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Symmetry and localization properties of defect modes in magnonic superlattices
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Symmetry and localization properties of defect modes of a one-dimensional bicomponent magnonic superlattice
are theoretically studied. The magnonic superlattice can be seen as a periodic array of nanostripes, where stripes
with different widths, termed defect stripes, are periodically introduced. By controlling the geometry of the
defect stripes, a transition from dispersive to practically flat spin-wave defect modes can be observed inside
the magnonic band gaps. It is shown that the spin-wave profile of the defect modes can be either symmetric or
antisymmetric, depending on the geometry of the defect. Due to the localized character of the defect modes, a
particular magnonic superlattice is proposed wherein the excitation of both symmetric and antisymmetric flat
magnonic modes is enabled at the same time. Also, it is demonstrated that the relative frequency position of
the antisymmetric mode inside the band gap does not significantly change with the application of an external
field, while the symmetric modes move to the edges of the frequency band gaps. The results are complemented
by numerical simulations, where excellent agreement is observed between the methods. The proposed theory
allows exploring different ways to control the dynamic properties of the defect modes in metamaterial magnonic
superlattices, which can be useful for applications on multifunctional microwave devices operating over a broad

frequency range.
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I. INTRODUCTION

The dynamic properties of spin waves (SWs) in magnonic
devices with artificial periodic modulation of the magnetic or
geometrical parameters have been a growing research area
in recent years [1-10]. The magnetic metameterials called
magnonic crystals (MCs) have been widely studied since
their excitation spectrum presents magnonic band gaps (BGs),
which can be controlled by external magnetic fields [11-13].
These systems can also be created by an artificial modulation
of the magnetic properties [14—17] or by the modification of
the film geometry [18-28]. The magnonic BGs are strongly
dependent on the geometrical parameters of the periodic lattice,
whose spatial range usually lies in hundreds of nanometers.
Around these gaps, SWs can be excited in well-defined allowed
frequency bands, where, depending on the wave vector, the
waves may have a standing or a propagating character. In par-
ticular, the standing SWs occur at the borders of the Brillouin
zones, and therefore, such waves can be excited only at some
specific wave vectors. This characteristic makes it difficult to
channel or guide the spin waves along specific regions, which
is the key for applications in magnonic waveguides [10,13] and
tunable narrow passband SW filters [29,30].

In the field of photonic crystals, it is well known that
the incorporation of a local defect breaks the translational
symmetry and electromagnetic modes can appear within the
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forbidden band gaps [31-34]. For instance, the addition of
extra dielectric material in one of the unit cells gives rise
to modes within the BGs that behave like a donor atom
in a semiconductor, while the removal of dielectric material
from the crystal produces acceptorlike modes [31]. This extra
degree of freedom allows manipulating and controlling the
properties of light in dielectric metamaterials. Indeed, the
defect-induced phenomena in photonic crystals have been
applied for controlling spontaneous light emission [35-37] and
trapping optical pulses [38]. In analogy to photonic crystals, it
has also been demonstrated that the controlled introduction of
periodic defects in magnonic crystals induces defect modes
inside the BGs that can beneficially enrich the SW band
structure of the magnetic metamaterial [29,30]. Here, the
periodic lattice induces translational symmetry to the SWs that
can be broken by a controlled introduction of periodic defects.
That is, a change in the periodic structure redefines the unit cell
in the same way as in a crystal with a complex unit cell. This
system can be seen as a magnonic superlattice (MSL), which
consists of a periodic array of magnonic supercells.

The emergence of defect modes located within the band
gap has been predicted [39—41] and was recently observed ex-
perimentally in magnonic superlattices [29,30]. Multilayered
ferromagnetic structures with variations in the magnetization,
uniaxial anisotropy, and/or thicknesses have been theoreti-
cally studied in backward volume (BV) geometry [39-41]. A

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.174404&domain=pdf&date_stamp=2018-05-07
https://doi.org/10.1103/PhysRevB.97.174404

R. A. GALLARDO et al.

PHYSICAL REVIEW B 97, 174404 (2018)

theoretical analysis of short-wavelength perturbations in two-
dimensional MCs with point defects was performed by Yang
et al. [42-45], who investigated different configurations of the
point defects. Defect-induced phenomena in one-dimensional
bicomponent MCs with structural defects were more recently
investigated by Brillouin light scattering (BLS) measurements
and via numerical simulations [29,30], where arrays of 250-
nm-wide permalloy (Py) stripes were fabricated in such a way
that every tenth wire is a defect wire with a larger width
ranging from 300 to 500 nm. Since the recent experiments
were performed in the Damon-Eshbach (DE) geometry at small
wave vectors (around 10 wm™"), the dynamic dipolar contri-
bution inevitably must be taken into account. Nevertheless,
there is no theoretical description that considers the dynamic
magnetodipolar fields, and hence, the current measurements
have been compared only with micromagnetic and finite-
element simulations [29,30,46]. Furthermore, the analysis of
an arbitrary angle of the magnetization with respect to the
symmetry axes of the crystal has not been addressed so far.
In addition, the evolution of the defect modes as a function of
the external field has not been deeply explored either. These
aspects have clearly hindered a complete study of the dynamic
properties on MSL structures so far since there is no model
available that considers a general way to introduce arbitrary
arrays of periodic defects on the MC.

In this paper, the symmetry and localization properties of
defect modes within one-dimensional bicomponent magnonic
superlattices are theoretically addressed and complemented
with micromagnetic simulations. It is shown that by controlling
the lattice parameter of the defect stripes, a transition from
slight to almost null dispersion of the defect modes is observed.
In addition, by changing the width of the defect stripes the
nature of the symmetry as well as the frequency of the defect
modes can be modified. It is also demonstrated that the external
field can change the relative position of the symmetric modes
with respect to the BG, while the antisymmetric ones remain at
the same relative frequency position. The possibility of exciting
both symmetric and antisymmetric defect modes at the same
time is also proposed, which allows for observing the defect
modes in a straightforward way with ferromagnetic resonance
(FMR) measurements.

II. THEORETICAL DESCRIPTION

By combining a defect-free lattice with a periodic array of
stripes with different widths, a one-dimensional bicomponent
magnonic superlattice is formed, as shown in Fig. 1. Here, the
lattice parameter of the defect-free crystal is a, while the lattice
parameter of the defect stripes is va. Here, v = 1,2,3, ...
is introduced to locate a defective wire at each v repetition,
allowing for a general description of the MSL.

The dynamics of the magnetic system is described by
the Landau-Lifshitz (LL) equation M(r; 1) = —yM(r; 1) X
H®(r; ), where y is the absolute value of the gyromagnetic
ratio, M(r; ¢) is the magnetization, and H®(r; ¢) is the effective
field. For small magnetization deviations around the equilib-
rium state, magnetization and effective field can be written as
M(r; 1) = M(r)Z + m(r; 1) and He(r; 1) = H(r) + he(r; 1),
respectively. Here, M (r) is the saturation magnetization, Z
represents the equilibrium orientation of the magnetization,
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FIG. 1. Geometry of the one-dimensional bicomponent magnonic
superlattice composed of ferromagnetic materials A and B. The
lattice parameter of the periodic array of nanostripes is a, while va
corresponds to the lattice parameter of the defect stripes, where v
represents the number of lattice repetitions that are necessary to form
the magnonic superlattice. The width of the nanostripes (defects) is £
(€ 4 24). The spin waves are assumed to propagate in the z direction,
while the equilibrium magnetization (external field) forms an angle
@ (¢n) with the z axis. The zoom denotes the unit cell of the MSL
structure.

and m(r; 1) = mx(r; )X + my(r;0)Y corresponds to the dy-
namic magnetization. In addition, H*(r) is the static part of
the effective field, and h®(r; ¢) is the time-dependent part. Now,
assuming a harmonic time dependence, m(r;t) = m(r)e'”",
and neglecting the second-order terms in m(r), the LL equation
can be written as

i(w/y)mx(r) = —my(r)HZ (r) + M(r)h$(r) (D
and
i(w/y)my(r) = my(r)H(r) — My(r)h(r), 2

with w being the angular frequency. Note that in Egs. (1)
and (2), the equilibrium conditions Ms(r)H)?o(r) =0 and
Ms(r)H§°(r) = 0 have been considered. Now, the effective
field is given by He(r) = H 4+ H®(r) + HY(r), where H is
the external field, H*(r) is the exchange field, and H(r) is
the dipolar field. These fields are detailed in Appendix A.
According to Bloch’s theorem, the dynamic magnetization
components are expanded into Fourier series as m(r) =
Y ¢ m(G)e¢TOT where G = Gz denotes the reciprocal
lattice vector. Here, G, = (27/va)n, where n and v are
integers. The saturation magnetization and exchange length are
respectively given by M (r) =) M(G)e'CT and Aey(r) =
ZG Lex(G)e'CT. Here, it is assumed that the leading material
contrasts are associated with the saturation magnetization and
exchange stiffness. Nevertheless, a contrast in anisotropies or
the intrinsic damping can also modify the band structure of the
spin waves as well as their relaxation time. A detailed analysis
of these cases is beyond the scope of this paper, and in the
following the study will be limited to variations in M(r) and
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FIG. 2. In (a)—(e) the dispersion of a superlattice as given by v = 5 is shown, while in (f)—(j) the case with v = 10 is depicted. The parameter
4 has been varied from —¢/2 up to £/2 in such a way that the width (¢ + 26) of the defects ranges from zero to a. The illustration above each
plot schematically shows the unit cell of the magnonic superlattice structure, whereas the gray zone depicts the first band gap. In (f) and (j) the
color code represents the numerical simulations, where the brightest color indicates a maximum of the response. This response is given in log
scale and corresponds to $m = v/8m? + (Smi + 6m§, where § refers to the subtraction of the ground state before the fast Fourier transform.

Aex(r), which provide information capable of reproducing the
measured band structure [29,30] but not the lifetime of the
modes.

Now, by including the effective fields in Egs. (1) and (2),
the LL equation can be converted into the following eigenvalue
problem [1,5]:

3

where m{, = [mx(G1),....mx(Gn),my(G),...,my(Gy)]
is the eigenvector and A is given by

5 AXX XXy
A= AYX

AYY
By using standard numerical methods and a convergence test
to check the reliability of the results, the eigenvalues and
eigenvectors of Eq. (3) can be obtained. The matrix elements
are given in Appendix A.

Amg = i(w/y) mg,

“

III. MICROMAGNETIC SIMULATIONS

Micromagnetic simulations were performed with the GPU-
accelerated open-source code MUMAX? [47]. The bicomponent
magnonic crystal was modeled asa20nm x 30nm x 100 um
stripe. Periodic boundary conditions were applied to regain
the thin-film nature of the system. The stripe was discretized
into 4 x 1 x 16384 cells, which results in a cell size of
5 x 30 x 6.1 nm?>. The material parameters in the simulation
were chosen as indicated in Sec. IV. In addition, a Gilbert
damping value of 0.01 was chosen. Two kinds of simulations
were performed for the magnonic supercell. First, the SW
dispersion relation was calculated by applying a sinc pulse in
time and space [48]. In addition to the approach in Ref. [48], the

sinc pulse was shifted in space by 30.5 nm with respect to the
unit cell to also excite the totally antisymmetric SW modes. The
resulting SW dispersion relations were obtained by performing
a two-dimensional fast Fourier transform for every line of cells
in the z direction. Furthermore, the FMR response of the system
has been simulated. Therefore, the time evolution of the system
excited by a sinc pulse in the time domain was recorded [49].
To excite the antisymmetric SW modes as well, an additional
linear offset was added. The SW frequencies were extracted as
the summation of the spatial fast Fourier transform in the time
domain within each cell.

IV. RESULTS AND DISCUSSION

To study the dynamic properties of the system, standard
values of cobalt and permalloy are employed [29]. Namely,
the magnetic properties of material A resemble those of
permalloy (NigoFey), which are M = 730 kA/m and AL =
1.1 x 10~!" J/m. On the other hand, the magnetic properties
of material B correspond to cobalt, i.e., M® = 1100 kA/m
and AB =2.5 x 107! J/m. Here, A is the exchange con-

stant, and hence, Aex = /2Acx/4m M? is the exchange length.
For both materials, an effective gyromagnetic ratio of y =
0.0185556 GHz/G and thickness d = 30 nm are used. Also,
the lattice parameter of the defect-free crystal is @ = 500 nm,
and its width is £ = 250 nm. At 200 reciprocal lattice vectors,
a convergence of the numerical solutions of Eq. (3) is reached.

Figure 2 shows the SW dispersion of MSLs created by
v =5 [Figs. 2(a)-2(e)] and v = 10 [Figs. 2(f)-2(j)] in the
Damon-Eshbach geometry at H = 0. Here, the equilibrium
magnetization is given by ¢ = /2, and the SW propagation
is along the z axis. The parameter § has been varied from —¢/2
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FIG. 3. (a) The antisymmetric defect mode evaluated at 6 = £/2
forv = 3,5, and 10. (b) Zoom of the dispersion around one boundary
of the first Brillouin zone is shown. (c) The oscillation amplitude A
as a function of v.

up to £/2 in such a way that the width (¢ + 24) ranges from
zero to a. In both cases, v =5 and v = 10, a practically flat
defect mode labeled as antisymmetric (AS) moves from the
high-frequency region into the first BG when § > 0. As §
increases, this mode moves into the band gap and becomes
localized around the center of the gap at § = £/2. Conversely,
if § < 0, the symmetric (S) mode at the low-frequency edge
of the first BG enters into the magnonic BG and becomes
localized close to the center of the gap at § = —¢/2. Once
both modes, S and AS, are located inside the BG, they are
characterized by a nearly flat dispersion. Overall, one can see
that at higher values of v the dispersion of the modes becomes
flatter. Note that the case shown in Fig. 2(j) coincides with the
system measured in Ref. [29]. Indeed, all parameters used in
this paper are the same. Therefore, by comparing Fig. 3(b) of
Ref. [29] with Fig. 2(j), one obtains excellent agreement be-
tween them. Figures 2(f) and 2(j) show a comparison between
the micromagnetic simulations and the theoretical results.
Overall, excellent agreement is reached between the methods,
which corroborates the validity of the theoretical model. In the
case v = 10 depicted in Figs. 2(f)-2(j), it is clear that some
defect modes also appear in the second BG. Nevertheless, the
behavior of these modes does not have a clear dependence on
the geometrical parameter of the modified stripe. For instance,
at § > 0O they are localized within the second band gap, while
at 6 < 0 the defect modes are localized around the second
band-gap edges. In what follows, the results are focused only
on the defect modes localized within the first band gap.

On the other hand, it is possible to see that the defect modes
always reveal a periodic dispersion with finite oscillation
amplitude. Nonetheless, this amplitude decreases dramatically
as the lattice parameter of the MSL va increases. This is
depicted in Fig. 3(a), where the cases v =3, 5, and 10 are
shown. One can observe that the position of the defect modes
is not significantly affected by v; nevertheless, the oscillation
amplitude A [defined in Fig. 3(a)] and the number of peaks
are clearly dependent on v. Thus, at v = 10, for instance, the
mode inside the BG seems to have no dispersion, which is in
agreement with recent BLS experiments and micromagnetic
simulations [29,30]. Figure 3(b) shows a zoom of Fig. 3(a)
around one boundary of the first Brillouin zone (k, = 7 /a),
where a finite oscillation amplitude A f is observed. The behav-
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FIG. 4. Defect mode for different values of v. In (a) the case
8 = —£/2 is depicted, where the SW excitation exhibits a symmetric
profile around the modified stripes, while in (b) an antisymmetric SW
profile is observed for § = €/2. The vertical dashed (dot-dashed) line
depicts the unit cell for v =5 (v = 3).

ior of A as a function of v is illustrated in Fig. 3(c), where the
oscillation amplitude decreases exponentially as v increases.

The spatial spin-wave profiles of the defect modes located
within the first band gap, obtained from the in-plane dynamic
component my, are depicted in Fig. 4 for 6 = ££/2 and v =
3, 5, and 10. The vertical dash-dotted (dashed) line depicts
the unit cell for v = 3 (v = 5). An important conclusion from
Fig. 4 is that in addition to the reported antisymmetric defect
states in Refs. [29,30], the MSL can be tuned by modifying
the width of the defect stripe in such a way that the nature
of the defect mode is either symmetric or antisymmetric. For
instance, if § < 0, the mode is symmetric, as shown Fig. 4(a),
whereas it is antisymmetric when § > 0 [see Fig. 4(b)]. Note
that these symmetry properties are valid for other kinds of
magnetic materials as long as the defect stripe corresponds to
the one with lower saturation magnetization since, if materials
A and B are exchanged, these symmetry properties are also
reversed (not shown). On the other hand, unlike the defect
modes, where the excitation is mainly located in the defect
zone, the branches at the band-gap edges show an extended
character in such a way that these branches are excited in the
entire unit supercell (see Ref. [29] for details).

From Fig. 4 it is easy to see that the SW profile of the
defect modes decreases quickly as z increases and this effect is
enhanced as v increases. Thus, for v = 10, the SW excitation is
almost zero at z = £5a. This localization of the defect mode
allows implementing the following: If the width of the fifth
stripe (localized at z = 45a) in the lattice with v = 10 is
geometrically modified, both the frequency and localization of
the defect mode obviously should not change because the area
around z = £5aisirrelevant for the dynamics of both S and AS
modes. To corroborate this behavior, one may employ the case
v = 10 with § > 0 in such a way to excite the AS mode and at
the same time modify the width of the fifth stripe by changing
¢ — £+ 28" (with & < 0) in order to excite simultaneously
both S and AS modes inside the magnonic band gap. The
calculation of a superlattice with two alternating widths £ + 2§
and € + 28 for each fifth stripe can be implemented in the
theory by replacing the term cos(n) sin (n£/10a) in Eq. (B3)
with cos(nm)sin [nw (€ 4+ 28')/10a] in such a way that §
modifies the width of the stripe located at z = j x 10a and
8’ modifies the width of the stripe in z = (j + 1/2)10a, with
j =0,1,2,3,.... In Fig. 5 such a superlattice structure with
two different defects characterized by § = ¢/2 and §' = —£/2
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FIG. 5. In (a) a superlattice structure with v = 10, § = €¢/2 and
8" = —£/2 is depicted, while (b) shows the dynamic magnetization
component mx of both S and AS modes.

is shown. As mentioned above, neither the frequency nor the
localization of S and AS modes is modified [see Figs. 2(f)
and 2(j)]. The interesting feature of this kind of system is that
clearly uncoupled symmetric and antisymmetric defect modes
may be simultaneously excited and evolve from the upper and
lower boundaries of the band gap, respectively, as § and &’
increase in magnitude.

In Fig. 6(a) the evolution of the S and AS modes for
a MSL with two different kinds of defects is shown as a
function of the magnitude of § and &', where it is assumed
that § > 0 and 8’ < 0. Figs. 6(b)-6(c) show the simulated
and calculated dispersions for two specific values of § and
|8], 60 and 80 nm. Figures 6(d)-6(e) show the simulated and
calculated dispersions for § = |§'| = 100 and 125 nm. Note
that there is a crossing point close to § = |§’| = 115 nm where
both S and AS modes have the same frequency. Then, for
the case § = |8’'| = 125 nm, the S mode has a slightly larger
frequency than the AS mode, as opposed to the cases where
8 = |8’] < 115 nm. One can see in Figs. 5 and 6 that two
modes appear within the frequency BG. This is related to
the incorporation of two defect stripes in the unit supercell
of the superlattice [see Fig. 5(b)]. Hence, it is expected that an
arbitrary distribution of defect stripes in the unit supercell of
the superlattice will induce a broad band consisting of multiple
nearly flat modes within the band gap.

The proposed MSL with two different defects would be
especially interesting for FMR measurements since the nature
of the external excitation in typical FMR setups allows us to
excite only the symmetric modes, and therefore, under specific
conditions the S mode should be detected at k, = 0. The
applied field dependence of the S and AS modes is shown in
Fig. 7(a) at the FMR limit (k, = 0). Here, the low-frequency
mode is plotted together with the S and AS modes, where
one notices that the symmetric mode is clearly influenced by
the field in such a way that at higher values of H the mode
moves towards the high-frequency edge of the band gap (gray
zone). Nevertheless, the AS mode remains almost in the same
relative frequency position with respect to the BG. Figures 7(b)
and 7(c) show the SW profiles for the AS and S modes,
respectively. Clearly, the profile of the AS modes remains
constant as the external field increases, whereas the S mode is
notably modified. Since the dynamic part of the Zeeman energy
density can be expressed as €, = —(H/2M,)(m% + m3), it
is expected that the AS modes will not have an additional
dynamic contribution in €, since the term mg( + m2Y is not
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FIG. 6. (a) Symmetric and antisymmetric modes as a function of
8 and &’ (note that for 8’ the magnitude is plotted as §’ < 0). (b)—(e)
The simulated and theoretically calculated SW dispersion for some
values of § and |§'].

modified. Nevertheless, since for the symmetric mode the
dynamic component of the magnetization my changes with
the field, its frequency within the gap is influenced by the
external field. Therefore, it is demonstrated that the symmetric
modes have alimited range of field where they can be observed,
since when these modes reach the band-gap edges, they are
extended along the crystal, and therefore, they can hardly be
detected [29]. On the other hand, once the antisymmetric mode
is excited, it should be observable in a wider range of fields.
The same behavior of the defect modes as a function of the
field value is valid for different magnitudes of § (not shown).
In the theoretical approach it has been assumed that the
damping parameter is zero since this parameter does not sig-
nificantly affect the band structure (real part of the frequency)
of the modes. Nevertheless, the damping parameter is finite
and different in both materials in such a way that the lifetime
of the spin waves is dependent on the propagation direction of
the waves [50,51]. Therefore, while the real part of the defect
modes is nearly flat, the imaginary part should be dependent
on the wave vector. Nonetheless, a quantitative analysis of
the relaxation processes in magnonic superlattices is beyond
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FIG. 7. (a) Evolution of the symmetric (dashed line) and anti-
symmetric (solid line) modes as a function of the external field for
k., = 0. Here, the S mode is excited with § = —£/2, and the AS mode
is excited with § = £/2. The gray zone depicts the first band gap,
and the (blue) dotted line indicates the low-frequency FMR mode.
(b) and (c) The SW profiles for the AS and S mode, respectively,
clearly showing that only the S mode is influenced by the field.

the scope of this study since here, the main focus is the band
structure of magnonic superlattices.

V. FINAL REMARKS

The dynamic characteristics of one-dimensional bicompo-
nent magnonic superlattices have been theoretically studied
by taking both the dipolar and exchange interactions into
account. Symmetry, localization, and the field-dependent prop-
erties of the nearly flat defect modes have been theoretically
addressed and corroborated with micromagnetic simulations.
Itis found that by controlling the width of the modified stripe of
the magnonic superlattice either symmetric or antisymmetric
modes can be excited. Also, by modifying the separation
between defects, a transition from dispersive to practically
flat spin-wave branches is observed inside the magnonic band
gaps. Due to the localization features of the defect modes,
a system was proposed that consists of a superlattice with
wide and narrow stripelike defects, where it is possible to
observe uncoupled symmetric and antisymmetric modes at the
same time. It was also demonstrated that the symmetric modes
have a limited range of fields where they can be observed,
while the antisymmetric ones should be externally detected
in a wider range of external fields. The dynamic properties
observed in this work can be used to engineer the band
structure of magnonic superlattice systems since the controlled
introduction of defects provides additional degrees of freedom,

which can be of fundamental importance for technological
applications in magnonic crystal-based devices.
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APPENDIX A: EFFECTIVE FIELDS AND MATRIX
ELEMENTS

For the periodic structure shown in Fig. 1, the static
exchange field is given by

HFO(0) = ~47 ) G - (G + G)M(G)hex(G) e+,
G.G’

(AD)

where the other two static components are zero (H;’(XO =
HP = 0). On the other hand, the dynamic exchange com-
ponents are

W y() = =47 Y (G +K) - (G + G + K)[Aex(G)]?
G,G’

i(G'+G+k)r

X mey(G)e (A2)

According to Fig. 1, the external applied field is Hy =
H cos(gn — @) and HY = H sin(gn, — @), where ¢y, (¢) is the
angle between the external field (equilibrium magnetization)
and the z axis. On the other hand, the dynamic components of
the dipolar field are

() ==Y my(G)Z (G ke GO (A3)
G
and
doy 2| SGK) — T e
hS(r) = 4z XG:mX(G)S(G) [ G kP i|e . (A4

Here, it has been defined that £(G) = (G, + k) sin y and
2 sinh[|G + k|d/2]e—|G+k\d/2

G.k) = A5

2(G.k) G L kid (AS5)
Also, the Z component of the static dipolar field is
1-¢(G,0) ;

g( )elG‘f, (A6)

HY'(r) = —47 Y M(G)x(G)’ >
= G

where x(G) = G, cos ¢.
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By introducing the effective fields in the dynamic equation of motion, the submatrices in Eq. (4) are given by

AfG =Ale =0, (A7a)
AGle = —H cos(¢ — gn)dc e + 4w M(G — G’)[X(G - G’)Z% - C(G’,k)}
—4m ) MG~ GG +K) - (6" +K) ~ (G~ G- (G~ G)][hex(G" — G)P, (A7b)
G//
/ / 1 _é‘(G_G/’O) / ;(G/’k)_ 1
Agle = H cos(p — )b o — 4 M(G - G ){X(G ~G& s ep THE ){W“
+4m ) MG~ GG +K) - (G +K) — (G~ G) - (G~ G)[hex(G" — G, (ATc)

[eld

APPENDIX B: FOURIER COEFFICIENT OF ONE-DIMENSIONAL MAGNONIC SUPERLATTICES

For a general one-dimensional superlattice, the Fourier coefficient of the saturation magnetization can be obtained by analyzing
the one-dimensional periodic structure. Thus, according to Fig. 1, it is straightforward to see that

1 _va—t _ v=Datt _ v=2a—t
2 PV 2 iV 2 i3V
M(G)) = — | M2 e '9dz + MP e Oridz + M} e '9rtdz
2va v _va—t _ v+t
2 2 2
€428 va—t va
2 i 2 e 2
+ -~+MSA/ e 'GnZdz+...+M?/ e Ondz + M;‘\/ e ’G"Zdzj| (B1)
428 h (w=2)a+t : va—t
2 2 2

if v is an even number. On the other hand, if v is an odd number, the coefficient is calculated as

_ (=Da—¢t _ w=3a+t

(v=Da+¢
1 T2 o 2 o 2 v,
M((G)) = —| M e 'O%dz + M} ez + M e~z
2va > v ] =+t > ] w=na—t
2 2 2

426 w=Da+t va
Y L R Py V2 / T eiOigr + MP / i e—"Gr‘iZdz}. (B2)
— (vflz)ufl (v—12)u+z
Then, by carrying out the appropriate integration of Eqs. (B1) and (B2), the result can be readily generalized as
i M» — MB C+268 14
my(Gy) = pp2nm) M = My {sin [LH] + W(nv)sin (ﬂ) } (B3)
nmw nw va va
where
v s 1
W(n,v) = cos(nm)cos (v£> —2+4+2 Z {cos [M] cos? [(j + 1)£] cos’ [(v + 1)£]
2 o v 2 2
j—2
+ cos M cos’ (]z) cos’ (v£> . (B4)
v 2 2

Here, v represents the number of lattice repetitions that are necessary to form the MSL. A similar structure can be used for
the exchange length A (G,). Therefore, by choosing § and v any one-dimensional bicomponent magnonic superlattice can be
modeled.
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