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Dynamics of the one-dimensional Anderson insulator coupled to various bosonic baths
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We study a particle which propagates in a one-dimensional strong random potential and is coupled to a
bosonic bath. We independently test various properties of bosons (hopping term, hard-core effects, and generic
boson-boson interaction) and show that bosonic itineracy is the essential ingredient governing the dynamics of
the particle. Coupling of the particle to itinerant phonons or hard-core bosons alike leads to delocalization of the
particle by virtue of a subdiffusive (or diffusive) spread from the initially localized state. Delocalization remains
in effect even when the boson frequency and the bandwidth of itinerant bosons remain an order of magnitude
smaller than the magnitude of the random potential. When the particle is coupled to localized bosons, its spread
remains logarithmic or even sublogarithmic. The latter result together with the survival probability shows that
the particle remains localized despite being coupled to bosons.
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I. INTRODUCTION

The interplay between disorder and many-body interactions
is a long-standing problem which is important for the presence
of the Anderson localization (AL) [1] in realistic materials.
While the problem was recognized many years ago [2,3],
recently there has been significant progress in understanding
the physics of the many-body localization (MBL) which
extends the concept of AL by accounting for interactions
between the localized particles [4,5]. The presence of MBL in
strongly disordered chains of spinless fermions (or equivalent
models) has consistently been confirmed by various theoretical
investigations [6–23] and a few experimental studies [24–29].
The many-body interaction is responsible for several distinc-
tive features of the MBL systems, in particular for the unusually
slow dynamics [30–48].

The particle localization is not immune against arbitrary
many-body interaction, and mechanisms which are known
to destroy the Anderson insulator may destroy the MBL
as well. In particular, the Anderson insulator may be de-
stroyed by the electron-phonon interaction via the so-called
phonon-assisted hopping [49,50]. However, the insulating state
may still survive in the low-temperature regime, as recently
suggested in Refs. [51,52]. The phonon-assisted hopping
has been intensively studied and is mostly understood for
regular noninteracting bosons [50]. However, already the
case of strictly dispersionless phonons may pose problems,
especially in one-dimensional (1D) systems [50]. The role
of other bosonic excitations (e.g., magnons) or the boson-
boson interaction remains unexplored. In particular, it is an
open problem whether coupling between charge carriers and
magnetic excitations [47,53–58] may play the same role as the
electron-phonon coupling. The essential difference between
both types of bosons is that the energy density of the magnetic

excitations is bounded from above, whereas phonons can in
principle absorb arbitrary energy.

Here, we study a single particle in a disordered chain which
is coupled to bosons. We aim to establish which properties of
the bosonic system are essential for preserving/destroying the
localized state. In particular, we study systems with regular
bosons (e.g., phonons) and hard-core (HC) bosons, whereby
the latter case should simulate spin excitations. We compare
results for itinerant and localized/dispersionless bosons as well
as interacting and noninteracting bosons. We find that itineracy
is essential for localization. We show that for sufficiently
strong disorder the particle is localized despite coupling to
localized hard-core bosons. However, even very small bosonic
dispersion destroys localization and leads to a subdiffusive
hole propagation, which may eventually turn into the diffusive
transport at extremely long timescale. In the system of itinerant
noninteracting bosons the particle and energy transport is
ballistic. In order to eliminate artifacts originating from this
peculiarity of the bosonic subsystem, we consider also a
generic case with boson-boson interaction when the energy
transport within the bosonic subsystem is diffusive. It turns
out that the latter interaction hardly influences propagation
of the coupled particle. Finally, the transport in the strongly
disordered Holstein model with dispersionless regular bosons
is shown to be indeed singular since the particle spreads out
logarithmically or sublogarithmically in time.

II. MODEL AND METHOD

We investigate the Anderson localization in the one-
dimensional model with a single electron in a random
potential εj ∈ [−W,W ] coupled to bosonic degrees of
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freedom:

H = −t0
∑

j

[c†j cj+1 + H.c. + εjnj ]

− g
∑

j

nj (b†j + bj ) + ω
∑

j

b
†
j bj

+ tb
∑

j

[b†j bj+1 + H.c.]

+V1

∑
j

mjmj+1 + V2

∑
j

mjmj+2, (1)

where nj = c
†
j cj represents the electron number operator, bj

represents either phonon or HC boson, and mj = b
†
j bj is the

boson number operator. The strength of electron-boson interac-
tion is given by g, and ω is the bosonic frequency. Dispersion of
otherwise localized bosonic degrees of freedom is introduced
via the overlap integral tb, while V1 and V2 represent nearest
and next-nearest neighbor bosonic interaction strengths. We
separately consider standard bosons and the HC bosons. The
former case is relevant for systems where the quantum particle
(ci) is coupled to optical phonons (bi) with frequency ω.
Then, [bi,b

†
j ] = δij and, in principle, the density of bosonic

excitations may be arbitrarily large. Choosing V1 = V2 = 0
one obtains the standard Holstein model. The results for HC
bosons simulate coupling to spin fluctuations. In this case, the
energy spectrum is bounded from above since there is at most
one HC boson per site, b

†
i b

†
i = 0. This restriction shows up in

specific commutation relations [bi,b
†
j ] = δij (1 − 2b

†
i bi) for the

latter operators. We perform calculations for one-dimensional
chains of various length sizes with open boundary conditions.
We perform time evolution using a Lanczos based technique
and use the limited functional Hilbert space (LFHS) first
developed in Ref. [59]. In the Appendix A we give a brief
overview of the method. Such an approach has successfully
been applied to studies on the real-time dynamics of t-J and
Holstein models [47,60–67]. This method enabled calculations
on larger chains with open boundary conditions where the
maximal distance between the electron and boson excitation is
given by Nh. When the numerical calculations are carried out
for systems of size L, the finite-size analysis usually consists
in fitting the results by a function which is linear in 1/L. In the
present approach, we find the best fits which are linear in 1/Nh

and then we take the limit Nh → ∞ for the fitting function.

III. NUMERICAL RESULTS

We start the time evolution from a random configuration of
bosonic degrees of freedom and a well defined original position
of the coupled particle. We typically take 1400 realizations of
the disorder. In the case of the HC boson (HCB) such a choice of
the initial state represents propagation at infinite temperature.
This is not the case for the Holstein model due to the unlimited
number of phonon degrees of freedom. In the latter case the
temperature of the bosonic subsystem is quite elevated but
still finite. In the Appendix B we discuss how results depend
on the initial state of the bosonic bath. We measure time in
units of [h̄/t0]; in addition for simplicity we set in all cases
t0 = ω = g = 1.
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FIG. 1. The mean square deviation σ 2(t) for different values of tb
for the case when the particle is coupled to HCBs using (a) semilog
plot and (b) log-log plot; (c) fitting exponents α vs tb extracted from
σ 2(t) = Atα . Fitting was performed in the long-time limit. (d) log-log
plot of σ 2(t) of the HCB model using different values of nearest and
next nearest interaction V1 and V2, respectively. In all cases we have
used ω = g = 1, W = 12, and Nh = 20.

In order to investigate the dynamics of the charge carrier
we calculate the particle density

ρj = 〈ψ(t)|nj |ψ(t)〉ave, (2)

where the index “ave” signifies that expectation values have
been averaged over different random realizations of εj . Since
the density is normalized,

∑
j ρj = 1, we also define the mean

square deviation of the hole distribution [68],

σ 2 =
∑

j

j 2ρj −
⎡
⎣∑

j

jρj

⎤
⎦

2

. (3)

We start by presenting results for the HCB model. In
Fig. 1 we present the time evolution of σ 2 at large disorder
W = 12. In the case of localized HCBs, i.e., when tb = 0,
σ 2(t) approaches a constant, indicating particle localization. In
contrast, even a small value of dispersion tb > 0 already leads
to a power-law behavior, i.e., σ 2 ∝ tα , clearly demonstrated
as a straight line on the log-log plot; see Fig. 1(b). It is also
instructive to note that the timescale when the power law sets in
is roughly given by 1/tb, most clearly observed as a deviation
from the straight line in Fig. 1(b). In Fig. 1(c) we display
extracted exponents α(tb). They appear to be nonuniversal
and characteristic of a subdiffusive spread of the initially
localized particle. Moreover, in the whole range of tb their
values remain α(tb) < 0.5, which is far below α = 1 that is
distinctive for the diffusive spread. From our analysis we may
extrapolate that α(tb > 0) > 0, suggesting that the particle
remains localized only in the dispersionless limit when HCBs
are strictly localized, i.e., at tb = 0. This is perhaps expected
from the point of view of variable range hopping theory [69]
and Fermi golden rule, which assumes that the bosons created
in the inelastic hopping process spread out to infinity, hence the
probability for the reabsorption by the electron drops to zero.
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Nonzero tb lets bosons spread out. In contrast, at zero tb they
remain in the vicinity of the particle, consequently an emitted
boson can be reabsorbed to reverse the hopping process.

So far we have shown that already a small amount of
dispersion among HCBs leads to a delocalization of a particle
in a one-dimensional random potential. This holds true even
when the magnitude of the random potential W by far exceeds
the boson frequency ω and the bandwidth 	 = 4tb. Next we
investigate the influence of interactions between HCBs. In
Fig. 1(d) we present results for a fixed value of disorder, at finite
value of tb but different choices of nearest and next-nearest
interactions, V1 and V2, respectively. We further fix the value
of V2 = V1/2. The reason for the choice of a finite value of
V2 is that at V2 = 0 the system of interacting HCBs with
zero coupling to the particle is exactly solvable and shows
ballistic energy transport. One expects that the electron-phonon
coupling alone is sufficient to restore the normal diffusive
transport in the bosonic subsystem, even for V1 = V2 = 0.
It is clearly the case for nonzero concentration of particles.
However, this mechanism may not be efficient for the present
case of a single particle which couples to a much larger
bosonic bath since the relevant timescale for the onset of
normal transport may be very long. In comparison to theV1 = 0
case, we observe a slight increase of σ 2(t) at small V1 = 2tb
followed by a decrease with further increasing of V1 towards
V1 = 10tb. In the latter case we also observe a small decrease
of α. Interactions among HCBs have only a small effect on
the delocalization processes. The slight increase in σ 2(t) at
small values of V1 can be due to lifting of the degeneracy
among many-body HCB states in the presence of interactions.
However, further increase of V1 may lead to slowing down of
the propagation of excitations in the HCB subspace that seem
to be responsible for the delocalization of the particle.

We have tested the validity of our findings with regard to
finite-size effects as well as regarding the effect of limited
functional Hilbert spaces used in our calculations. The size of
the LFHS exponentially depends on the parameter Nh. For a
more precise explanation of the meaning of Nh, we refer the
reader to Appendix A as well as to the original publication in
Ref. [59]. Here we only note that Nh represents the maximal
length that the particle travels from its original position, while
the maximal number of HCBs is given by Nh/2. In Fig. 2 we
show results for two different values of disorder, obtained with
different Hilbert spaces. When HCBs are localized, i.e., for
tb = 0, the particle also remains localized, see Figs. 2(a) and
2(c), even after the finite-size analysis. In particular, at W = 8
we observe a logarithmic increase of σ 2(t), characteristic for
MBL systems [42,70], while at yet stronger disorder, W = 12,
we observe a tendency towards the saturation similar to the case
of a noninteracting particle (see curve for g = 0). However,
in contrast to the noninteracting system, strict saturation
does not arise within the accessible time window, and the
extremely slow dynamics resembles the MBL systems rather
than noninteracting AL.

In contrast, in the case of itinerant HCBs, that is at finite
dispersion tb = 0.5, we observe subdiffusion; see Figs. 2(b)
and 2(d). Dashed lines in all cases represent results obtained
using finite-size scaling analysis. For finite dispersion, we
have obtained nearly perfect fits, presented with dotted lines,
to the analytical form σ 2(t) = Atα . We have performed a
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FIG. 2. Semilog plots of σ 2(t) of the HCB model for different
sizes of the Hilbert spaces generated by Nh. Cases with no dispersion,
tb = 0, are presented in (a) and (c) for two distinct values of disorder
W = 12 and 8, respectively. Results for tb = 0.5 are shown as well for
two distinct values ofW in (b) and (d). Note also substantially different
scales used to present results with or without dispersion. Dashed (red)
lines represent results after finite-size scaling analysis. The dotted line
in (c) represents a fit to the form σ 2(t) = A + B log(t). Dotted lines in
(b) and (d) represent fits to the form σ 2(t) = Atα . The thin (violet in
color) line in (a) and (c) represents evolution ofσ 2(t) for a free particle,
i.e., g = 0, that is subject to Anderson’s localization. The inset in (b)
displays exponents α (circles) extracted from finite-size scaled results
at different values of disorder W . A singular square represents the
result for the Holstein model with parameters identical to those in
the HCB one. Other parameters of the model were ω = g = 1 and
V1 = V2 = 0.

similar analysis as well for smaller values of W = 6 and 4,
not shown. In the inset of Fig. 2(b) we show extracted α’s
that are increasing towards α = 1 as the disorder decreases.
Due to increasing finite-size effects we were unable to reliably
investigate systems with W < 4.

We next present results for the Holstein model. Due to
unlimited phonon degrees of freedom we had to limit our
calculations to a maximal number of phonons, given by Nh.
Similarly to the HCB model case, Nh represents also the
maximal distance that the particle travels from the origin,
while Nh − 1 is the maximal distance between the particle
and a single phonon excitation. We start the time evolution
from an initial random configuration of phonon degrees of
freedom and well defined initial position of the particle. We
present results in Fig. 3 for a single set of parameters, i.e.,
W = 12 as well as at fixed g = 1. The discussion of the
influence of increasing coupling constant from weak towards
strong coupling limit for the Holstein model is presented in
Appendix C. In the case of localized phonons, i.e., tb = 0, we
observe slow, logarithmic increase of σ 2(t); see Fig. 3(a). Since
we have used parameters identical to those in the HCB model,
Figs. 2(a) and 3(a) provide direct comparison between the
models. While in the case of the HCB model σ 2(t) shows signs
of saturation or at most sublogarithmic growth, we observe
a clear logarithmic growth when the particle is coupled to
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FIG. 3. (a) and (b) σ 2(t) of the Holstein model for different sizes
of the Hilbert spaces generated by Nh and W = 12. The cases with
no dispersion, tb = 0, are presented in (a) while results for tb = 0.5
are shown (b). Dashed (red) lines represent results after finite-size
scaling analysis. The dotted line in (a) represents a fit to the form
σ 2(t) = A + B log(t). The dotted line in (b) represents a fit to the
form σ 2(t) = Atα . Overlaps O are shown in (c) (tb = 0) and (d) (tb =
0.5) for the Holstein model with full lines and for the HCB model
with dashed lines. Thin lines (violet in color) in (a) and (c) represent
evolution of σ 2(t) andO, respectively, for a free particle, i.e., at g = 0,
that undergoes Anderson’s localization. The inset in (d) shows the
same data as in (d) but using log-log scale. Other parameters of the
model were in all cases ω = g = 1, W = 12, and V1 = V2 = 0.

regular bosons (phonons). Moreover, its spread is enhanced
in comparison to the HCB case and displays quantitatively
distinct behavior from the noninterracting case at g = 0. A
similar comparison is found as well in the case of finite
dispersion. Coupling to itinerant phonons again leads to a
subdiffusive growth of σ 2(t), see Fig. 3(b), with an exponent
α = 0.62 that is about 10% larger than in the case of the HCB
model; for visual comparison see also the inset of Fig. 2(b).
However, one cannot exclude that in this model there exists a
small, albeit nonzero diffusion constant. Then, the subdiffusion
would be a transient effect since the spread due to normal
diffusion will dominate at sufficiently long time. Suppression
of transport in the case when particle is coupled to marginally
localized phonons has recently been demonstrated in Ref. [71]
for the low-temperature regime.

Finally, we investigate the survival probability defined as
the overlap of the many-body wave function |ψ(t)〉 with the
initial one |ψ(0)〉 [15,72,73]. Namely, we compute

O(t) = |〈ψ(0)| exp(−iH t)|ψ(0)〉|2ave. (4)

It measures the probability of finding the system still in the
initial state |ψ(0)〉 at time t [15]. In the case of localized bosons,
tb = 0 presented in Fig. 3(c), O(t) approaches a constant in the
long-time limit. In addition, well defined oscillations with a
frequency ω ∼ 2 are observed at moderate times that are more
pronounced in the HCB model case. They signal transitions
among only a few states. The specific value of the frequency
originates from the disorder averaging, and indicates that the

charge dynamics is well restricted to the neighboring sites
[43]. In contrast, in the case of itinerant bosons, Fig. 3(d),
O(t → ∞) → 0 while oscillations are strongly overdamped.
The survival probability turned out to be very useful in the
studies concerning the many-body localization [15,73], where
O(t) decays exponentially with the system size L [73], O(t 	
1) ∼ exp(−aL). The latter holds true in the MBL as well
as in the ergodic regimes, whereby the parameter a in the
localized system is much smaller than in the ergodic case. In
the present studies, we have found a clear exponential decay
with Nh (a quantity equivalent to L) only for systems with
itinerant bosons; see the discussion in Appendix D. In contrast,
in systems with localized bosons the dependence of O(t 	 1)
on the system size is rather small. The survival probability is
constructed in terms of the many-body wave function of the
total system. Then, the finite value of O(t) in the long-time
limit and weak Nh dependence indicate not only localization
of the particle but also freezing of the initial distribution of
bosons with tb = 0.

IV. CONCLUSIONS

We have studied the time evolution of a particle in a strong
random potential coupled to localized or itinerant bosonic
degrees of freedom. The study was based on a Holstein-like
model in one dimension. Two types of bosons, i.e., hard-
core bosons and phonons, were used in our study. The main
motivation to study hard-core bosons was on the one hand
their similarity to spin degrees of freedom and on the other
their limited degrees of freedom that allowed studying larger
system sizes. The coupling of the particle to itinerant bosons,
HCBs and phonons alike, leads to delocalization by virtue of
a subdiffusive spread from the initially localized state. Even
more surprisingly, delocalization remains in effect even when
the boson frequency and the bandwidth of itinerant bosons
remain an order of magnitude smaller than the magnitude of
the random potential. From among all the discussed properties
of the bosonic bath, the itineracy of bosons plays the crucial
role for the dynamics of the interacting particle.

We expect for dispersive standard bosons that the subd-
iffusive transport may be a long-lasting but still a transient
phenomenon. On a very long timescale, the particle dynamics
should be similar to that discussed in Ref. [19] where, instead
of phonons, the quantum particle is coupled to a classical
noise. However for strongly disordered systems, the timescale
corresponding to the onset of standard diffusion is beyond the
reach of direct numerical calculations for many-body quantum
systems. An even more challenging question concerns the
asymptotic dynamics of a particle coupled to the hard-core
bosons.
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APPENDIX A: GENERATOR OF LIMITED
FUNCTIONAL HILBERT SPACE

We only give a short description of the main parts of
the method. More details can be found in the original work,
Ref. [59]. We choose the generator of the limited functional
Hilbert space (LFHS) that consists of two off-diagonal parts
of the Hamiltonian in Eq. (1) of the main text,

O1 =
∑

j

nj (b†j + bj ), (A1)

O2 =
∑

j

c
†
j cj+1 + H.c. (A2)

The generating algorithm starts from a particle at a given
position, e.g., j = 0, in a vacuum state of boson excitations,
|ψ (0)〉 = c

†
0σ |0〉, where |0〉 represents vacuum for the particle

as well as boson excitations. We then apply the generator of
basis states Nh times to generate the LFHS:

{|ψ (l)〉} = (O1 + O2)l|ψ(0)〉, (A3)

for l = 0, . . . ,Nh. We thus generate a limited functional Hilbert
space spanned by states of the following form:

|ψ〉 = |j ; . . . ,nj−1,nj ,nj+1, . . . 〉 (A4)

where j represents the particle coordinate, while there are
nm bosons on site m. In the HCB case, nj ∈ {0,1} while
for phonons nj ∈ {0, . . . ,Nh}. The limited functional Hilbert
space that we construct is not a standard one where bosonic
degrees of freedom would be distributed uniformly on the
lattice irrespective to the particle position. Our approach adds
basis states more efficiently than some other methods. In the
case of generating phonon degrees of freedom, a basis state
is included if it can be reached using Nb phonon creation
operators and Nt particle hops in any order with Nb + Nt �
Nh. For a given Nh, there is a basis state with Nh phonon quanta
on the same site as the particle and no phonon excitations
elsewhere. The particle can hop maximally Nh sites away
from its original position, but then there is no boson nor
phonon quanta in the system. In the HCB case the maximal
number of boson quanta is Nh/2. It is achieved by successive
process where a HCB is created on site j followed by a
jump to site j + 1. In the case of LFHS we impose open
boundary conditions. After completing generation of LFHS
we time evolve the wave function using the Hamiltonian in
Eq. (1) of the main text while taking advantage of the standard
Lanczos-based diagonalization technique. Sizes of LFHS for
the HCB model span from Nst ∼ 103 for Nh = 10 up to 2×105

for the largest Nh = 20 used in our calculations. Sizes of LFHS
for the Holstein model span from Nst ∼ 103 for Nh = 8 up to
5×105 for the largest Nh = 16. To achieve sufficient accuracy
of time propagation, we have used time-step size 
t = 0.02
and performed up to 2×104 time steps. In addition we have
sampled over 103 different realizations of disorder εi .

The main advantage of LFHS over the exact diagonalization
approach is to significantly reduce the dimension of the Hilbert
space. The method has been successful in computing properties
of the driven Holstein polaron [65], dissociation of a driven
bipolaron [74], relaxation dynamics and thermalization proper-
ties of a highly excited polaron [64,66,67], as well as static and
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FIG. 4. σ 2 vs t for the Holstein model. Nph(0) the number of
phonon excitations at t = 0. The inset represents 〈Nph〉(t). In both
cases we have used ω = g = 1, tb = 0.5, and W = 8.

dynamic properties [63] and nonequilibrium dynamics [60–62]
of correlated electron systems.

APPENDIX B: INITIAL STATE OF THE BOSONIC BATH

We test the dependence of σ 2 on the initial state of the
bosonic bath in the case of the Holstein model. In Fig. 4 we
present σ 2(t) obtained by starting the time propagation from
random initial states characterized by different total numbers of
bosonic excitations 〈Nph〉 ∈ {0,1,2,3}, where Nph = ∑

j b
†
j bj .

In the inset of Fig. 4 we also follow the time evolution of
〈Nph〉(t). Different initial states in the long-time limit evolve
towards distinct bosonic states; nevertheless, the spread of the
initially localized particle σ 2(t) remains nearly independent of
the state of the bosonic subspace.

In the case of thermal equilibrium, different values of
〈Nph〉 correspond to different temperatures. It should be noted,
however, that the system under consideration is initially not in
the thermal state. Figure 1(d) in the main text shows that the
spread of the quantum particle in the HCB model is weakly
modified by the boson-boson interaction even for very strong
potentials V1 and V2. Since the latter interaction should lead
to a rather fast thermalization of the bosonic bath, we come to
conclusion that the nonthermal initial state of the bosonic bath
does not influence the spread of the particle, at least not on a
qualitative level.

APPENDIX C: STRONG COUPLING LIMIT

Here we explore the influence of the coupling constant g on
the dynamics of the particle. We first introduce the dimension-
less coupling constant λ = g2/2ωt0. It is well known that λ ∼
1 represents the transition point between the weak-coupling
regime for λ � 1 and the strong coupling one for λ � 1. In
the latter the polaron effective mass scales approximately as
m∗ ∝ exp(g2). The naive expectation is then that by increasing
λ the particle would become nearly localized due to the
exponentially increased m∗. In contrast, as shown in Fig. 5,
the increase of λ leads to a monotonic increase of σ 2. It should
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FIG. 5. σ 2 vs t for the Holstein model for different coupling
strengths λ. The inset represents 〈Nph〉(t). In both cases we have used
ω = 1, tb = 0.5, and W = 8.

be noted that during the time evolution the system evolves
through highly excited states, while the concept of a polaron
with a large effective mass is a ground state phenomenon.
Emission and subsequent reabsorption of phonons represents
the main mechanism for delocalization of the particle in a
random potential. For comparison we also include the result
for λ = 0 that shows Anderson’s localization.

APPENDIX D: FINITE-SIZE SCALING
OF THE SURVIVAL PROBABILITY

In Fig. 6 we present finite-size scaling of the survival
probability O(t), as defined in Eq. (5) of the main text, in the
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FIG. 6. O(t) as given in Eq. (5) of the main text using different
system sizes as given by Nh, for the HCB model in (a) and (b) and the
Holstein model in (b) and (d). In all cases we have used ω = g = 1,
W = 12.
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when tb = 0.5 for the two models as indicated in the figure. In both
cases we have used ω = g = 1, W = 12.

limit of large disorder, W = 12. In the case of localized bosons,
i.e., at tb = 0, see Figs. 6(a) and 6(c), we observe near complete
overlap of results obtained using system sizes ranging from 103

states in cases of Nh = 10 through 106 in the case of Nh = 16.
In contrast, in the case of itinerant bosons, for tb = 0.5, we
observe a substantial Nh dependence of O(t 	 1) in both
models; see Figs. 6(b) and 6(d). Note also that in contrast to the
previous case, the latter results are presented on a log-log scale.
Then, almost equally spaced flat sections ofO(t 	 1) obtained
for Nh = 10,12,14, . . . indicate that the survival probability
scales exponentially with the system size L that, in our method,
is given by L ∼ Nh, i.e., O(t 	 1) ∝ exp(−aNh).

In order to obtain a more quantitative picture of the
above mentioned exponential scaling we present in Fig. 7
O(t) exp(aiNh), where i = 1,2 for the two models un-
der consideration. A nearly perfect scaling is observed
for t 	 1.

It is beneficial to stress two important properties of the
localized state in systems with tb = 0. On the one hand, there
is an extremely long-time scale which governs the particle
dynamics for t � 102, as is clearly visible in Figs. 2(a) and 3(a)
in the main text. Such slow dynamics is characteristic for MBL
systems [42,70], whereas it does not arise in the Anderson
insulators (g = 0) where the spreading of particle saturates
already at t ∼ 10. On the other hand, the survival probability
does not show any clear exponential decay with the system size,
as is the case in the MBL [73]. The survival probability in the
studied electron-phonon system with tb = 0 resembles rather
the projection of single-particle wave functions 〈ψsp(0)|ψsp(t)〉
in the Anderson insulators, which is, for the particle under
consideration at zero electron-phonon coupling, presented in
Fig. 3(c) of the main text.
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