 7). (A9)

The Dyson equation for the Green’s function of the TI
surface states can be written as

(Gs);; (R1,71)(Gs)y (R, 715 Ry, 12)

_/dzR/dT,(ES)ay(Rlafl;R,vf/)(GS)yﬂ(R,’T/;R271'2)

h
= 7R = R)d(r1 = 12)80p, (A10)

where (Gs)"'(R,7) = i%d; — es(R) + €pop, and g is the
self-energy due to tunneling and disorder, i.e., ¥s = X1 + Xp.
The self-energy for tunneling will be given by

(E1)asRi, 113 R2,12)
A
— —/d3r/d3r//
h
X T}, RN Gw) (0, 715 1", 1) Typ(r Ry). (A11)
For Tog(r,R) = t(R)3(r) — R)3(z)84p, wWe obtain
(E1esR1,71:R2, 1)
A
= EI(RI)(GM)aﬁ(RL,ZI =0,71;Ry,220 = 0,12)1(Ry).
(A12)

The self-energy for disorder is given by

(Zp)ep(R1,71:R2,12)

A
= gVD(RI)(GS)aﬂ(Rl TR, ) Vp(Ry). (A13)
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By analytical continuation from the Schwinger-Keldysh
time contour to the real time axis, Eqs. (A7)—(A13) can be
written in terms of Keldysh space Green’s functions G; (i =
S,T,M) and self-energies 3 (j = S,T,D)

. GR  GK\ . YR ¥K

1 ]

where G?’A’K (EJ-R’A’K) are the retarded, advanced, and Keldysh

Green’s functions (self-energies), all of which are 2 x 2 matri-
ces in spin space with variables (Ry,#;; Ry,#,) with #,,, being
real time variables. A function A(Ry,?1; Ry,1,) can be Wigner
transformed to A(R,T; p,®) by doing a coordinate transfor-
mation to the center-of-mass coordinates (R,7") and relative
coordinates (6R,4¢), and performing Fourier transforms of
these relative coordinates to momentum and frequency variable
(p,w). We define the modified Wigner transformed function in
terms of momentum and energy (p,e = fiw) by A(R,T;p,€) =
IA(R,T;p,w), which is related to A(R;,;Ry,1) by

de d’p

2_ (2 )2 A(R,T, p’G)ei[p.(SR—(e/;,)(gt].
T (2T

ARy, 11;Ry,1) =f
(A15)

We use the lowest-order gradient expansion to express the
Wigner transform of a product function to the product of
Wigner transformed function, which gives the following re-
lation for the modified Wigner transformed functions:

(AB)R,T;p,e) = hARR,T;p,e)BR,T;p,e). (Al16)

The Keldysh component of the the Wigner transformed left-
right subtracted Dyson equation, written in terms of the mod-
ified Wigner transformed Green’s function and self-energy,
gives the quantum kinetic equation

| .
Gy + E{V -VRr,G§} + %[GS(P)’G];]

= i[(28G% - G¥E) - (GREE - £XGY)]. (A1)

where es(p) = livpo - (Z X p) and v = vp(0 X Z).

The self-energy is due to disorder and tunneling from the
metal. For the disorder potential Vp(R) = Vj E;.v; 1SR — R}),
from Eq. (A13) the disorder self-energy becomes, after impu-
rity averaging,

. AVgn; .
Ep(Ry.11; Ry, 1) = W S(R1 — R2)Gs(Ry, 113 Ry, 12),
(A18)
and the Wigner transformed disorder self-energy reads
“ AVini [ d*p ,
>pR,T;p€e) = —— Gs(R,T;p',e). (A19)
h (2m)?

We introduce the 2D quasiclassical Green’s function for the TI
surface states defined as

X i §
8s(R,T; prp,€) = ;fd& Gs(R,T;p.e), (A20)

where & = hvpp — €g, pr is the Fermi momentum of the TI
surface states, and the &g integration is performed near the

Fermi surface. As the quasiclassical Green’s function is peaked
at the Fermi energy, the following ansatz holds:

v im .
Gs(R,T;p,e) = —Tgs(R,T;pr,e)S(Ss). (A21)

The disorder self-energy now can be written as

EpR.T:p.€) = ——(gs(R.T: prp.).
P
where (... ) denotes angular averaging in the p space and we
define 1/7, = nV()znin/h.

To calculate the tunneling self-energy, we first consider the
interface being rough which can be modeled by a random
distribution of tunneling centers Rl.S with t(R) = £ Eistl S(R —
R?). Then, after averaging over the tunneling centers, the
tunneling self-energy is given by

2Ry, 15 Ra,12)
_ A
R

(A22)

SR — R)GM(Ry,z1 = 0,113 Ry, 20 = 0,1),

(A23)
and after the Wigner transform it becomes

Mg ﬁGM(R 1 =0,T:K.¢)

S1(R.T;p.e) = — P

(A24)

where GM(r|| ,2,T;k,€) is the Wigner transform with respect
to the 3D position and time coordinates. Now, we consider the
3D quasiclassical Green’s function for the metal defined as

o, T: kik,€) = i/dgM Gur.T:k.e), (A25)
T

where &y = h2k? /(2m) + €, — €, kg is the Fermi momentum
in the metal, and the &y integration is performed near the Fermi
surface. Since the quasiclassical Green’s function is peaked at
the Fermi energy, the Green’s function satisfies the following

ansatz:
Gm(r,T;k,€) = —imgm(r, T kpk,€)8(&m).  (A26)

So the tunneling self-energy can be written as
“ i N
2r(R,T;p,e) = —;(ng(R,z = 0,T;kek,€)), (A27)
t

where (... ) denotes angular averaging in the k space and we
define 1/t = nt&nsN3DA/h.

In the case of a smooth interface, the tunneling can be mod-
eled by #(R) = t, being constant, and the Wigner transformed
tunneling self-energy will be

Y1(R,T;p,e€)
g

dk. . ,
GumR,z =0,T;p,k,,€)
2w

h
)‘tcz d3k, - s 2 /
= | G MRz = 0.T5K kLT 50K — )

(A28)

where the in-plane momentum conservation holds. Using the
ansatz Eq. (A26) for the Green’s function and assuming that the
3D quasiclassical Green’s function is isotropic in the k space,
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i.e., independent of the solid angle in the k space, because of
the isotropy of the Fermi surface in the metal, we obtain the
same relation for the tunneling self-energy as Eq. (A27) with
a redefined tunneling time given by 1/7, = wt>*NpA/h.

In the quasiclassical limit, the Fermi energy is the largest
energy scale, so the lowest-order solution to the Green’s
function G¥ is given by the one that commutes with the term
€s(p) in the commutator in Eq. (A17). Also, the normalization
condition satisfied by the Keldysh Green’s function G allows
one to write the retarded/advanced Green’s functions of the TI
surface states to be obtained from the upper band projector of
the surface-state Hamiltonian [16], i.e.,

1 oo+0-@xP)
GAp.e) = - BT IR

= A29
20 € — & £i0t (A29)

The retarded/advanced quasiclassical Green’s functions and
the disorder self-energies are then given by

gt = +11op 40 @ x )1, TR = F——0p. (A30)

2 27,

We consider the following ansatz for the Keldysh component:
gé‘(f),e) = gs(P,€)[op + 0 - (Z x P)], which means that the
spin and momentum is locked for the TI surface states even
in the nonequilibrium situation. In the diffusive limit, we can
expand gg(P,€) in spherical harmonics [16,17], i.e., g5(P.€) =
gs(€) + P - g.(¢€), and solve the kinetic equation, Eq. (A17).
The charge density n on the surface of the TI will be obtained
from g&(p,€) by [18]

eNp
2

n =

T N,
/ de= (g BN = 3 / de gy(e), (A3D)

and the current density J. is given by

M [T e [
3= /d62[<vg b = fde ")

(A32)

The retarded/advanced Green’s functions in the metal are
given by

1

Rk )= ——q,
M) = v O

(A33)
so the retarded/advanced quasiclassical Green’s functions and
the tunneling self-energies are obtained to be

gRA = 40y, =RA = :F%ao. (A34)

t

We consider the effect of the applied charge and the spin
potential in the metal through the Keldysh component of the
Green’s function in the metal gf\(,[(f(,e), which is considered to
be independent of the solid angle in the k space because of the
isotropy of the Fermi surface in the metal. From Eq. (A27),
the tunneling self-energy only depends on gllf,[(z =0,k,€), so
we only consider gllf,[(f(,e) at the interface z = 0, but will write
gllf,l(f(,e) instead for brevity. The Keldysh component of the
Green’s function in the metal can be written as gllf,[(l},e) =
[gf\’,[(e)ao + o - gm(€)]. Further, the quantities charge and spin
densities in the metal, and the corresponding charge and spin
electrochemical potentials in the metal will refer to the values

at the interface and not be explicitly written afterwards. The
charge density ny; in the metal is given by

N T N N.
ny = ¢ ;D /de%[(gﬁ(k,e))] =¢ ;D fde gl(\),l(e),

(A35)

and the spin density sy (in the unit of charge —e) is obtained
from

N T . N
Sv = ;D fdfjr[(aglﬁ(k,f))] =< ;D /de gu(e).

(A36)

As we have defined in the main text, the charge electrochemical
potential 1y and the spin electrochemical potential w in the
metal are given by ny = 2¢*Napuo and sy = e>Nippe. So,
we obtain the following relations for 1y and p in terms of the
quasiclassical Green’s functions:

1 1
ho= / de @), n= 5 f de gu(©). (A37)

After doing &g integration of Eq. (A17), and using Egs.
(A27) and (A30), we obtain

1
BTgé( + Evp{a XZ- VR,gé(} + ivppp[a -(Z x f)),gg]

K K
_o8s fes) U ok
=- t +2rp{°r (% ).(5)}
28

1
+ 2—{00 +o -2 xp).gw)- (A38)

Tt Tt

Now using the ansatz for g&, after taking the trace of Eq. (A38)
and integrating out the s- and p-wave components, we obtain

1 2 (g
drgs + §”FVR “8a = 5 &) (A39a)
t
2 2 1
trga+ orVeg = (2 x2) - (2 + 5 g
Tt 2 Tt 2Tp
(A39b)

which is equivalent to Eq. (9) in the main text. After €
integration of Eq. (A39a) and using Egs. (A31), (A32), and
(A37), we obtain the diffusion equation in the TI, i.e., Eq. (12)
in the main text. Similarly, after € integration of Eq. (A39b),
the current density J. is obtained to be the same as Eq. (13) in
the main text.

The spin current density across the interface (in the unit of
electron charge per unit area per unit time) will be given by
Js = —eMlds/dt = —eA(i/h)[Hr,s] by the Heisenberg equa-
tion of motion, where s = (al(R,?)o 4gas(R,?)). Applying the
equation of motion to the operators, we obtain

—eA 3 <
Jo=—= [ &r Trlo(GrR,1;x,0T (r,R)

~TIR, 1G5 (r.t;R,1))]. (A40)

Here, the complex conjugate tunneling Green’s function
(Gro)ap(R,1151,1) = (G1)g, (r,12; R, 11), and G, G are the
corresponding lesser Green’s functions. From Eq. (A9), we
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obtain for the complex conjugate tunneling Green’s function
(Gre)ap(Ry,T1512,72)
A
== / dt'd’R'd*/(Gs)a,u Ry, 713 R, 7))

x T} (R E)Gr)up (X, T3 12,12). (A41)

We write Egs. (A9), (A41), and (All) in a simpler form
as Gt = 2GuT Gs, Gre = $GsT Gy, and T1 = 2TTG T,
where the integrations over the internal variables are implicit.
Then, from Eq. (A40), Js can be written as
—eA - b e

Js = o Ttlo(G1. T — T'G7)l. (A42)
By using the Langreth rule [19] for the lesser function of the
product of three functions, which is given by

(ABC)= = ARBRC= + ARB=C* + A=BAC*", (A43)

G1., Gt can be written as

Gi = &[GR TGs + GyTG{] (Ad4a)
T i M S M S

A

hi

Here we have used the fact that the instantaneous tunneling 7 is
neither retarded nor advanced and diagonal in Keldysh space,
ie, TR=T4=Tand T< = T> =0, and similarly for 7.
Inserting Eqs. (A44a) and (A44b), and using the relation for
Y1, Eq. (A42) is written as

Gt = -[GSTTGy + G5 TG (A44b)

J. = _Te,\ Trfo (GESF + G54 — RGs - £5G2)].
(A45)

Now the lesser functions in Eq. (A45) can be written in
terms of retarded, advanced, and Keldysh components as
G5 =G - GE+G{land 5 = [z —=F + 241 In
the calculation of nonequilibrium quantities, only the Keldysh
component is important [18], so J; is given by

J = _Tek g[a(Gng +G{Zf - 2fG§ - 57 GY)].

(A46)

The above Eq. (A46) is written in coordinate representation
and the product of two functions implies integration over the
internal coordinates. Equation (A46) can be written in terms
of the modified Wigner transformed functions in which the
transformation of the product of two functions will be given
by Eq. (A16). So, in terms of the modified Wigner transformed
functions, Js can be written as

de d*p Tr Rk . K
JSZ—(,’)\/ZW ?[G(GSET +GS ET
-2fG§ —=fGY)]. (A47)

Using Egs. (A22), (A27), (A30), and (A34), the above
Eq. (A47) can be written in terms of the quasiclassical Green’s

functions as

eNg do Tr
Ji = T/df w2

2¢¢ | 1
<[ (5 sl x|
(A48)

It is clear from Eq. (A48) that the spin current density across
the interface will be obtained from taking the trace over the spin
Pauli matrices of the tunneling term, i.e., the last two terms in
Eq. (A38). Now, using the ansatz for g& and g, and using the
definitions for w and J.. from Eqgs. (A32) and (A37), we get the
same equation for Jg, i.e., Eq. (15) in the main text.

APPENDIX B: SOLUTION OF DIFFUSION EQUATION
IN THE TI WITH DIFFERENT BOUNDARY
CONDITIONS IN THE METAL

We consider a one-dimensional problem to solve the dif-
fusion equation in the TI analytically. The transport direction
is taken to be the x direction, while we consider an in-plane
spin electrochemical potential in the metal with only the y
component of spin, i.e., u = (. Then the charge current
density on the TI surface is given by J. = J.X, and the
spin current density across the interface will have only y
component, i.e., J = J;3. The continuity equation in the TI,
i.e., Eq. (12), becomes

2
am+@k=;@%m—m, (B1)
t

and from Eq. (13) we obtain the charge current density J. in
the TI to be

1 Vit T Uy
Jo = -5, Npvp— =2 |, (B2
¢ (l—iwrtr)|: 5 e Neop ool (B2)
Then, from Eq. (15), the spin current density J is given by
2 :
J = —(ezNFvFﬂ - JC>. (B3)
UF‘C[ 2

We assume 11 and 1, in the metal to be homogeneous. In the
steady state, Eqs. (B1) and (B2) give the differential equation
d2n’ = n'/1? for the new variable n’ = (n — ¢*>Ng/10), where
the characteristic length / is given by / = vg./77;/2. The so-
lution to ' is given by n'(x) = A e*/! + A_e /! In the case
of a short circuit between the two ends of the surface of the
TI, we apply the boundary condition that the electrochemical
potential in the T at the two ends are the same, i.e.,n'(+L/2) =
n'(—L/2), and the current going into the TI surface is the same
as the current coming out of the TI surface (as there is no current
leaking out through the metal), i.e., J.(+L/2) = J.(—L/2).
The condition n'(+L/2) =n'(—L/2) gives Ay = A_ = A
and the current density J. = —(vity/2D)A(e*/! — e/ + Iy,
where Jy = €? Npvpty /iy /27 Now the condition Jo(+L/2) =
Jo(—L/2) is true only if A =0, i.e., n’ =0 which implies
n = e>Nguo. So the charge density n in the TI becomes
homogeneous and balances any charge in the metal, and the
charge current density J. in the TI becomes homogeneous too
and is given by J. = Jy. As both u, and J. are homogeneous,
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so the current density J; through the interface also becomes
homogeneous and is given by Js = Jo/VrTEE.

Next we assume (¢ in the metal and J; across the interface
to be homogeneous. From Egs. (B1)- (B3), we obtain a
new differential equation 82n’ = n’/1"?, where the length /'
is given by I’ = 2/%tgp /T [T is given by Eq. (19)]. The
solution to n’ will be given by n'(x) = A /! + A_e=/". As
discussed in the previous paragraph, for the short circuit case
the boundary condition n'(+L/2) = n'(—L/2) gives A, =
A_ = A and the current density J. = —(v%rIEE/l’)A(ex/l’ —

e—/1 ') + vpTige Js. As the spin current density across the inter-
face is assumed to be homogeneous, the condition J.(+L/2) =
Jo.(—L/2) is true only if A = 0, which implies n = e*> N,
so the charge density n is homogeneous. Then, the current
density J. in the TI becomes homogeneous and is given by
Jo = vpTigpJs. As both J; and Jg are homogeneous, the spin
electrochemical potential 1, in the metal turns out to be
constant as well. Hence, either with a homogeneous condition
for ., or Js, the solution for the short circuit condition gives a
homogeneous solution for n and J; in the TL
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