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Anomalous transport in the Aubry-André-Harper model in isolated and open systems
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We study the high-temperature transport behavior of the Aubry-André-Harper (AAH) model, both in an isolated
thermodynamic limit and in an open system. At the critical point of the AAH model, we find hints of superdiffusive
behavior from the scaling of spread of an initially localized wave packet. On the other hand, when connected to
two baths with different chemical potentials at the two ends, we find that the critical point shows clear subdiffusive
scaling of current with system size. We provide an explanation for this by showing that the current scaling with
system size is entirely governed by the behavior of the single-particle eigenfunctions at the boundary sites where
the baths are attached. We also look at the particle density profile in the nonequilibrium steady state of the open
system when the two baths are at different chemical potentials. We find that the particle density profile has
distinctly different behavior in the delocalized, critical, and localized phases of the AAH model.
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I. INTRODUCTION

The absence of diffusion in noninteracting systems due to
the presence of disorder is referred to as Anderson localization,
which has been theoretically studied and experimentally ob-
served in a wide class of systems, e.g., for electrons, photons,
cold atoms, and sound waves [1–3]. The effect of localization
is strongest in one dimension where it is known that a small
amount of disorder localizes all states. If an interaction is
switched on in such a localized system, a transition from the
many-body localized (MBL) phase to delocalized phase can
occur. The physics of the system close to the transition is not
well understood and has received a lot of attention lately. One
of the most interesting results of recent investigations is that
close to the transition, one has Griffiths effects, leading to slow
dynamics and subdiffusive transport [4–7].

An interesting class of models emerges when “true” dis-
order is replaced by a quasiperiodic potential. A paradigmatic
example of such a system is the so-called Aubry-André-Harper
(AAH) model [8,9]. This is a one-dimensional lattice model
of noninteracting particles (bosons or fermions) in an incom-
mensurate potential. For this system, one finds a remarkable
transition from all energy eigenstates being localized to all
states being extended as one decreases the strength of the
potential. This transition is mediated by a critical point [8].
Unlike the MBL transition, this transition occurs in the absence
of interactions. Also, Griffiths physics is not expected at this
critical point because the potential is spatially correlated. Early
studies found interesting features at the critical point, such as
fractal patterns in the spectrum and the eigenstates [10–12]. It
has also been extensively studied in the mathematical literature
[13,14]. The AAH model and its various generalizations have
received a lot of interest recently, both theoretically [15–36]
and experimentally [37–43].

Although studies of wave-packet spreading in a closed
system have shown hints of anomalous diffusion (as opposed
to normal diffusion) behavior at the critical point [44–47], the

exact nature of transport at the critical point has remained
an open question. In the context of MBL, it has become
most relevant because recent experiments investigating MBL
physics are based on the AAH model with interactions, rather
than a “truly” disordered system [37–40,42]. There has also
been a lot of recent interest in disordered interacting systems
connected to baths [38,48–57]. However, there have been only
few studies on the open AAH system [23,30]. In particular,
results on the nonlinear response of the system to external
thermal or chemical potential biases are still lacking.

In this paper, we study the transport properties of the
AAH model both in the isolated thermodynamic limit and
in an open system. In the isolated thermodynamic limit we
look at the spread of an initially localized wave packet and
the conductivity calculated by the Green-Kubo formalism
via numerical exact diagonalization. At the critical point, the
integrated current autocorrelation appearing in the Green-
Kubo conductivity seems to saturate to a constant value but
with large fluctuations. Correspondingly, we find that the
second moment for the spread of the wave packet goes as
∼t , and correctly gives a constant value in the Green-Kubo
computation. However, we find that the tails of the wave packet
spread superdiffusively. As a result, at very long times, the
moments show a crossover from diffusive to superdiffusive
behavior. This crossover occurs at shorter times for higher
moments. A careful quantitative investigation shows that the
time scales required to observe this crossover in the second
moment are beyond our current computational power. This
explains the normal-diffusive-like behavior of Green-Kubo
conductivity and suggests that eventually, at extremely long
times, the integrated current autocorrelation will diverge.

Next, we study the open system by connecting to two
baths at the two ends. The baths are modeled by quadratic
Hamiltonians with infinite degrees of freedom. We calculate
the nonequilibrium steady state (NESS) current and particle
density profile numerically exactly via the nonequilibrium
Green’s function (NEGF) approach. At the critical point,
we find clear subdiffusive scaling of current with system
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size, which is in sharp contrast to the properties of the
isolated thermodynamic system discussed above. We provide
an explanation for this by showing that the current scaling
with system size is entirely governed by the behavior of the
single-particle eigenfunctions at the boundary sites where the
baths are attached. We further show that the NESS particle
spatial density profile provides a real-space experimentally
measurable probe of the localized, critical, and delocalized
phases.

In Sec. II, we introduce the model, in Sec. III, we discuss the
formalism and the results for transport behavior of the isolated
system in the thermodynamic limit, in Sec. IV, we discuss the
formalism and the results for the open system NESS, and in
Sec. V, we give the conclusions.

II. MODEL

The AAH model is given by the Hamiltonian

HS =
N−1∑
r=1

(â†
r âr+1 + H.c.)+

N∑
r=1

2λ cos(2πbr + φ)â†
r âr , (1)

where b is an irrational number, φ is an arbitrary phase, and
âr correspond to fermionic (bosonic) annihilation operators
defined respectively on the rth lattice point of the system
of N sites. The hopping parameter has been set to 1, and
this is taken as the energy scale. When λ < 1, all the energy
eigenstates of this model are delocalized, and when λ > 1,
all the energy eigenstates are localized. λ = 1 is the critical
point. This holds true for any choice of irrational number b

and phase φ. The most popular choice for b is the golden
mean (

√
5 − 1)/2. However, in experiments and numerics all

numbers are essentially rational in a strict mathematical sense.
The way around is given by the fact that for a system of finite
size N , if b is taken as a rational number p/q with q > N ,
b remains “effectively irrational” and all the observed physics
of AAH model is retained. In recent experiments [37–39], the
physics of the AAH model has been explored by superimposing
a 532-nm optical lattice with a 738-nm one, making b =
532/738. For q < N , the system becomes delocalized. Even
though the choice of b is irrelevant for various interesting
universal features of the AAH model, the exact nature of
the plots depends on b. In this work, we have considered
the following choices of b: golden mean (

√
5 − 1)/2, silver

mean
√

2 − 1, and the rational number 532/738 used in the
experiments in Refs. [37–39]. Further, we perform an average
over the phase φ by numerically exactly integrating the final
results between 0 and 2π and dividing by 2π .

III. TRANSPORT IN THE ISOLATED SYSTEM IN THE
THERMODYNAMIC LIMIT

A. Formalism

We first look at the transport properties of the isolated
system in the thermodynamic limit. For this we directly
calculate the particle conductivity of the system using the
Green-Kubo formula. For this, we define

G(t) =
∫ β

0
dλ

N−1∑
p,q=1

〈Îp(−iλ)Îq(t)〉/N, (2)

where Îp = i(â†
pâp+1 − â

†
p+1âp), and 〈 · · · 〉 = Tr

(e−β(HS−μNS )/Z · · · ). NS = ∑
r â

†
r âr is the total number of

particles in the system, and Z = Tr(e−β(HS−μNS )). The con-
ductivity by the Green-Kubo formalism is given by

σGK = lim
τ→∞ lim

N→∞
DN (τ ), (3)

where

DN (τ ) =
∫ τ

0
G(t)dt. (4)

The order of limits in the Green-Kubo conductivity formula
is important and cannot be interchanged, and the formula is
strictly valid only for an infinite system size. But in numerics,
one will always have a finite size. To go about numerically
calculating the Green-Kubo conductivity, one has to look at
the behavior DN (τ ) for a given system size, for times before
the finite-size effects become substantial.

One can show that the Green-Kubo formula can be related
to the spread of correlations. We start with the mixing as-
sumption, expected to be valid in the thermodynamic limit.
This says that, given two arbitrary operators Q1 and Q2,
limt→∞〈Q1(t)Q2(0)〉 = limt→∞〈Q1(t)〉〈Q2〉. Under this as-
sumption, and time-translation and time-reversal symmetries,
the Green-Kubo formula can be simplified to the form

σGK = β lim
τ→∞ lim

N→∞

∫ τ

0
dt

N−1∑
p,q=1

Re(〈Îp(t)Îq(0)〉)/N. (5)

Starting from the continuity equation dn̂p

dt
= Îp − Îp−1, where

n̂p = â
†
pâp, it can be shown for the infinite-size system that

d

dτ

∞∑
x=−∞

x2〈n̂0(0)n̂x(τ )〉 = 2
∫ τ

0
dt

∞∑
x=−∞

〈Î0(0)Îx(t)〉, (6)

where we have used time-translation invariance as well as the
space-translation invariance. The space-translation invariance
is not present for our particular model in Eq. (1), but this is
restored for quantities averaged over φ. Now, using translation
invariance, it follows from Eqs. (5) and (6) that

σGK = lim
τ→∞

β

2

d

dτ
Re

( ∞∑
x=−∞

x2〈n̂0(0)n̂x(τ )〉
)

. (7)

Note that here the N → ∞ limit has already been taken before
while using Eq. (6). For normal diffusive transport,

mnn
2 (τ ) = Re

( ∞∑
x=−∞

x2〈n̂0(0)n̂x(τ )〉
)

= 2Dτ, (8)

for large τ . Thus, the Green-Kubo conductivity for normal
diffusive transport is given by

σGK = lim
τ→∞ lim

N→∞
DN (τ ) = βD. (9)

Hence, for normal diffusive transport, we expect that, for large
enough N , DN (τ ) will converge to this value as τ increases,
before finite-size effects become substantial.

In general, mnn
2 (t) ∼ t2β̃ . As seen above, β̃ = 0.5, for nor-

mal diffusive transport. For ballistic transport, β̃ = 1. If 0.5 <

β̃ < 1, transport is superdiffusive. For both superdiffusive and
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ballistic transports, as seen from Eqs. (7) and (8), the σGK

diverges. If 0 < β̃ < 0.5, the transport is subdiffusive, while
for a localized system, β̃ = 0. In both these cases, σGK is zero.
All cases other than the normal diffusive transport are broadly
classified as anomalous transport.

This brings us to the study of 〈n̂0(0)n̂x(τ )〉. In a very recent
paper [16], the spread of a similar quantity was studied to clas-
sify transport behavior for the AAH model with interactions.
Since our system is noninteracting, 〈n̂x(t)n̂0(0)〉 can be written
down in terms of the single-particle eigenfunctions. We shift
the origin to the site N/2 and define x = r − N/2. We
have â�(t) = ∑N

p=1 G(�,t |p,0)âp(0), where G(�,t |p,0) is the
single-particle Green’s function for the closed system. Let 	α,�

be the �th component of the single-particle eigenvector corre-
sponding to the single-particle energy eigenvalue εα . Thus,
â� = ∑N

α=1 	α,�
˜̂aα , where ˜̂aα are the annihilation operators in

the eigenbasis. Here, α is the eigenstate index and � is the site
index. Then, G(�,t |p,0) = ∑N

α=1 e−iεα t	α,�	α,p. In terms of
these, we have

C(x,t) =〈n̂x(t)n̂0(0)〉 − 〈n̂x〉〈n̂0〉

=
⎡
⎣ N∑

�,p=1

G∗(x + N/2,t |�,0)G(x + N/2,t |p,0)

×〈â†
�(0)âN/2(0)〉〈âp(0)â†

N/2(0)〉
⎤
⎦

=
N∑

α,ν=1

[
	α,x+N/2	ν,x+N/2	α,N/2	ν,N/2

×ei(εα−εν )t nF (εα)[1 − nF (εν)]
]
, (10)

where nF (ω) = [eβ(ω−μ) + 1]−1 is the Fermi distribution func-
tion.

Another related quantity that has been studied previously
[44–47] for the AAH model is the spread of a wave packet. Let
the wave packet ψr (t) be initially localized at the site N/2 of
the lattice. It evolves according to the Schrödinger equation

i∂ψr/∂t = ψr+1(t) + ψr−1(t) + 2λ cos(2πbr + φ)ψr (t).

(11)

We look at the probability P (x,t) = |ψx(t)|2, and its moments

m2p(t) =
N/2−1∑

x=−N/2

(x − 〈x〉)2pP (x,t), (12)

where 〈x〉 = ∑N/2−1
x=−N/2 xP (x,t) is the mean. In terms of single-

particle wave functions, P (x,t) is given by

P (x,t) = |G(x + N/2,t |N/2,0)|2

=
N∑

α,ν=1

	α,x+N/2	ν,x+N/2	α,N/2	ν,N/2e
i(εα−εν )t .

(13)

This is different from C(x,t) [see Eq. (10)] by only the
factor nF (εα)(1 − nF (εν) inside the summation. At high

temperatures, nF (ω) ∼ 1/2. Thus, at high temperatures,

β → 0, C(x,t) → P (x,t)

4
. (14)

We are interested in the high-temperature transport. So the
scaling properties of C(x,t) and P (x,t), and hence of mnn

2 (t)
and m2(t), will be the same.

For normal diffusive spreading, P (x,t) has a Gaussian form,

P (x,t) = e− x2

16Dt /
√

16πDt , with this D the same as defined in
Eq. (8). In general, if P (x,t) [and thereby C(x,t)] scales as

P (x,t) ∼ (1/t β̃)f (x/t β̃), (15)

then [m2n(t)]1/n ∼ t2β̃ . The connection to different regimes
of transport as discussed before is immediate. However, there
may be cases where β̃ = 0.5, but P (x,t) is not Gaussian. Such
“non-Gaussian but diffusive” transport has been reported in
many classical systems [58–65]. This is also considered as
anomalous transport. Further, there may even be cases where
P (x,t) does not follow a particular scaling form. As shown in
Eq. (7), even then, the conductivity of the system depends only
the time scaling of the second moment, and the classification
of transport based on that is possible.

B. Results

With the above understanding, we numerically investigate
the transport behavior of the AAH model in the isolated ther-
modynamic limit via exact diagonalization. All our results are
given up to times before finite-size effects become substantial.
We are primarily interested in the transport properties of the
AAH model at the critical point (λ = 1). Figure 1 shows a
plot of DN (τ ) with τ for different system sizes, at the critical
point for b = √

2 − 1. We see that with increasing N , DN (τ )
converges to a curve which initially increases and then shows
large fluctuations about a constant mean value. Consistently,
mnn

2 (t) ∼ 0.288t , and the mean value is precisely given by
βD [see Eqs. (8) and (9)]. This seems to suggest that σGK

is finite in the thermodynamic limit, which is akin to a normal
“diffusive” system. However, the fluctuations do not decrease
on averaging over φ, and may indicate deviation from normal
diffusive transport.

To investigate more closely the nature of transport at the
critical point, we now look at the scaling of P (x,t). This
is shown in Fig. 2 for various choices of b. It is clear that
although m2(t) ∼ t , P (x,t) is non-Gaussian, and does not obey
a single scaling form. The bulk ofP (x,t) has the scaling form of
Eq. (15), with β̃ = 0.5 for all choices of b. However, the tails of
P (x,t) do not collapse under the same scaling. This deviation
from bulk scaling is most clearly seen for b = √

2 − 1. To
collapse the tails of P (x,t), one needs a superdiffusive scaling.
Thus we find

P (x,t) =
{

(1/
√

t)f1(x/
√

t), ∀|x| � z0
√

t,

(1/t β̃2 )f2(x/t β̃2 ), β̃2 > 0.5, ∀|x| > z0
√

t,

(16)

where z0 and β̃2 depend on the choice of b. Note that
z0 is independent of time. The superdiffusive scaling ex-
ponent β̃2 is nonuniversal and depends on the choice of
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FIG. 1. Isolated thermodynamic limit: The top panel shows the
plot of DN (τ ) as a function of τ at the critical point λ = 1 for different
system sizes. DN (τ ) initially increases with τ and then shows large
fluctuations about a constant mean value. This mean value is quite
precisely given by the analytical high-temperature approximation
result DN (τ ) 
 βD. D is obtained by time scaling of mnn

2 [Eq. (8)]
shown in the bottom panel. D = 0.288/2. For N = 8192 and 16 384,
only the large time results have been calculated. The black continuous
line is a guide to the eye joining data points for N = 16 384. The mean
DN (τ ) is calculated from the data points for N = 16 384. Parameters:
β = 0.1, μ = 1, b = √

2 − 1.

b. For b = (
√

5 − 1)/2 and for b = 532/738, β̃2 ∼ 0.55, for
b = √

2 − 1, β̃2 ∼ 0.62.
Note that for b = (

√
5 − 1)/2 and b = 532/738, from

Fig. 2(b) it may seem that the superdiffusive scaling of
P (x,t) holds everywhere. This is because the superdiffusive
exponent 0.55 is quite close to 0.5. However, a closer inspection
reveals that this is not the case, and the bulk indeed has a
diffusivelike scaling. This is clear from the fact that in all cases,
m2(t) in Fig. 2(c) shows diffusive behavior, m2(t) ∼ t , and
not superdiffusive behavior. Also note that, for b = √

2 − 1,
m2(t) ∼ 1.15t 
 4mnn

2 (t), consistent with Eq. (14).
Now, let us see if the behavior of the tails of P (x,t) can

affect the scaling of the moments at extremely long times. To
check this, we write m2p(t) as

m2p(t) = 2
x�z0

√
t∑

x=0

x2pP (x,t) + 2
∞∑

x>z0
√

t

x2pP (x,t)


 2
∫ z0

√
t

0
x2pP (x,t)dx + 2

∫ ∞

z0
√

t

x2pP (x,t)dx

≡ m
(1)
2p(t) + m

(2)
2p(t), (17)

where m
(1)
2p(t) is the contribution to the moment from the

diffusive part, while m
(2)
2p(t) is the contribution to the moment

from the tails. Here, we have used the fact that 〈x〉 = 0, and
P (x,t) is an even function of x. Now, changing variables to
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FIG. 2. Isolated thermodynamic limit: (a) The full distributions P (x,t) = |ψ(x,t)|2, scaled assuming normal diffusive behavior. Here,
x = r − N/2. P (x,t) scales as P (x,t) 
 (1/

√
t)f1(x/

√
t) over a considerable region in the bulk, but the scaling function f1(z) is clearly not

Gaussian and also the tails do not collapse. (b) P (x,t) = |ψ(x,t)|2 scaled to collapse the tails of the distribution. The tails show a superdiffusive
scaling P (x,t) 
 (1/t β̃ )f2(x/t β̃ ) with β̃ > 0.5. However, the value of β̃ depends on the choice of b. (c) The scaling of the second moment
m2(t) of P (x,t) with t for various values of b. m2(t) ∼ t . N = 8192 for b = (

√
5 − 1)/2,

√
2 − 1. N = 700 for b = 532/738.
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FIG. 3. Isolated thermodynamic limit: Plots of m
(1)
2p(t), m

(2)
2p(t), and m2p(t) [see Eq. (17)] with time for b = √

2 − 1. z0 = 5. The dashed

lines are fits for m
(1)
2p(t) and m

(2)
2p(t). m

(1)
2p(t) ∼ tp , whereas m

(2)
2p(t) ∼ t0.62p for large t , as expected from tail scaling of P (x,t). The crossover of

m2p scaling from diffusive to superdiffusive is seen clearly for m8(t) and m6(t). From the scaling fits, we see that for m2(t) this crossover will
occur for time t � 1010. N = 8192.

z1 = x/
√

t and z2 = x/t β̃2 , and using Eq. (16), we have

m2p(t) 
 2tp
∫ z0

0
z

2p

1 f1(z1)dz1+2t2pβ̃2

∫ ∞

z0
√

t/t β̃2

z
2p

2 f2(z2)dz2

= 2t2pβ̃2
[
tp(1−2β̃2)Ap + Fp(z0t

0.5(1−2β̃2))
]
, (18)

where Ap = ∫ z0

0 z
2p

1 f1(z1)dz1 and Fp(τ ) = ∫ ∞
τ

z
2p

2 f2(z2)dz2.
Note that Ap is independent of time while Fp is a function of
time. So m

(1)
2p(t) ∼ tp, whereas m

(2)
2p(t) ∼ t2pβ̃2 only asymptot-

ically. Since β̃2 > 0.5, we have

m2p(t) ∼ 2t2pβ̃2Fp(0), t → ∞. (19)

Thus, the extremely long-time behavior of the moments should
be superdiffusive. Hence, there will be a crossover in the time
scaling of the moments from diffusive to superdiffusive. The
approach to superdiffusive scaling is faster for higher moments.
Let us check this quantitatively for b = √

2 − 1, which is
the case where β̃2 ∼ 0.62 differs most significantly from the
value 0.5. The value of z0 can be read off from Fig. 2 as
z0 ∼ 6. Figure 3 shows the plots of m2p(t), m

(1)
2p(t), m

(2)
2p(t)

for p = 1,2,3,4. The first feature to note is that the approach
to the form m

(2)
2p(t) ∼ t2pβ̃2 is faster for higher moments.

Second, as expected, the crossover to superdiffusive scaling
of m2p(t) also occurs faster for higher moments. For m8(t)
and m6(t), this crossover is clearly seen from our data. On
the other hand, for m4(t) and m2(t), the crossover occurs
later than times accessible in our numerics. From the scaling
fits, it is possible to quantitatively extract the time scales
at which the superdiffusive crossover will be seen in the
m2(t) scaling. We find that the superdiffusive scaling of m2(t)
will start showing for t � t∗ ∼ 1010. To directly investigate
such long-time behavior without having finite-size effects, one
needs systems of size N � (t∗)0.62 ∼ 107. An exact numerical
analysis of such system sizes is definitely beyond our current
computational power. This explains the normal-diffusive-like

behavior of Green-Kubo conductivity up to times and system
sizes within our numerical reach, and suggests that at even
longer times, the superdiffusive behavior will show up.

Therefore, we find hints of superdiffusive behavior at the
critical point of the AAH model in the isolated thermodynamic
limit from the tail scaling of P (x,t) and the time scaling
of higher moments of P (x,t). However, a direct numerical
observation of this superdiffusive behavior from m2(t) scal-
ing or from Green-Kubo conductivity is beyond our current
numerical reach. Within our numerical reach, m2(t) scales
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0 25 50 75 100 125 150 175 200

τ

0.00

0.01

0.02

D
N

(τ
)

λ = 1.1
N = 100

N = 50

FIG. 4. Isolated thermodynamic limit: Plot showing DN (τ ) as a
function of τ for delocalized (top panel) and localized (bottom panel)
cases for different system sizes. For the delocalized case, DN (τ )
increases linearly with τ before finite-size effects come into play.
For the localized case, DN (τ ) decays to zero and is independent of N

for N � localization length = 1/log(λ) 
 10. Parameters: β = 0.1,
μ = 1, b = √

2 − 1.
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diffusively, and Green-Kubo conductivity also shows normal-
diffusive-like behavior.

Away from the critical point, the behavior is exactly as
expected. Plots of DN (τ ) for delocalized and localized regimes
are shown in Fig. 4 for b = √

2 − 1. In the delocalized regime
(λ < 1), DN (τ ) increases linearly with τ before finite-size
effects become significant. Finite-size effects start showing
after times of O(N ). Thus, to numerically take the correct
limit [in Eq. (3)] for a given system size N , one needs to
look at τ ∼ N . This correctly gives the ballistic conductivity
scaling with system size, σ ∼ N . It is also trivial to check
m2(t) ∼ t2. In the localized regime (λ < 1), for system sizes
much greater than the localization length [given by 1/ log(λ)
[8]], the thermodynamic limit is reached and DN (τ ) becomes
independent of N . We see DN (τ ) decays to zero as a function
of τ for such cases, thus giving zero conductivity. Obviously,
because all eigenstates are localized, m2(t) ∼ t0 consistently.

We will show below that, when the system is connected to
baths, the transport behavior at the critical point of the AAH
model completely changes.

IV. TRANSPORT IN THE OPEN SYSTEM

A. Formalism

Having investigated the transport properties of the isolated
AAH model, we now look at transport properties of the
open AAH model, i.e., when the AAH system is connected
to baths. For this, we couple the system Hamiltonian HS

[Eq. (1)] bilinearly with two baths at two ends. The baths are
modeled by noninteracting Hamiltonians with infinite degrees
of freedom. The full Hamiltonian of the system+bath reads as
H = HS + HB + HSB , where

ĤB = Ĥ(1)
B + Ĥ(N)

B ,

Ĥ(p)
B =

∑
s

�psB̂
†
psB̂ps, p = 1,N,

ĤSB =
∑

s

(κ̃psB̂
†
ps âp + H.c.). (20)

Here, B̂ps is the annihilation operator of the sth mode of the
bath attached to the pth site of the system. The baths are
connected at the first and the N th sites of the system. Here, we
consider the case where all operators are fermionic. However,
since we will be looking at high-temperature behavior, the
all-operator bosonic case will give identical results. We assume
that, initially, each of the two baths is at thermal equilibrium
at its own temperature and chemical potential. In this paper,
we present results for the case when the two baths are at
the same temperature but have different chemical potentials,
thereby having a voltage bias. So, we introduce the bath Fermi
distributions,

n
(p)
F (ω) = [eβ(ω−μp) + 1]−1, p = 1,N. (21)

But, again, in the high-temperature regime, our results remain
valid for the case of both thermal and chemical potential biases.
Let us also introduce the bath spectral functions,

Jp(ω) = 2π
∑

s

|κ̃ps |2δ(ω − �ps), p = 1,N. (22)

We assume the two bath spectral functions to be identical,
J1(ω) = JN (ω) = J (ω).

We are interested in the nonequilibrium steady state (NESS)
of this setup. The NESS properties of this setup can be ex-
actly calculated via nonequilibrium Green’s function (NEGF)
formalism. The system Hamiltonian can be written as HS =
c†HSc, with c being the column vector with the j th element
cj = âj and c† is the transpose conjugate. Let G(ω) = M−1(ω)
be the NEGF of the setup. M(ω) is given by the N × N matrix,

M(ω) = [ωI − HS − �(1)(ω) − �(N)(ω)], (23)

where �(1)(ω),�(N)(ω) are the bath self-energy matrices with
the only nonzero elements given by

�(p)
pp (ω) = −P

∫
dω′J (ω′)

2π (ω′ − ω)
− i

2
J (ω), p = 1,N,

(24)

where P denotes the principal value. The NESS quantities of
our interest will be the (particle) current I and the occupation
of the rth site 〈n̂r〉. These are given by

I =
∫

dω

2π
T (ω)

[
n

(1)
F (ω) − n

(N)
F (ω)

]
,

T (ω) = J 2(ω)

|det[M(ω)]|2 ,

〈n̂r〉 =
∫

dω

2π

[|Gr1(ω)|2n(1)
F (ω) + |GrN (ω)|2n(N)

F (ω)
]
, (25)

where T (ω) is the transmission function. In the linear response
regime, the expression for (particle) conductance G is given by

G = β

∫
dω

2π
T (ω)nF (ω)[1 − nF (ω)]. (26)

Note that all information about the explicit model of the bath
is now in J (ω). Different noninteracting baths correspond to
different choices of J (ω). For concreteness, in the following,
we choose

J (ω) = 2γ 2

tB

√
1 −

(
ω

2tB

)2

, (27)

which can be explicitly derived if baths are modeled via
semi-infinite tight-binding chains with a hopping parameter
tB and bilinearly connected to the system at one end via
system-bath coupling γ [66]. If all operators were bosonic,
only the Fermi distributions in Eq. (25) would be replaced by
the corresponding Bose distribution.

The main characterization of transport in the open system is
via the system-size scaling of current I . At high temperatures,
the current I and the conductance G scale the same way. The
conductivity in the thermodynamic limit as obtained from the
open system approach is given by

σopen = lim
N→∞

NG 
 lim
N→∞

NI/(μ1 − μ2). (28)

At very high temperatures,

I 
 (μ1 − μ2)G 
 (μ1 − μ2)(β/4)
∫

dω

2π
T (ω), ∀ β → 0.

(29)
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FIG. 5. Open system: (a) Scaling of current I with system size N for various values of b. I ∼ N−1.4±0.05. For b = 532/738, current scaling
shows ballistic behavior, I ∼ N0 for N � 738, as expected. Here, the system sizes taken are powers of 2. (b) Scaling of current with system
size for b = (

√
5 − 1)/2 with many closely taken points. This reveals that I ∼ N−1.27±0.01 for N = Fibonacci numbers (red circles), whereas

I ∼ N−1.4±0.05 for system sizes away from Fibonacci numbers. (c) Scaling of current with system size for b = √
2 − 1 with many closely taken

points. This reveals that I ∼ N−1.27±0.01 for N = Pell numbers (red circles), whereas I ∼ N−1.4±0.05 for system sizes away from Pell numbers.
Parameters : β = 0.1, μ1 = 3, μ2 = −3, γ = 1, tB = 3.

For a diffusive system, conductivity is finite, so I ∼ N−1.
For ballistic transport, the current is independent of system
size, so I ∼ N0. If I ∼ N−α , with 0 < α < 1, the transport is
superdiffusive. In both superdiffusive and ballistic cases, σopen

diverges. If I ∼ N−α , with α > 1, the transport is subdiffusive,
while for a localized system, I ∼ e−N , and in these cases, σopen

vanishes.
The fundamental difference between σopen and σGK is the

following. In calculating σGK, as given in Eq. (3), the ther-
modynamic limit N → ∞ is taken before taking the t → ∞
limit. As a consequence, the system can be considered really
isolated and there is no effect of any bath. On the other hand,
in calculating σopen, the t → ∞ limit is taken first so that
the NESS is reached, and then the N → ∞ limit is taken.
A detailed and rigorous discussion regarding this is given in
Ref. [67]. Physically, in the open system approach, there is
the effect of a boundary between the system and the bath,
while in the Green-Kubo approach, because of taking the
thermodynamic limit first, there is no boundary. As we will
see below, the occurrence of the boundary drastically changes
the transport properties of the open AAH model at the critical
point. We will also see that the NESS particle density profile
has very different behavior in the three phases of the AAH
model.

B. Results

1. Current scaling with system size

The current scaling with system size at the critical point
for various choices of b is shown in Fig. 5(a). Here, system
sizes were taken as powers of 2. It is immediately clear
that the scaling is subdiffusive with I ∼ N−1.4±0.05. It is also
interesting to note that for b = 532/738 the current becomes
independent of N for N � 738, which is the signature of
the delocalized phase. This is consistent with our previous
discussion that 532/738 remains “effectively irrational” only
for N � 738.

In Figs. 5(b) and 5(c), we investigate the current scaling
with system size more closely for the golden mean and silver
mean cases. We see that for the golden (silver) mean, the
current scaling with system size is different for system sizes
equal to Fibonacci (Pell) numbers, where I ∼ N−1.27±0.01.
Away from these special system sizes, the current scaling
is approximately I ∼ N−1.4±0.05. An interesting observation
follows from noting that any irrational number has an infinite
continued fraction representation which, on truncation, gives a
rational approximation of the irrational number. We conjecture
that at special system sizes equal to the denominators of the
rational approximations, the current deviates from the generic
behavior and has a different scaling. These special system sizes
are the Fibonacci (Pell) numbers for the golden (silver) mean.

Thus, we see that the transport in the open critical AAH
model is subdiffusive. This is drastically different from what
we found in the isolated thermodynamic limit, where we found
hints of superdiffusive behavior. We now investigate the origin
of the subdiffusive behavior. To do this, we first take the
tB → large limit, so that the system-bath coupling becomes
weak and the bath spectral functions become almost constant
[see Eq. (27)]. Note that in Fig. 5, the system-bath coupling
was not weak. In the weak system-bath coupling limit, it is
possible to express the steady state expressions, involving
nonequilibrium Green’s functions, directly in terms of the
eigenstates and eigenvalues of the isolated system [68,69].
Using the formalism in Ref. [66], it can be shown [70] that
for sufficiently small system-bath coupling, the conductance
is given by

G 
 �β

4
W (1,N ), β → small, tB → large,

W (p,q) =
N∑

α=1

	2
α,p	2

α,q

	2
α,p + 	2

α,q

, (30)

where � = (2γ 2)/tB and we have also taken the small β limit
so that nF (ω) 
 1/2. Thus, the system-size scaling of G in
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FIG. 6. Open system: (a) Scaling of conductance G with system size N for various values of b for weak system-bath coupling (γ = 1,
tB = 200) and very high temperature (β = 0.01). Exact numerical results are obtained via Eq. (26), and are compared with the approximate
analytical result W (1,N ) [see Eq. (30)]. There is a nearly perfect overlap of exact results with W (1,N ), and G ∼ N−1.4±0.05. Here, the system
sizes taken are powers of 2. (b), (c) The different scaling of G with system size equal to Fibonacci and Pell numbers for golden mean and silver
mean cases, G ∼ N−1.27±0.01.

this limit is given by the system-size scaling of W (1,N ). Note
that W (1,N ) only depends on the absolute values of the single-
particle eigenvectors of the system at sites where the baths are
attached, namely, the first and the last sites. If the system-size
scaling of G in this limit is similar to that in Fig. 5, which is not
guaranteed a priori, we will know that the subdiffusive scaling
is because of the system-size scaling of W (1,N ).

The system-size scaling of conductance calculated in this
limit (γ = 1, tB = 200, β = 0.01) by exact numerical inte-
gration, Eq. (26), and by Eq. (30) is given in Fig. 6. There
is a nearly perfect overlap of the two results. Note that an
exact numerical calculation using Eq. (26) is more difficult
in this regime, because of the nearly singular behavior of the
integrand at the system eigenenergies. In Fig. 6(a), the scaling
is shown for system sizes in powers of 2. The scaling is not
as good as that seen in the strong system-bath coupling case,
but it is approximately the same, G ∼ N−1.4±0.05. Figure 6(b)
[Fig. 6(c)] shows the scaling for the golden (silver) mean case
when the system sizes are equal to Fibonacci (Pell) numbers.
Here, there is an almost perfect scaling of G ∼ N−1.27±0.01,
as before. Thus, indeed, the subdiffusive scaling of current
and conductance with system size is directly related to the
subdiffusive scaling of W (1,N ) with system size.

Note that, for λ < 1, the single-particle eigenfunctions are
completely delocalized, hence 	2

α,� ∼ N−1. Thus, W (1,N ) ∼
N0, thereby consistently giving the ballistic scaling of current.
On the other hand, for λ > 1, the single-particle eigenfunctions
are exponentially localized at some system site, so, 	2

α,1 ∼
	2

α,N ∼ e−N . Thus, W (1,N ) ∼ e−N , thereby also consistently
giving the exponential decay of current with system size in
this regime. Thus, the system-size scaling of W (1,N ) correctly
gives the system-size scaling of currents at all regimes of the
AAH model. This also shows that the current scaling with
system size is independent of the details of the baths, and also
independent of the type of particles (bosonic or fermionic).

Hence, the transport behavior of the open AAH model
is completely governed by the single-particle eigenfunctions
at the boundaries where the baths are attached. In the iso-
lated thermodynamic limit, there are no boundaries, and

the transport behavior is governed by the bulk properties.
Looking at Eqs. (7), (10), (13), and (30), we see that there
is no reason a priori that the isolated thermodynamic limit
transport characterized by the spread of a wave packet, and
the open system transport characterized by current scaling
with system size, need to be consistent with each other in
general. It nonetheless turns out that in the delocalized and the
localized cases, they can indeed be shown to be consistent. The
underlying reason for this is that, for these cases, the eigenstates
contributing to transport have similar behavior in the bulk and
at the boundaries. But, at the critical point, the eigenstates
contributing to transport have different behavior at the bulk
and at the boundaries. To clearly see this, in Fig. 7 we check
the system-size scaling of W (N/4,3N/4) for all three phases
and compare them with that of W (1,N ). Unlike W (1,N ),
W (N/4,3N/4) depends on the bulk behavior of eigenstates.
We see that at the critical point, W (N/4,3N/4) scales very
differently from W (1,N ), i.e., W (N/4,3N/4) ∼ N−0.27±0.03

whereas W (1,N ) ∼ N−1.4±0.05. Away from the critical point,
W (N/4,3N/4) and W (1,N ) have the same scaling with system
size, i.e., they are independent of N for λ < 1 and decay
exponentially with N for λ > 1. Thus, indeed, the eigenstates
contributing to transport have different behavior in the bulk
and at the boundaries only at the critical point. This leads
to drastically different transport behavior in the isolated and
in the open critical AAH model. We note that differences
between the bulk and boundary behavior of the eigenstates
have been previously observed in disordered systems and have
been attributed to the multifractal nature of the eigenfunctions
[1], but they have not been directly connected to transport
properties.

2. NESS particle density profile

Next, we look at the spatial particle density profile, 〈n̂r〉 vs
r , in NESS in each of the delocalized, critical, and localized
regimes when the two baths are at widely different chemical
potentials. We find that the NESS spatial particle density profile
(which is related to the local chemical potential) behaves very
differently in the three regimes (Fig. 8). In the delocalized
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FIG. 8. Open system: NESS particle density profile for the three
regimes, delocalized (λ = 0.5 < 1), critical (λ = 1), and localized
(λ = 1.1 > 1), for various system sizes. The particle density profile
looks distinctly different in the three regimes. Parameters: β = 0.1,
μ1 = 6, μ2 = −6, γ = 1, tB = 3, b = (

√
5 − 1)/2.

regime, we notice a flat profile, a hallmark of ballistic transport.
In the critical regime, we see a continuous (almost linear)
curve connecting the boundary densities. Such behavior is
typical of diffusive systems. The localized regime shows
a steplike profile, and recently this has been reported for
other models with localization [68,71]. Hence, this NESS
physical quantity, which is potentially measurable with recent
cutting-edge experiments [37–40,42], gives a clear real-space
signature of localized, critical, and delocalized phases. The
energy profile (which is related to local temperature) has a
similar behavior.

V. CONCLUSIONS

We have investigated the high-temperature transport prop-
erties of the AAH model both in the isolated thermodynamic
limit, and in an open system. We have found that the critical
point of the AAH model has drastically different transport
behavior in the two cases. In the isolated thermodynamic
limit, the spread of an initially localized wave packet shows
hints of superdiffusive behavior. The superdiffusive scaling
exponent is nonuniversal and depends on the choice of the
irrational number b. On the other hand, the open system NESS
current I scaling with system size N is clearly subdiffusive.
There are two subdiffusive exponents. One is I ∼ N−1.27±0.01,
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which is seen when system sizes are exactly the denominators
of the rational approximants of b, while the other is I ∼
N−1.4±0.05, which is the scaling for generic system sizes. We
have shown that the current scaling with system size is entirely
controlled by the system-size scaling of eigenfunctions at the
boundaries where the baths are attached. Thus, the drastic
difference between the isolated and the open system transport
properties at the critical point is due to different behaviors of
the eigenfunctions at the bulk and at the boundaries.

We would like to point out that looking at the spread
of correlations and measuring the current or conductance
variation with system size are two different experiments
done to characterize transport in many setups. Although not
guaranteed, in many cases, the results of one experiment can
be inferred from those of the other. We showed that at the
critical point of the AAH model, this is not possible.

We have also looked at the NESS particle density profile of
an open system connected to two baths at different chemical
potentials. We have shown the NESS particle density profile
is distinctly different in the delocalized, critical, and localized
phases.

After submission of our work, a closely related work
appeared [72], where very similar questions were explored
using a phenomenological Lindblad quantum master equation
approach. On the other hand, in our work, the baths are modeled
by microscopic quadratic Hamiltonians having infinite degrees
of freedom, and the results are calculated by the fully exact
NEGF method. This has no restrictions, for example, it is
valid for arbitrary system-bath couplings and fully takes into
account non-Markovianity. We find it remarkable that their
work reproduces the same results (same scaling of current
with system size) as ours. This, in our opinion, is important
for the following reason. Because it matches our results, it

justifies the use of a phenomenological Lindblad quantum
master equation approach, which is often the most practical
method for interacting systems [73].

In a followup work, some of the authors (A.P., A.D., and
M.K.) investigated open system transport through a gener-
alization of the AAH model where there is a mobility edge
[74]. They obtained a high-temperature nonequilibrium phase
diagram of that generalized model via current scaling with
system size. Detailed investigations of closed system transport
and low-temperature transport in a generalized model with a
mobility edge is in progress. Note that, while this is easily
possible in our approach, the phenomenological Lindblad
quantum master equation used in Ref. [72] works only in the
infinite-temperature regime and cannot be used to investigate
low-temperature physics.

S.S. introduced the rest of the authors to the AAH model and
pointed out important references. A.P. did all the calculations
and wrote the manuscript. A.D. and M.K. checked all the
results, provided crucial physical insights and revised the
manuscript.
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