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Ion beam irradiation has recently emerged as a versatile approach to functional materials design. We show
in this work that patterned defective regions generated by ion beam irradiation of silicon can create a phonon-
glass electron-crystal (PGEC), a long-standing goal of thermoelectrics. By controlling the effective diameter of
and spacing between the defective regions, molecular dynamics simulations suggest a reduction of the thermal
conductivity by a factor of ∼20 is achievable. Boltzmann theory shows that the thermoelectric power factor
remains largely intact in the damaged material. To facilitate the Boltzmann theory, we derive an analytical model
for electron scattering with cylindrical defective regions based on partial-wave analysis. Together we predict a
figure of merit of ZT ≈ 0.5 or more at room temperature for optimally patterned geometries of these silicon
metamaterials. These findings indicate that nanostructuring of patterned defective regions in crystalline materials
is a viable approach to realize a PGEC, and ion beam irradiation could be a promising fabrication strategy.
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I. INTRODUCTION

Since their discovery, thermoelectric materials have at-
tracted extensive interest for direct conversion between heat
and electrical energy via Seebeck/Peltier effects [1–5]. As
opposed to fossil fuels, thermoelectrics are pollution free
during operation, are stable, and have decent manufacturing
scalability [2,5]. Nevertheless, the thermoelectric conversion
efficiency must be enhanced for large-scale future adoption
[1–5]. The conversion efficiency is given by [6]

η = ηC

√
ZT + 1 − 1√

ZT + 1 + TH/TC

, (1)

which, as the figure of merit ZT = σS2T/κ increases,
approaches the Carnot efficiency ηC of an engine operating
between heat baths with temperatures TH and TC . Here σ is
the electrical conductivity, S is the Seebeck coefficient, and κ is
the total thermal conductivity, which aggregates contributions
from electrons and phonons. Since σ,S, and κ are intrinsically
related material parameters, they must be carefully coordinated
in order to achieve a high ZT .

To this end, early efforts focused separately on either
thermal or electrical properties [6]. While κ can be reduced by
phonon engineering [7], the power factor S2σ can be enhanced
by doping and electron band structure engineering such as
in low-dimensional materials and nanostructures [8,9]. In the
1990s, the separate approaches were merged, culminating in
the notion of the phonon-glass electron-crystal (PGEC) [10],
in which a material is perceived as glassy by phonons but
remains crystalline for electrons. To realize a phonon-glass
electron-crystal, several approaches have proven promising.
First, scattering of phonons via disorder, such as by alloying,
rattler structures, and point defects, has been demonstrated.
The alloying approach has recently achieved a high ZT ≈ 2.3
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for iodine-doped Cu2Se [11]. Second, scattering of phonons
through nanostructuring such as superlattices and nanowires
can also be effective. A ZT ≈ 2.4 was reported in p-type
Bi2Te3/Sb2Te3 superlattices at room temperature [12,13].
Third, complex crystals are now emerging [14], including
skutterudites [15] and half-Heusler alloys [16]. The κ of these
compounds is often below 5 W/mK, comparable to glasses,
contributing to a ZT around unity [14]. If only material
performance were relevant, these recently reported examples
would already be quite competitive.

However, for thermoelectric deployment at global scales,
it is imperative to account for material cost and scalability of
manufacturing [2,17]. Most notable thermoelectric materials
contain elements such as Bi, Te, Sb, Pb, and Ag, which are
either expensive, toxic, or challenging for processing. By
contrast, silicon, the most widely used material, is nowa-
days being reconsidered as a promising candidate [17–20].
Due to its low cost and viable manufacturability, investiga-
tions into thermoelectric applications [21] in both bulk alloy
and nanostructured form [17,19] have regained interest. For
instance, bulk Si0.98Ge0.02 has an appealing ZT ∼ 0.32 at the
competitive price of US$1.7/W [19].

In this work, we propose a silicon nanocomposite com-
posed of regularly patterned defective regions embedded in
a crystalline host, as shown in Fig. 1(a), for thermoelectric
applications. In our recent work [22], we directly simulated
the ion beam irradiation process using molecular dynamics
and showed that the effective diameter of defective regions D

and the spacing between them L can be controlled by varying
the parameters of the ion beam irradiation process, such as
ion type, irradiation energy, fluence, beam diameter, and beam
incidence angle. The system considered here shares some
features with other recently proposed concepts for patterned
silicon, such as nanoporous silicon [20], holey silicon [23],
and silicon nanomeshes [24]. Whereas most of these have
concentrated on structuring at the scale of several atomic
spacings, the systems considered here extend to larger length
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FIG. 1. (a) Schematic of silicon metamaterial for thermoelectric applications, where the dark areas denote damaged domains patterned by
ion beam irradiation. (b) The rationale for the patterned system, in which electrical properties are expected to increase towards the bulk values
faster than thermal properties with increasing feature size as a result of the different phonon and electron mean free paths. If the feature size is
larger than the electron mean free path �e and smaller than the phonon mean free path �p , ZT can be enhanced. (c) A representative supercell
for (a) in atomic view, with disordered regions generated by ion beam irradiation, obtained with molecular dynamics simulations. (d) The radial
distribution function for the specimens shown in (a) and (c). New peaks and fine shifts can be observed as the degree of disorder ρ increases.

scales that lie between the mean free path of electrons and
that of phonons. The physical justification for the proposed
metamaterial is illustrated conceptually in Fig. 1(b). Due to
the long phonon mean free paths �p in silicon relative to
the corresponding electron mean free paths �e, we expect
that as the nanostructure feature size grows, the electronic
conductivity will increase and saturate more quickly than the
thermal conductivity. If the interdefective region distance L

falls within the length window spanned by the mean free path of
electrons �e and that of phonons �p , then κ can be reduced due
to phonon scattering while σ is largely retained, and thereby
ZT can be enhanced.

The purpose of the present work is to verify that the
proposed metamaterial formed by ion beam patterning of
silicon can lead to a PGEC. Atomic simulations are performed
to determine the phonon transport and thermal conductivity,
while the Boltzmann transport theory is employed to estimate
the electrical properties. Whereas Green-Kubo calculations
have been well established for obtaining thermal conductivity,
the scattering model for electrons with the cylindrical defective
regions is currently not available in the literature. To bridge
this gap, we derive an analytical scattering model based on the
partial-wave approach and gas-kinetic theory, which combines
quantum and classical transport theories (a similar model
for scattering with quantum dots was proposed recently in
Ref. [25]). The scattering model is based on perturbation theory
and expected to be valid for low-energy, independent carrier
scattering events. Using this scattering model, we demonstrate
that it is possible to achieve a substantial reduction in κ

without sacrificing electrical properties and predict that ZT ≈
0.5 or greater is achievable. This compares well with other
nanostructured silicon systems reported in the literature such
as silicon nanowires (ZT ≈ 1) [18,26] and nanoporous silicon
(ZT ≈ 0.4) [20,23] but, practically, has the advantage of ease
of manufacturability via ion beam irradiation.

II. COMPUTATIONAL METHODS
AND THEORETICAL MODELS

To study the thermoelectric transport properties, we used
different techniques for phonons and electrons. For the pre-
diction of thermal conductivity, we applied Green-Kubo for-
malism implemented in equilibrium molecular dynamics sim-
ulations. Meanwhile, for electrical properties, we resorted to
Boltzmann theory and the relaxation-time approximation.

A. Equilibrium molecular dynamics for κ

The ion-beam-irradiated materials are created by direct sim-
ulation of ion bombardments using molecular dynamics sim-
ulations, as described in detail in our previous work [22]. The
impact location is randomly chosen from a two-dimensional
normal distribution parameterized by beam diameter, which
mimics a focused ion beam apparatus. As annealing is expected
to be most prominent in the first few picoseconds after ion
impact, we allow the system to anneal for 70 ps at T = 300 K
between two consecutive ion impacts. An ensemble of 50 inde-
pendent irradiation processes is simulated to obtain satisfactory

174201-2



THERMOELECTRIC PHONON-GLASS ELECTRON-CRYSTAL … PHYSICAL REVIEW B 97, 174201 (2018)

statistics. All molecular dynamics calculations were performed
using HOOMD-blue [27]. The interactions between silicon
atoms are described by the Tersoff potential [28], and ion-Si
interactions are described by the Ziegler-Biersack-Littmark
universal repulsive potential [29]. Figure 1(c) illustrates an
example of a sample irradiated by a 5 keV Xe ion beam oriented
normal to the surface. The damaged region is characterized as a
cylindrical region with the diameter describing the radial extent
and height describing the range of damage [see Fig. 1(c)].
The corresponding radial distribution function for varying
degrees of disorder is shown in Fig. 1(d), where new peaks
are generated due to the presence of disorder, which drift as
the degree of disorder increases.

The thermal conductivity κ of the irradiated samples is
calculated using the Green-Kubo formulism [30], which relates
κ to the fluctuation of heat flux,

κ = 1

kBV T 2

∫ ∞

0
〈J(t) · J(0)〉dt, (2)

based on the fluctuation-dissipation theorem. Here kB is the
Boltzmann constant, V is volume, t is time, and 〈J(t) · J(0)〉
is the autocorrelation function of heat current J calculated
from molecular dynamics simulations. The integral is con-
sidered converged once the statistical errors fall within 5%.
All simulations were performed at T = 300 K with a time
step of 0.5 fs. The system was equilibrated to the desired
temperature for 20 ps with a Berendsen thermostat and then
sampled in the microcanonical ensemble for an additional
20 ps. The heat current was then recorded for a simulation time
of 6 ns. For each value of κ reported below, ten independent
microstates are simulated, and κ is averaged over in-plane
directions κ = (κx + κy)/2. The calculated κ of pristine silicon
at room temperature is approximately 270 W/mK from this
method, almost twice that of the experimentally observed value
of 150 W/mK [31]. However, this numerical value is consistent
with other molecular simulations using the same potential [32].

B. Boltzmann theory for σ, S

For the electronic properties σ and S we have applied
Boltzmann theory. We use the relaxation-time approximation
and the parabolic-band approximation for the electronic dis-
persion. These approximations are sufficiently accurate for
nondegenerately doped silicon since at typical thermoelectric
operating temperatures (T = 300 K to T = 700 K) the filling

of the conduction bands is relatively small [33,34]. Within this
framework the kinetic definitions of σ and S are given by [6]

σ = −q2
∫

v(ε)2τ (ε)
∂f

∂ε
g(ε) dε, (3)

S = 1

qT

∫
v(ε)2τ (ε) ∂f

∂ε
[ε − μ]g(ε) dε∫

v(ε)2τ (ε) ∂f

∂ε
g(ε) dε

, (4)

where q is the elementary charge, ε is the charge carrier
energy, v(ε)2 = 2ε/m∗ is the group velocity squared, m∗ is
the carrier effective mass, τ (ε) is the relaxation time, f (ε) =
[e(ε−μ)/kBT + 1]−1 is the Fermi-Dirac distribution, μ is the
chemical potential, and g(ε) = √

2π−2h̄−3(m∗)3/2ε1/2 is the
electronic density of states. A factor of 2 accounting for spins
has been absorbed into the density of states. We consider
donor doping by phosphorous (activation energy of 45 meV)
at a concentration of 3 × 1019 cm−3. The resulting carrier
density and Fermi level are determined self-consistently via
a graphical iteration method (see Ref. [35] and Appendix A).
The relaxation time τ (ε) remains the only unknown to be
determined.

To determine τ (ε), we consider intrinsic and extrinsic
scattering processes, with the latter arising here directly
from the damaged regions created by ion beam irradiation.
Matthiessen’s law gives the overall scattering rate as

τ−1
0 (ε) = τ−1

i (ε) + τ−1
D (ε), (5)

where τi(ε) denotes intrinsic and τD(ε) denotes extrinsic
scattering times. This amounts to assuming that the defective
regions act as isolated scattering centers. For τi(ε), we assume
that in the irradiated samples the intrinsic scattering mecha-
nisms remain unchanged from pristine silicon [33], a com-
monly used assumption when studying nanostructured ther-
moelectric metamaterials [20]. We incorporate descriptions
of intrinsic electron scattering according to the deformation
potential of acoustic phonons and optical phonons; all the
material parameters and models are summarized in Table I.
Scattering rates for both acoustic and optical phonons share the
power-law form τi(ε) = τi0(ε/kBT )r , where the parameters
τi0 and r can be fitted to experimental measurements and have
previously been well characterized for silicon [36].

On the other hand, in order to determine τD(ε), we in-
voked the partial-wave approach. Partial-wave analysis is a
general method to calculate scattering cross sections applicable
when the scattering potential is azimuthally symmetric [38],
which is an approximate but reasonable description of the

TABLE I. The scattering mechanisms and corresponding power-law models, τi(ε) = τi0x
ri ,x = ε/kBT , considered in this work. The

dominant scattering mechanisms around and above room temperature are deformation-potential scattering with acoustic and optical phonons.
The parameters are obtained by fitting experimental measurements [36,37]: DA = 9.0 eV, Cl = (3C11 + 2C12 + 4C44)/5 = 1.895 × 107 Pa,
θ = h̄ωLO/kB = 731.1 K, m = 9.11 × 10−31 kg denotes the electron mass, and m∗ = 0.26m is the conductivity effective mass. Note that the
unified power law with identical exponents ri largely simplifies the analysis in this work.

Scattering mechanism i τi0 ri Refs.

Acoustic phonon deformation potential 2.40×10−19Cl

D2
A

T 3/2

(
m

m∗
)3/2 −1/2 [36,37]

Optical phonon deformation potential 4.83×10−19Cl [exp(θ/T )−1]
D2

A
T 1/2θ

(
m

m∗
)3/2 −1/2 [36,37]

Cylindrical defective area π

4
√

2
L2

D

√
m∗
kBT

−1/2 Eq. (12) in this work
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=
=
=

FIG. 2. (a) Schematic of the scattering model for calculating the scattering cross section and scattering time with cylindrical defective area.
(b) The convergence of the exact solution to the infinite scattering barrier with the number of partial waves Nl considered. For ka < 0.5 the S

wave (Nl = 0,l = 0) is sufficient for accurate descriptions of the scattering cross section.

ion-beam-damaged regions. This approach has been applied
recently to estimate the scattering time for electrons interacting
with spherical quantum dots embedded in a host matrix [25].
In the following section, we adapt the method to cylindrical,
rather than spherical, defective regions of interest here. This
theoretical scattering model will also be applicable to other
recently proposed planar-patterned nanomaterials [39] and
two-dimensional nanoporous/holey metamaterials [40,41].

C. Relaxation time τD(ε) due to cylindrical defects

In the following we derive the scattering rate for electrons
τD(ε) due to the presence of a cylindrical barrier potential, as
shown in Fig. 2(a),

V (r) =
{
V0, r � a,

0, r > a,
(6)

where V0 > 0 is the barrier height. Assuming the scattering is
elastic, kinetic theory [42] gives

τD(ε)−1 = ND〈v〉Dm, (7)

where ND is the density of defected regions, 〈v〉 is the average
carrier velocity, Dm =√

4σm/π is the scattering diameter, and
σm denotes the momentum scattering cross section defined by

σm =
∫

σ (θ )(1 − cos θ )d

= 2π

∫ π

0
σ (θ )(1 − cos θ ) sin θdθ, (8)

where σ (θ ) = dσ
d

is the differential scattering cross section that
measures the probability of incident particles passing through
an infinitesimal area dσ and then being scattered into solid
angle d. Here the differential cross section is independent of
azimuthal angle due to the potential symmetry. The description
based on kinetic theory here relies on the assumptions that
scattering events are independent and that carriers can be
described as particles in the classical limit.

A detailed derivation of the scattering cross section using
partial-wave analysis is provided in Appendix B. In the
limit of the low-energy elastic scattering process, the cross
section is

σm ≈ 4πa2

(
1 − tanh(k0a)

k0a

)2

≈ 4πa2, (9)

which is an approximate solution obtained by retaining only
the S-wave (l = 0) component of the complete solution

σm = 4πa2

(ka)2

Nl→∞∑
l=0

(2l + 1)

∣∣∣∣∣
jl(ka)

h
(1)
l (ka)

∣∣∣∣∣
2

, (10)

where jl and h
(1)
l are the spherical Bessel and first-kind Hankel

functions, k2 = 2mε/h̄2, and k2
0 = 2mV0/h̄

2. An a posteriori
justification of the assumed S-wave scattering, with higher-
order terms neglected, is presented in Fig. 2(b). In the limit
of an insulating, impermeable defective region (V0 → ∞),
the boundary condition becomes ψ(a,θ ) = 0. As seen from
Fig. 2(b), the calculated cross section converges quickly with
the number of angular terms Nl included. For instance, when
ka = 0.5 with only l = 0, an error of 1.91% is introduced.
Therefore, retaining the l = 0 term alone well represents
low-energy scattering (ka 
 1).

Before substituting Eq. (9) into Eq. (7) to obtain
the scattering rate, the average velocity of incident carriers
must be found. Within the parabolic band description adopted
here, the carrier speed is related to the energy as v =√

2ε/m∗.
Due to the uniform distribution of angles ϑ ∈ [−π/2,π/2]
between the velocity vector and the longitudinal cylinder axis,
the average incident speed is

〈v〉 =
∫ π/2

−π/2
v cos ϑ�(ϑ)dϑ = 2v

π
, (11)

with the distribution density �(ϑ) = 1/π .
Combining Eqs. (7), (9), and (11) and letting ND = 1/L2

be the number density of the defective areas, the momentum
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relaxation time can be written as

τD(ε)−1 = ND 〈v〉 Dm = 4
√

2

π

D

L2

√
kBT

m∗ x1/2, (12)

where x = ε/kBT . Ultimately, the external scattering rate due
to the cylindrical defective areas exhibits the power-law form
τD(ε) = τD0(ε/kBT )r with the exponent r = 1/2, which turns
out to be the same scaling as in all intrinsic models (see Table I).
The unified power-law scattering conveniently simplifies our
analysis, allowing a unified calculation of electrical proper-
ties. Substituting τ (ε) = (τi0 + τD0)(ε/kBT )r , r = 1/2, into
Eqs. (3) and (4),

σ = 2q2τ0(3/2 + r)(kBT )3/2+r�(3/2 + r)

3
√

2π3/2�(3/2)
(m∗)1/2eη, (13)

S = −kB

q

(
η − r − 5

2

)
, (14)

where � denotes the gamma function and η = μ/(kBT ) is the
reduced chemical potential.

Although this model assumes that scattering events occur
independently, we expect it to capture the transport physics suf-
ficiently. On the one hand, the near-field detailed interactions
could be resolved by adding more components in the partial-
wave expansion. In principle, the expansion could achieve
arbitrary accuracy by introducing more terms. However, we
take only the s-wave component in our model, which simplifies
our analysis and provides satisfactory accuracy (see Fig. 2).
The assumption of independent scattering events would break
down if resonance effects, which would affect the carriers
within a narrow modal window, were to become dominant.
It would also break down if higher-order inelastic scattering
effects are significant, such as when electron energy and/or
temperature are high. The analysis here is therefore limited to
low-energy scattering.

It is also important to note that our model for electron
scattering does not consider the atomic details of the defective
region, which may include dangling bonds and reconstruc-
tions. However, the approach is expected to be a reasonable
approximation since, first, the geometric parameters D and
L are directly controllable through the ion beam irradiation
process. These two parameters are statistically obtained mean
values from our atomistic simulations. Fine structural features,
such as reconstruction and dangling bonds, are higher-order
perturbations to the defective region. Second, we model the
limiting case where the defective area is considered to be
completely electrically insulating. Therefore, it is likely that
the electronic conductivity reported here underestimates actual
values. Although reconstruction and dangling bonds may affect
the electrical conductivity in practice, the effect would be small
near the insulating limit considered here.

III. RESULTS AND DISCUSSION

A. Thermoelectric properties of defective silicon metamaterials

Using the equilibrium molecular dynamics simulations, we
predict κ as a function of the geometric parameters D and L,
as summarized in Fig. 3(a). The thermal conductivity of the
irradiated metamaterials is suppressed appreciably compared
to pristine silicon. For instance, with L = 11 nm and D =

0
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FIG. 3. (a) Thermal conductivity κ , (b) electrical conductivity
σ , (c) Seebeck coefficient S, and (d) figure of merit ZT as a
function of D and L for n-type silicon doped at a concentration of
3 × 1019 cm−3 at room temperature. Both σ and κ are more sensitive
to L than D. Electron conductivity σ grows quickly and saturates
sooner than thermal conductivity κ with L, which allows the patterned
metamaterial to be more crystalline for electrons than for phonons. For
T = 300 K at the given dopant concentration, ZT can be enhanced
to around ZT ≈ 0.5 for optimal L ≈ 11 nm, D ≈ 5 nm. The thick
blue lines correspond to L = D; the regions to the left of the lines are
geometrically unphysical.

5 nm, κ is reduced by a factor of 19 from 270 W/mK
for crystalline silicon. In our recent work combining lat-
tice dynamics and molecular dynamics, this reduction in κ

is found to arise largely from hybridization, interactions,
and avoided crossings between bulklike vibrational modes
and modes confined to the defective regions [43]. As L

increases, κ is expected to approach the numerical value
of 270 W/mK for bulk silicon. The lattice conductivity in
Fig. 3(a) shows high sensitivity to the interdefect distance L

and is less sensitive to the defect diameter D (discussed further
below).

The electrical properties σ and S are plotted similarly
as functions of L and D in Figs. 3(b) and 3(c) from the
closed-form expressions in Eqs. (13) and (14). From Fig. 3(b),
we notice that σ is also more sensitive to L than D, similar
to κ in Fig. 3(a). Furthermore, σ is observed to increase
sharply with L when L < 20 nm but starts to saturate to
the bulk value for larger L. The contrast between the slow,
smooth drop for κ in Fig. 3(a) across the full range of L

and the sharper collapse for σ in Fig. 3(b) for L < 20 nm
results in a window where the PGEC concept of Fig. 1(b) can
be realized. To better understand these trends, we provide a
scaling analysis of κ,σ with D,L in the following section.
Meanwhile, from Fig. 3(c) the Seebeck coefficient S is not
affected by the variations ofL andD in the classical model used
here. This can be understood from Eq. (14), which shows that
S depends only on the reduced Fermi level and the scattering
mechanisms. Since r = −1/2 for both electron-phonon and
electron-defect scattering, for a given dopant concentration
and temperature, the reduced Fermi level is fixed, and S is
independent of the absolute scattering time and thus the defect
density.
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When combined together, the thermal and electrical prop-
erties in Figs. 3(a)–3(c) lead to a figure of merit ZT as shown
in Fig. 3(d). As L decreases, ZT can be enhanced 18-fold
compared to bulk silicon, reaching as high as ZT ≈ 0.5 for
L ≈ 11 nm, D ≈ 5 nm. This value may even underestimate
the actual attainable ZT by nearly a factor of 2 since κ is
overestimated by the same amount using the Tersoff potential.

Even greater ZT can be achieved at higher temperatures
with corresponding optimized doping concentration. Such
temperature effects and possible bipolar contributions may
be interesting considerations for future investigations. In the
silicon metamaterial both electrical and thermal conductivities
are reduced by the patterned defective regions, but ZT is set
by the ratio of electrical to thermal properties, rather than their
individual absolute values. For small L, σ grows faster than
κ , and the material is more “crystalline” for electrons than
for phonons. Therefore, as surmised, the regularly patterned
defects can achieve a PGEC with �e < L < �p.

Another interesting aspect pertains to the ordered distri-
bution of the defective regions and the possible effects of
disrupting this order (were the damaged regions arranged in
a nonregular way). The effects of disordered structures were
considered for nanoporous silicon [20,32], which suggested
that disordered pores would not change thermal conductivity
appreciably and also that an ordered arrangement of pores is
not required to maintain electronic conduction properties. This
is consistent with our kinetic theory analysis, where the defect
sites do not need to be ordered, as long as the mean spacing
between defective areas falls into the length window between
the mean free path of electrons and that of phonons.

B. Sensitivity of thermoelectric properties to L and D

In this section, we present a scaling analysis to understand
both the greater sensitivity of κ and σ to L than D and the
more rapid recovery of σ than κ as L increases. Both κ and σ

can be written as a function of D and L,

ζ (D,L) = b(D,L)�(D,L), (15)

where ζ = κ or σ , b(D,L) accounts for the changes in band
structure for both phonons and electrons, and �(D,L) is the
mean free path. In the following, we assume the band function
b(D,L) is constant and insensitive to D and L, which is
accurate when D 
 L or D and L vary in a narrow range,
as considered in this work.

Therefore, the sensitivity can be defined as

∂ζ

∂(D,L)
= ∂ζ

∂�

∂�

∂(D,L)
, (16)

where ∂(D,L) denotes the partial derivative with respect to D

or L. Similar to Eq. (5), Matthiessen’s law for the mean free
path can be written as

�(D,L) = �i�D(D,L)

�i + �D(D,L)
. (17)

Note that �i represents the intrinsic mean free path in pristine
silicon and is assumed to be insensitive to (D,L). Substituting
Eq. (17) into Eq. (16),

∂ζ

∂(D,L)
=

(
�i

�i + �D

)2
∂�D

∂(D,L)
. (18)

FIG. 4. Scaling of ζ = κ or σ as a function of (a) L and (b) D

based on kinetic arguments for different intrinsic mean free paths �0.
While �0 = 10 nm represents the scaling of electron conductivity,
�0 = 1000 nm approximates the trend of phonon conductivity. For
direct comparison the values of L and D are given with dimensions.
The shaded areas signify the parameter ranges considered in this work.
(c) and (d) Sensitivity toL andD. In the range ofL,κ keeps increasing,
and σ saturates earlier. Meanwhile, for the considered range of D, the
conductivities are similarly sensitive to D and L. These results are
consistent with the trends in Figs. 3(a) and 3(b).

Applying Eq. (12) for τD ,

∂ζ

∂D
∼

(
�i

�i + L2/2D

)2
L2

2D2
, (19)

∂ζ

∂L
∼

(
�i

�i + L2/2D

)2
L

D
. (20)

These scaling forms and corresponding sensitivity are
shown in Fig. 4. Two sets of results are shown for intrinsic
mean free paths �0 = 10 nm and �0 = 1000 nm. The former
represents �e, while the latter represents �p in silicon. In the
relevant ranges of D and L, we observe a similar sensitivity
of σ and κ to L and D. This scaling analysis also recovers
the early saturation in σ for L > 20 nm compared to κ . These
trends are consistent with those in Figs. 3(a) and 3(b).

IV. CONCLUSION

We showed that regularly patterned nanoscale defects
formed by ion beam irradiation in silicon can be used to
realize a phonon-glass electron-crystal, which is of interest
for thermoelectric applications. When the distance between the
patterned defects lies within the length window of electron and
phonon mean free paths, the thermal conductivity can be re-
duced without substantial detriment to the electrical properties.
Using the Green-Kubo relations and equilibrium molecular
dynamics, we predicted a 19-fold reduction in κ . Meanwhile,
with Boltzmann theory the electrical power factor was shown
to retain more than 80% of its value in crystalline silicon.
To apply Boltzmann theory we used partial-wave analysis to
derive a scattering model for electrons in a cylindrical potential.
Combining these predictions, we obtained a ZT ≈ 0.5 or
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greater at room temperature. In consideration of economic
and manufacturing aspects, silicon has been chosen as a
representative material. However, the physical trends observed
may apply to other materials as well, particularly those with
longer phonon mean free paths.
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APPENDIX A: GRAPHICAL APPROACH FOR FERMI
LEVEL AND CHARGE DENSITY

We employed the graphical iteration method to determine
the Fermi level and carrier density for bulk silicon [35].
This method is based on the principle of charge neutrality,
n− = n+, where n− = ne + n−

a is the sum of electron and
ionized acceptor concentrations and n+ = nh + n+

d is the
total of hole and ionized donor concentrations. Fermi-Dirac
statistics gives

n−
a = na

/(
1 + 2 exp

Ea − μ

kBT

)

and

n+
d = na

/(
1 + 2 exp

μ − Ed

kBT

)
,

FIG. 5. The graphical iteration method for the determination of
the Fermi level. The charge-neutrality point is indicated by the
red circle. This approach gives carrier density and Fermi level
simultaneously. In this case, electron density is 7.5 × 15 cm−3, and
Fermi level is 34 meV below CBM.

where Ea and Ed are ionization energies and ne and nh are
intrinsic carrier densities, defined by

ne = 2(m∗
ekBT /2πh̄2)3/2 exp

μ − Ec

kBT

and

nh = 2(m∗
hkBT /2πh̄2)3/2 exp

Ev − μ

kBT
,

where Ec and Ev are the conduction-band minimum (CBM)
and valence-band maximum. The graphical method searches
for the charge-neutrality point graphically considering all these
contributions to the charge density. In Fig. 5, we give the
case of T = 300 K and phosphorous doping at concentrations
of nP = 3 × 16 cm−3 and nAl = 1 × 9 cm−3. The ionization
energies of phosphorous and aluminum in silicon are 45 and
57 meV, respectively. Notice that this approach gives two
important quantities simultaneously: carrier density and Fermi
level. In this case, the electron density is 7.5 × 15 cm−3, and
the Fermi level is 34 meV below the CBM.

APPENDIX B: SCATTERING CROSS SECTION FROM
PARTIAL-WAVE ANALYSIS

For the azimuthally symmetric potential in Eq. (6), an
incident plane wave ψi(z) = A exp (ik · r) is expected to be
scattered into a spherical wave (see, for example, [38]),

ψS(r) = Af (k,θ )
exp(ikr)

r
, (B1)

where f (k,θ ) is the scattering amplitude, and a composite wave
field

ψ(r) = ψi(r) + ψS(r) (B2)

should be sought as the solution to the Schrödinger equation[
∇2 + k2 − 2m

h̄2 V (r)

]
ψ(r) = 0, (B3)

where k2 = 2mε/h̄2. The time-independent form is employed
since the scattering is assumed to be elastic, and thus, energy
remains unchanged during scattering.

The probability of the incident particle with speed
v passing through an infinitesimal area dσ in time
dt is dP = |A|2vdtdσ , which is equal to the proba-
bility of scattering into the corresponding solid angle
d, dP = |A|2|f (k,θ )|2vdtr2d. Thus, by definition the
differential scattering cross section is

σm(θ ) = |f (k,θ )|2. (B4)

Therefore, to determine the scattering rate τ−1
D in Eq. (7),

we need only to calculate the scattering amplitude f (k,θ )
in Eq. (B1). For this, two possible methods are partial-wave
analysis and the Born approximation. However, the latter
assumes a small scattering potential so that the scattering
field is only slightly changed from the incident wave field.
Since the ion beam patterned regions are expected to intro-
duce substantial scattering, it is necessary to consider large
scattering barriers for which the Born approximation becomes
singular. Therefore, we derive the scattering cross section and
momentum relaxation using partial-wave expansion, which
remains valid.
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The partial-wave method decomposes the incident and
scattered wave functions into partial spherical waves and
then imposes boundary conditions to determine the partial-
wave magnitudes or phase shifts for each (see, for example,
Ref. [38]). Based on partial-wave analysis for the azimuthally
symmetric potential, the differential cross section is formu-
lated as

σ (θ ) = 1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ )

∣∣∣∣∣
2

, (B5)

where δl is the phase shift between incident and scattered
waves and Pl is the lth Legendre polynomial. The scattering
process can be completely determined if the phase shifts δl

are known for all partial waves. However, this method is
particularly useful when dealing with low-energy scattering
(ka 
 1), where only the first term (l = 0, the so-called S

wave) dominates. We consider in this work S-wave scattering,
which is also consistent with the assumption of isotropic
scattering as required by Boltzmann theory [36,37]. In other
words, based on the definition in Eq. (8),

σm = 4π

k2
sin2 δ0. (B6)

The solution of the Schödinger equation [Eq. (B3)] thus
formulated is separable, and the radial components of the
equation are

du2

dr2
+ (

k2 − k2
0

)
u = 0, r � a,

(B7)
du2

dr2
+ k2u = 0, r > a,

where k2 = 2mε/h̄2 and k2
0 = 2mV0/h̄

2. The solutions are

u(r) =
{
A sinh(k1r), r � a,

B sin(kr + δ0), r > a,
(B8)

where k2
1 = k2

0 − k2. Imposing the continuity of wave func-
tions and their derivatives at r = a gives

A sinh(k1a) = B sin(kr + δ0), (B9a)

Ak1 cosh(k1a) = Bk cos(kr + δ0). (B9b)

Dividing the two equations above, we obtain

tan δ0 = k tanh(k1a) − k1 tan(ka)

k1 + k tan(ka) tanh(k1a)
. (B10)

Using Eqs. (B6) and (B10), the scattering cross section can be
determined as

σm = 4πa2

(ka)2

Nl→∞∑
l=0

(2l + 1)

∣∣∣∣∣
jl(ka)

h
(1)
l (ka)

∣∣∣∣∣
2

, (B11)

where jl and h
(1)
l are the spherical Bessel and first-kind Hankel

functions. In the limits of low carrier energy ka 
 1 and high
barrier k1a  1, we have k1a ≈ k0a, and the above equation
can be simplified to

tan δ0 ≈ δ0 ≈ k

(
tanh(k0a) − k0a

k0

)
≈ −ka (B12)

and

σm ≈ 4πa2

(
1 − tanh(k0a)

k0a

)2

≈ 4πa2, (B13)

which is Eq. (9) in the main text.
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