
PHYSICAL REVIEW B 97, 174106 (2018)

Understanding and revisiting the most complex perovskite system via atomistic simulations
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A first-principles-based effective Hamiltonian is developed and used, along with direct ab initio techniques,
to investigate finite-temperature properties of the system commonly coined the most complex perovskite, that is
NaNbO3. Such simulations successfully reproduce the existence of seven different phases in its phase diagram.
The decomposition of the total energy of this effective Hamiltonian into different terms, altogether with the values
of the parameters associated with these terms, also allow us to shed some light into puzzling features of such a
compound. Examples include revealing the microscopic reasons of why R3c is its ground state and why it solely
adopts in-phase tiltings at high temperatures versus complex nanotwins for intermediate temperatures. The results
of the computations also call for a revisiting of the so-called P , R, and S states, in the sense that an unexpected and
previously overlooked inhomogeneous electrical polarization is numerically found in the P state while complex
tiltings associated with the simultaneous condensation of several k points are predicted for the controversial R

and S phases.
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I. INTRODUCTION

ABX3 (where X are, e.g., O or F ions) perovskites constitute
an important family of materials since it can exhibit various
important phenomena, such as ferroelectricity, magnetism,
multiferroicity, and superconductivity (see, e.g., Refs. [1–5]
and references therein). Out of all the perovskites known to
date, a particular one has been dubbed the most complex
perovskite system [5], which is NaNbO3. Such a compound
has been extensively studied during the past decades, partly
because of its optical property [6] and its design as high
output piezoelectric nanogenerator (when grown in nanowires’
form) [7] but also because of the possibility to generate
lead-free materials having large piezoelectricity when mixed
with KNbO3 [8–11]. NaNbO3 owes its nickname to the
unusual large number of states appearing in its phase transition
sequence when varying the temperature [12–14]. As a matter
of fact, it is commonly accepted that NaNbO3 has seven major
phases with the highest temperature state being cubic (Pm3̄m,
above 913 K) and being typically denoted as U . Upon cooling
down, this material undergoes a sequence of phase transitions
which were introduced in the classic work of Megaw et al.
in 1974 [14] as: tetragonal T2 phase (P 4/mbm, 913–848 K),
orthorhombic T1 phase (Cmcm, 848–793 K), orthorhombic S

phase (Pmmn, 793–753 K), orthorhombic R phase (Pmmn,
753–633 K), orthorhombic P phase (Pbcm, 633–173 K), and
finally rhombohedral N phase (R3c, below 173 K).

However, controversies still exist nowadays about such a
sequence and some of these phases. For instance, an additional
room temperature Q state of Pmc21 symmetry was suggested
to coexist with the P phase in some NaNbO3 samples,
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depending on their processing (such coexistence arises from
the proposed first-order nature of the transition between these
P and Q phases [15–17]). Similarly, a novel monoclinic struc-
ture with Pm symmetry was proposed at ambient temperature
in Ref. [18], and an original quantum paraelectric phase was
even suggested below 200 K [19]. Moreover, new refined
solutions for the R and S phases can further be found in the
literature. For example, R and S phases of Pbnm symmetry
were given by Mishra et al. based on a high-resolution powder
neutron diffraction study [12], while Peel et al. proposed two
possible structural models for the R phase between 643 K and
743 K: one being of Pbnm symmetry while the other is of
Pmmn space group, with each of these two solutions having
a 2×2×6 periodic cell and differing only by the nature of
the complex tilt system along the long axis. The difficulty
of fully characterizing these R and S phases likely mostly
resides, in fact, in the challenging task of determining their
precise complex and long-period tilting pattern of the oxygen
octahedra along some particular axis.

Several first-principles studies have been carried out in the
past to better understand NaNbO3 (see, e.g., Refs. [20–22]).
However, the fact that ab initio simulations are typically
performed at zero Kelvin and on small supercells renders the
task of, e.g., determining the precise transition sequence and
the characterization of complex phases (such as R and S)
dantesque or can even thought to be impossible. On the other
hand, shedding light into the complexity of NaNbO3 via the
use of first-principles-based atomistic schemes (such as effec-
tive Hamiltonian approaches [23–26], bond valence models
[27–29], shell models [30–32], or all-ions “second principles”
techniques [33,34]) rather than direct first-principles tech-
niques can still be hoped, especially once recalling that such
schemes naturally incorporate temperature effects as well as
are able to treat rather large supercells. Moreover, effective
Hamiltonians have led to remarkable successes in handling
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rather complex issues in the past, such as (1) confirming
the existence of a monoclinic phase in Pb(Zr,Ti)O3 (PZT)
that was experimentally discovered for a narrow range of Ti
compositions [35], and providing a successful explanation for
a long-standing problem, namely why ceramics of PZT exhibit
a so large piezoelectric response [25], and (2) reproducing
and understanding [36] the striking nanostripes experimentally
found in ultrathin films [37,38], as well as, leading to predic-
tions of novel phenomena—such as ferroelectric vortices [39]
and bubbles [40] that were then experimentally confirmed more
than 10 years later after the predictions [41,42]. However, it is
the authors’ belief that being able to demonstrate that atomistic
simulations are able to reproduce the various numerous phases
of NaNbO3 and capture the unusual complexity of this system
is probably the most challenging test ever asked of them. In
other words, succeeding in doing so will put such simulations
at a new and unprecedented predictive level, in addition to
provide a novel probe into this complex system.

The goal of this paper is to build and employ an effective
Hamiltonian scheme for NaNbO3, and to indeed demonstrate
that such a technique does reproduce the existence of seven
important phases in the phase diagram of this material. It even
provides solutions for the R and S phases that emerge from
the simultaneous condensation of several k points (rather than
a unique one) and that result in rather complex tilting patterns.
Strikingly, the use of this effective Hamiltonian, and the
confirmation by additional direct first-principles calculations
we further performed, also call for a revisiting of the P phase.
Finally, the decomposition of the total energy of this effective
Hamiltonian into several different terms is presently found to
be rather useful for the quest of understanding specific features
that make NaNbO3 unique and worthy of its nickname of the
most complex perovskite system.

The paper is organized as follows. Section II reports in
details the developed effective Hamiltonian and its parameters,
as well as details about direct ab initio computations employed
here. Sections III A and III B give and analyze in length
results at small and finite temperatures, respectively. Section IV
provides a discussion aimed at better understanding NaNbO3

by pointing out specific interactions as well as the sign and
magnitude of parameters characterizing the strength of these
interactions. Finally, Sec. V concludes this paper.

II. METHODS

A. Effective Hamiltonian

Here, we develop an effective Hamiltonian (Heff) to mimic
and understand properties of NaNbO3 bulk. It has four degrees
of freedoms, namely (1) the Na-centered local soft mode
ui , which is directly proportional to the electric dipole of
the 5-atom cell i; (2) the homogenous strain tensor, {ηH };
(3) the Nb-centered dimensionless variable vi , that is related
to the inhomogeneous strain within the 5-atom cell i [26]
(note that the total strain, that includes both homogeneous
and inhomogeneous contributions, will be denoted here as
ηl and will be expressed using the Voigt notation, and that
the zero of strain corresponds to the equilibrium 0 K cubic
state of NaNbO3); and (4) the Nb-centered pseudovector ωi

that quantifies oxygen octahedral tiltings [43] (also commonly

termed antiferrodistortive (AFD) distortions) in the 5-atom unit
cell i. For instance, ωi = 0.1 (x+y+z), where x, y, and z are
the unit vectors along the x, y, and z axes (that are aligned
along the pseudocubic [100], [010], and [001] directions,
respectively), characterizes a tilting of the oxygen octahedron
centered around the Nb site i by 0.1

√
3 radians about the

pseudocubic [111] direction.
The total energy of the Heff of NaNbO3 is the sum of two

main energies:

Etot = EFE({u},{ηl}) + EAFD({u},{ηl},{ω}), (1)

where EFE is the energy involving the local modes, elastic
deformations, and their mutual couplings, while EAFD includes
the AFD motions and their interactions with strains and local
modes.

EFE contains the following five terms, as proposed in Ref.
[26]:

EFE =Eself({u}) + Edpl({u}) + Eshort({u})
+ Eelas({ηl}) + Eint({u},{ηl}), (2)

where Eself is the local mode self energy, Edpl is the long-
range dipole-dipole interaction, Eshort represents the short-
range interactions between neighboring local modes excluding
dipole-dipole interactions, Eelas is the elastic energy, and Eint

is the interaction between elastic deformation and local modes.
Explicitly, each term of EFE reads:

Eself =
∑

i

{
κ2u

2
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iyu
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Eint = 1
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∑

i

∑

lαβ

Blαβηl(Ri)uα(Ri)uβ(Ri), (3)

where Rij = Ri − Rj with Ri being the lattice vector of site i.
The sums on i run over all Na sites, and α and β are Cartesian
components along the x, y, and z axes. Moreover, the sum on j

in Edpl runs over all the Na sites that are different from i, while
that on Eshort runs over the first, second, and third nearest Na
neighbors of the Na site i.

Furthermore, the interaction matrix Jijαβ in Eshort can be
simplified for different nearest neighbor (NN) shells as:

first NN: Jijαβ = (j1 + (j2 − j1)|R̂ij,α|)δαβ ;

second NN: Jijαβ = (j4 +
√

2(j3 − j4)|R̂ij,α|)δαβ

+ 2j5 R̂ij,α · R̂ij,β(1 − δαβ);

third NN: Jijαβ = j6δαβ + 3j7 R̂ij,α · R̂ij,β(1 − δαβ), (4)
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TABLE I. Expansion parameters of the effective Hamiltonian for NaNbO3. Atomic units are used here. The reference cubic lattice parameter
is 7.388 Bohr.

Dipole Z∗ 8.8005 ε∞ 5.945

u on-site κ2 0.005112 α 0.11975 γ −0.22342
j1 −0.0101264 j2 0.0335433

u short range j3 0.0036363 j4 −0.0020866 j5 0.0051405
j6 0.0005655 j7 0.00028274

Elastic B11 6.211 B12 1.0818 B44 1.032
uηl coup. B1xx −1.4939 B1yy 0.43861 B4yz −0.020843
ω on-site κA −0.073538 αA 2.69108 γA −2.38182
ω short range k1 0.01838372 k2 −0.000065656 K ′ −0.0236641
ωηl coup. C1xx 0.3093224 C1yy 3.047636 C4yz −1.230160178
ωu coup. (trilinear) Dii,xy −0.0139585
ωu coup. (biquadratic) Exxxx 0.381915 Exxyy 0.0968329 Exyxy −0.799544

where R̂ij,α is the α component of Rij /Rij and δ is the
Kronecker symbol.

Moreover, the energy related to the oxygen octahedral
tiltings and their couplings with the Na-centered {ui} local
modes and ηl strains is given by the expression provided in
Ref. [44], that is:

EAFD({ui},{ηl},{ωi})
=

∑

i

[
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i + γA
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+
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+
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∑
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K ′ω3
i,α (ωi+α,α + ωi−α,α)

+
∑

i

∑
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Clαβηl(i)ωiαωiβ

+
∑

i,j

∑

α,β

Dij,αβuj,αωi,αωi,β

+
∑

i,j

∑

αβγ δ

Eαβγ δωiαωjβujγ uiδ, (5)

where the sums on i run over all the Nb sites, and α and β

are, once again, Cartesian components along the x, y, and z

axes coinciding with the pseudocubic [100], [010], and [001]
directions, respectively. The first sum of EAFD gathers the
onsite contributions associated with the oxygen octahedral
tiltings. It was proposed and/or used in Refs. [44–47]. The
second and third terms characterize the short-range interactions
between AFD motions, with j running over the Nb ions being
first nearest neighbors of the Nb site i, and were given in
Refs. [46] and [44], respectively. In this third term, ωi+α,α is
the α component of the AFD mode at the site shifted from
the Nb site i to its nearest Nb neighbor along the α axis. The
fourth term of EAFD describes the coupling between strain and
AFD, as provided in Ref. [46]. The fifth and sixth terms of
Eq. (5) comprise the coupling between AFD motions and local
modes that include trilinear contributions (that are dependent
on the Dij,αβ coefficients) as well as biquadratic terms (that are
quantified by the Eαβγ δ parameters). In these fifth and sixth
terms, j runs over the eight Na atoms that are first nearest

neighbors of the Nb-site i. These fifth and sixth terms were
introduced in Refs. [44] and [46], respectively.

Moreover, the Kijαβ parameters entering the second energy
of EAFD can be simplified as:

first NN: Kijαβ =(k1 + (k2 − k1)|R̂ij,α|)δαβ. (6)

All the parameters of Eqs. (3)–(6) are determined by per-
forming several first-principle calculations on relatively small
cells (typically, up to 40 atoms) using the local density
approximation (LDA) [48] within density functional the-
ory and the CUSP code [49] that takes advantage of the
ultrasoft-pseudopotential scheme [50] (note that the same
pseudopotentials as those given in Ref. [51] were used here,
that is we consider the following valence electrons for Na
(2s22p63s1), Nb (4s24p64d45s1), and O (2s22p4) ions, with
a 25 Ry plane-wave cutoff). These parameters are listed in
Table I, and we will often pay close attention to them in the
following to understand but also revisit properties of NaNbO3.
Note that such parameters are extracted by considering small
perturbations with respect to the cubic state and therefore do
not rely on the full relaxation of any phase (see, e.g., Ref. [26]
and references therein for more details on such extraction in the
case of the coefficients entering EFE). As a result, the fact that
we used LDA to obtain the parameters of Heff of NaNbO3 does
not automatically imply that our results for relaxed structures
predicted by the effective Hamiltonian will be closer to those
resulting from the direct use of LDA than to those of other
functionals such as the generalized gradient approximation
(GGA) in the form of revised Perdew-Burke-Ernzerhof [52]
(PBEsol), especially if employing these two functionals within
first-principles calculations provide similar results in terms
of structure and minute differences between total energy of
different relaxed phases—as it is, in fact, known in NaNbO3

bulk [53].
Once the different terms of the Heff of NaNbO3 are identified

and their parameters determined, we then employ this effec-
tive Hamiltonian within Monte-Carlo (MC) simulations on a
12×12×12 supercell (which corresponds to 8640 atoms). Note
that we deliberately chose a length of 12 lattice constants along
any Cartesian axis because this is the maximal periodicity
ever reported for any phase in NaNbO3 bulk [12] and because
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it is also commensurate with the periodicity of 4 and 6
lattice constants often suggested for some states of this system
[13,54–56]. Such a choice therefore cannot lead to (presently
unseen and unknown) phases for which the periodicity is not
commensurate with 2, 3, 4, 6, or 12 lattice constants. For
instance, a periodicity of, e.g., 16 lattice constants will not
be captured by this choice. For each temperature, 40 000 MC
sweeps are performed, with the first 20 000 allowing the system
to equilibrate and the subsequent 20 000 being used to compute
statistical averages.

B. Direct first-principles calculations

We also conducted direct 0 K first-principles calculations,
mostly to check the predictions of the aforementioned Heff

at low temperature but also to gain a deeper insight into
NaNbO3. For these latter calculations, we also used LDA
[48] as well as GGA within the PBEsol functional [52],
as implemented in the VASP package [57]. The projector
augmented wave [57,58] (PAW) is applied to describe the
core electrons. Seven electrons for Na (2p63s1), 13 electrons
for Nb (4s24p64d45s1), and 6 electrons for O ions (2s22p4)
are treated as valence electrons. The plane-wave cutoff is set
to be 550 eV. Different crystal structures (to be discussed
below) within the perovskite lattice are fully relaxed until
the Hellmann-Feynman force on each atom is converged
to be less than 0.001 eV/Å. The transition path from one
state to another was obtained using the variable-cell nudged
elastic band method (VCNEB) [59] which is an extension of
the nudged elastic band (NEB) technique included with the
USPEX code [60–62] in combination with the VASP package.
Phonon dispersion curves are calculated using the density
functional perturbation theory (DFPT), as implemented in the
ABINIT package [63–65]. Exchange and correlation functional
is treated with optimized norm-conserving pseudopotentials
[66], with the Perdew-Burke-Ernzerhof (PBE) parametriza-
tion. The wave functions are expanded using plane-wave
basis sets with a kinetic energy cutoff of 30 Hartree. The
self-consistent calculations are performed with an unshifted
4×4×2 k-point grid. The same grid is used for q point in the
phonon calculation.

III. RESULTS

A. Results at small temperature

Running simulations at low temperature (namely, 10 K)
within the effective Hamiltonian described above, along with
its parameters given in Table I, provide a R3c ground state,
as consistent with measurements [21,67]. Such an R3c state is
characterized by a polarization lying along the pseudocubic
[111] direction altogether with oxygen octahedra tilting in
antiphase about this polarization axis (its oxygen tilting pattern
is thus described by a−a−a− in Glazer notation [68]). Table II
provides the total energy (with respect to the equilibrium
paraelectric Pm3̄m phase) of this R3c state, as well as that of
two specific other states that the effective Hamiltonian predicts
to be of rather low energy, namely a Pnma state and a state
that we will refer to here as Phase 1.

The Pnma state is one of the most common phases of
perovskites and possesses three main finite order parameters

TABLE II. Internal energies, in meV per 5 atoms, of the R3c,
Pnma, and Phase 1/P ca21 states of NaNbO3 at 10 K, as predicted
from the presently developed Heff, LDA, and PBEsol simulations.
The zero of energy corresponds to the equilibrium cubic paraelectric
Pm3̄m state.

State Heff LDA PBEsol

R3c −155.93 −199.69 −108.70
Pnma −150.24 −198.61 −91.66
Phase 1/P ca21 −155.53 −201.41 −107.46

[69]: (1) an antiphase tilting of the oxygen octahedra about the
pseudocubic [110] direction (such tilting is associated with
the R point of the cubic first Brillouin zone); (2) an in-phase
tilting of the oxygen octahedra about the pseudocubic [001]
direction (the corresponding k point is the M point of the
the cubic first Brillouin zone)—therefore yielding the a−a−c+
Glazer notation [68] for the whole tilting pattern; and (3) an
antipolar vector corresponding to displacements of Na ions
being along the pseudocubic [110] direction in one of every
other (001) planes and along the opposite [1̄1̄0] direction in
the other subsequent (001) planes (this antipolar vector is
therefore associated with the X point of the cubic first Brillouin
zone). These three order parameters are coupled via a trilinear
coupling whose strength is related to the Dii,xy coefficient of
Table I, as demonstrated in Ref. [70].

Phase 1 is, to the best of our knowledge, a phase that has
been overlooked in NaNbO3. It has a spontaneous polarization
along the pseudocubic [001] axis but which is not fully
homogeneous. For instance, doing a Fourier transform of the z

component of the local dipoles [71] in our 12×12×12 supercell
leads to a 88% weight on the 
 point (which is associated with
the polarization) but also to an additional 10% on the X point
(which corresponds to antipolar motions along the [001] axis)
at 10 K. Furthermore, Phase 1 also exhibits antiphase tilting of
the oxygen octahedra about the pseudocubic [110] direction.
It further possesses a complex oxygen octahedral tilting about
the [001] direction that is associated with the reciprocal k

point lying halfway between the M and R points. As a result,
a periodic series of “++−−” occur for the tilting pattern
about the z axis when moving along any [001] line, implying
that Phase 1 is a nanotwin or a long-period modulated state
[44,72] having a periodicity of four lattice constants. Antipolar
displacements of the Na ions along [110] and that are indexed
by the k point being halfway between the 
 and X points
also emerge in this Phase 1, because of a trilinear coupling
(also involving the Dii,xy coefficient of Table I) between
these antipolar displacements, the antiphase oxygen octahedral
tiltings about the [110] direction, and the more complex tilting
pattern about the [001] direction [70]. The periodic pattern
of the x and y components of these antipolar displacements
is of the type “+0 − 0” when moving along the z axis. All
these polar, antipolar, and tilting pattern features likely imply
that Phase 1 adopts the Pca21 space group. It is interesting
to realize that (i) Pca21 can be thought of as being derived
from the Pbcm state (that is well known in pure NaNbO3

[54,73]), but when superposing a spontaneous (inhomoge-
neous) polarization along the [001] axis and (ii) that a Pca21
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FIG. 1. Phonon spectrum of the Pbcm (a) and Pca21 (b) states,
as predicted by the direct use of first-principle DFPT calculations.
Notice the unstable modes (having negative frequencies) around 


for the Pbcm state.

phase has been reported near room temperature when slightly
doping NaNbO3 by Li such as to make the (Li0.02Na0.98)NbO3

compound [54]. Furthermore, we numerically find that starting
the Heff simulations with a pure Pbcm state at low temperatures
results in the formation of Phase 1 after relaxation, mostly
because of the large negative value of the Exyxy coefficient
of Table I—which favors a coupling between the out-of-
plane polarization, in-plane antipolar displacements, antiphase
tiltings, and the more complex tilting pattern about the [001]
direction. Interestingly, direct 0 K first-principles calculations
predict that (1) the phonon spectrum of Pbcm exhibits unstable
modes (especially around the 
 zone center), unlike that of
Pca21, as depicted in Fig. 1, and (2) Pca21 has a lower energy
than Pbcm by 0.12 meV per 5 atoms (when using the PBEsol
functional). Items (1) and (2) therefore further strongly suggest
the possibility of finding Phase 1/P ca21 rather than Pbcm

in NaNbO3 at low temperature. The polarization of Phase 1
is predicted to be about 0.18 C/m2 at 10 K by our effective
Hamiltonian, which is about 2.5 smaller than the predicted
polarization of the R3c state by the Heff method (note that
this smaller value of the polarization of Phase 1 may explain

the previous overlooking of this state at low temperatures,
especially in samples for which coexistence of phases with the
R3c state are known to occur [22]). Interestingly, the direct
use of first-principles calculations using the PBEsol functional
provides a polarization of the order of 0.13 C/m2 for Pca21,
which indicates that our current effective Hamiltonian yields
the right order of magnitude of the spontaneous polarization
of Phase 1. (Note that our fully ab initio calculations within
LDA functional basically gives the same energy for Pbcm

and Pca21 and yields a smaller polarization of 0.05 C/m2

for the Pca21 state. However, the LDA functional is also
previously known to wrongly predict that Pbcm has a lower
internal energy than R3c in NaNbO3 [53]—therefore casting
some doubts about direct 0 K LDA results for some relaxed
states.)

Moreover, Table II indicates that the effective Hamiltonian
with the parameters listed in Table I yields internal energies for
R3c, Pnma, and Phase 1/P ca21 that are basically all halfway
between those of our direct LDA and PBEsol calculations.
It also reveals that the energies of R3c and Phase 1/P ca21

are very close to each other (namely, within 2 meV/5 atom),
while that of Pnma is further away but by less than 17 meV
per 5 atom, in all types of calculations. It is also interesting
to notice that the direct LDA calculations incorrectly predict
that Pca21 is the ground state of NaNbO3, which contradicts
experimental results but which is consistent with previous
LDA computations indicating that Pbcm has a lower energy
than R3c [53]. On the other hand, both the Heff and PBEsol
calculations correctly give a R3c ground state, with the (neg-
ative) difference in energy between R3c and Phase 1 arising
from the effective Hamiltonian being about −0.4 meV per 5
atom—which is therefore (once again) in between the positive
difference in energy between R3c and Pca21 of +1.7 meV
per 5 atom given by LDA simulations and the corresponding
negative difference in energy of −1.2 meV per 5 atom provided
by the PBEsol computations.

Furthermore, Figs. 2(a) and 2(b) reveal that the hierarchy
between the Heff energies of these three phases can be dra-
matically altered by varying the Exyxy and Dii,xy coefficients,
respectively, therefore demonstrating the crucial importance
of coupling between cation displacements and oxygen octa-
hedral tiltings in NaNbO3. More precisely, making the Exyxy

parameter less negative with respect to its value given in Table I
first results in Phase 1 and then Pnma becoming the states of
lowest energy [see Fig. 2(a)]—which indicates that having a
large and negative Exyxy coefficient is essential to make R3c

the (experimental) ground state of NaNbO3. Such evolution
from R3c to Pnma, via Phase 1, can also be accomplished by
making the Dii,xy trilinear coupling parameter more negative,
as shown in Fig. 2(b), since the energy of Pnma is rather
sensitive to it, unlike that of R3c, while that of Phase 1 also
depends on Dii,xy but to a smaller extent than Pnma—as
consistent with the energetic term of Eq. (5) involving Dii,xy

(and that is provided and analyzed in detail in Ref. [70]).
Interestingly, Fig. 2 can also be thought of as indicating that a
small uncertainty in the determination of the Exyxy and Dii,xy

coefficients can lead to a change in ground state, which may
further explain why our effective Hamiltonian method (with
its LDA-determined coefficients) yields a R3c ground state,
unlike fully relaxed direct LDA calculations.
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FIG. 2. Dependency of the Heff internal energy of the R3c, Pnma,
and Phase 1/P ca21 phases at 10 K, as a function of the Exyxy (a) and
Dii,xy (b) coefficients. The other effective Hamiltonian parameters
are those given in Table I during these two variations and energies
are given in meV per 5 atom, with the zero in energy referring to
the equilibrium cubic paraelectric Pm3̄m state (i.e., having a lattice
parameter of 7.388 Bohr).

B. Results as a function of temperature

The temperature behavior of NaNbO3 is experimentally
known to be extraordinarily complex since it involves several
phases, including some being under intense discussion—as
evidenced by the facts that different experimental groups
proposed different space groups for, e.g., the R and S phases
[12,13,55,74] and even suggested that the P state can consist
of three different phases [75]. Such complexity is encountered
in our Monte-Carlo simulations using the effective Hamilto-
nian. For instance, if we cool the system from high to low
temperatures, the Heff calculations provide a Pnma state for
the lowest temperatures, despite the fact that the energy of R3c

is lower than that of Pnma by more than 5 meV per 5 atom
(see Table II). Similarly, if we start from the R3c ground state
and heat up NaNbO3 bulk, neither Pbcm state nor Pbcm-like
phases (such as Phase 1/P ca21) emerge in the simulations up
to the highest investigated temperatures, at which the system
is paraelectric cubic, while such latter phases are well known
to exist in the phase diagram of pure and slightly-doped
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FIG. 3. Temperature dependency of the components of the ho-
mogeneous strain tensor between 10 and 320 K, as predicted by
the presently developed effective Hamiltonian. The zero of strain
corresponds to the equilibrium cubic paraelectric Pm3̄m state (i.e.,
having a lattice parameter of 7.388 Bohr). The error bars on the finite
elements of the strain tensor range between 5.5 and 8.3×10−4 at
300 K, that is at least one order of magnitude smaller than the average
values of such strain elements.

NaNbO3 compounds [14,54,56]. Such difficulties arise from
the facts that several and rather crystallographically-different
phases have very close free energies in NaNbO3 and that
the barrier between such phases is rather high. For instance,
we numerically found (not shown here) that the energetic
barrier between R3c to Pca21 is as large as 14 meV/5 atom
when using the PBEsol functional within direct ab initio
calculations, with this barrier being associated with a state
of Pc symmetry—while R3c and Pca21 have very similar
internal energy, as indicated in Table II.

As a result, we adopt the following strategy here: We
start our MC calculations with the aforementioned Phase
1 at 10 K and progressively heat up the system until it
transforms into the Pm3̄m paraelectric cubic state. We extract
the following quantities from the outputs of the MC simulations
at any investigated temperature: (1) all six components of the
homogeneous strain tensor; (2) the 〈u〉 supercell average of
the local mode vectors {ui}, which is directly proportional
to the spontaneous electric polarization; (3) the 〈ωR〉 vector
that characterizes antiphase tilting of the oxygen octahedra
[43] and that is defined as ωR = 1

N

∑
i ωi(−1)nx (i)+ny (i)+nz(i),

where the sum runs over the N sites i and nx(i), ny(i) and
nz(i) are integers locating the cell i [in the ideal perovskite
structure, and denoting the 5-atom cubic lattice constant by
alat , this cell i is centered at alat(nx(i)x + ny(i)y + nz(i)z)];
and (4) the 〈ωMx〉, 〈ωMy〉, and 〈ωMz〉 vectors that represent
in-phase oxygen octahedral tiltings and that are given by
ωMx = 1

N

∑
i ωi(−1)ny (i)+nz(i), ωMy = 1

N

∑
i ωi(−1)nx (i)+nz(i),
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FIG. 4. Temperature dependency of the supercell average of the
local mode vectors between 10 and 320 K, as predicted by the
presently developed effective Hamiltonian. The error bar on 〈uz〉 is
equal to 6×10−4 at 300 K, that is about one order of magnitude smaller
than 〈uz〉.

and ωMz = 1
N

∑
i ωi(−1)nx (i)+ny (i). The strain, 〈u〉 and 〈ωR〉

are shown in Figs. 3, 4, and 5, respectively, as a function of
temperature up to 320 K (no in-phase tiltings are found up to
320 K, which explains why we do not display 〈ωMx〉, 〈ωMy〉,
or 〈ωMz〉 in this temperature range). They are also depicted in
Figs. 6, 7, and 8, respectively, but within the smaller tempera-
ture window ranging between 320 K and 390 K, because, as we
will see below, various phase transitions are predicted there.
Note that Fig. 9 further reports the y component of 〈ωMy〉 in
this smaller interval because it is the only component out of
those of all in-phase pseudovectors that is numerically found
to be finite for some temperatures there. We also performed
Fourier transform of the last MC configuration of both the local
modes and tilting patterns [71] at any temperature, in order to
identify possible significant k points that are associated with
the phases presently numerically found and to be discussed
below. Note that such phases can be complex, implying that
some of these k points are neither at the zone center nor at the
zone boundary of the cubic first Brillouin zone. For instance,
in our aforementioned Phase 1/P ca21 state, such k points are
2π

4alat
z for the pattern of the x and y components of the ui local

modes and 2π
alat

( 1
2 x + 1

2 y + 1
4 z) for the configuration of the z

component of the ωi AFD pseudovectors. All significant k

points are reported in Table III for the phases that the MC
simulations numerically found and that we are going to discuss
in details below. We adopt here the convention that ku,x, ku,y,
ku,z correspond to the significant k point(s) found in the Fourier
transform of the configuration of the x, y, and z components
of the local modes, respectively. Similarly, kAFD,x, kAFD,y, and
kAFD,z are the k points having significant weights in the Fourier
transform of the pattern of the x, y, and z components of the
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FIG. 5. Temperature dependency of the 〈ωR〉 antiphase tilting
vector between 10 and 320 K, as predicted by the presently developed
effective Hamiltonian. The error bars on 〈ωR,x〉 and 〈ωR,y〉 are about
5×10−3 at 300 K, that is about two orders of magnitude smaller than
〈ωR,x〉 and 〈ωR,y〉.

ωi AFD pseudovectors, respectively. In some cases, several k

points occur for the same pattern, some of them having a major
weight while others are minor, but all the k points having a
weight larger than 5% are reported in Table III. Note that we
can not practically determine the space group of the phases to
be discussed below, mostly due to the significant fluctuations
experienced by the tiltings between the different sites of the
supercells at finite temperature as well as because of the large
supercell used in our simulations. We nevertheless hope that
all the structural information we are providing below can be
useful to experimentalists when trying to fit their data by some
specific space groups.

Figures 3, 4, and 5 indicate that NaNbO3 bulk is predicted
to stay within Phase 1 at least up to 320 K, with the degrees
of freedom of this phase decreasing in magnitude when the
temperature increases. For instance and as seen in Fig. 4, the z

component of 〈u〉 (which is directly related to the out-of-plane
polarization of Phase 1) decreases from 0.0181 atomic units at
10 K to a value as small as 0.0025 atomic units at 300 K, which
corresponds to a rather small polarization of 	0.02 C/m2 and
which may thus explain why Phase 1 has been overlooked
in favor of Pbcm in previous measurements of the P phase
of NaNbO3 [12,56] (recall that Pbcm has no polarization).
Similarly and as indicated in Fig. 5, the antiphase tilting
about the [110] pseudocubic is reduced as the temperature
increases up to 320 K. The negative ηH,1 = ηH,2 elements
of the homogeneous strain tensor, as well as the slightly less
negative ηH,3 and the shear strain ηH,6, also all get reduced in
magnitude during that heating within Phase 1, as displayed
in Fig. 3. Note that such strain tensor is indicative of an
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FIG. 6. Temperature dependency of the components of the ho-
mogeneous strain tensor between 320 and 390 K, as predicted by
the presently developed effective Hamiltonian. The zero of strain
corresponds to the equilibrium cubic paraelectric Pm3̄m state (i.e.,
having a lattice parameter of 7.388 Bohr). The vertical solid lines
depict transition temperatures, and the ‘1,’ ‘2,’ ‘3,’ ‘4,’ ‘5,’ and ‘cubic’
notations refer to the Phases 1, 2, 3, 4, and 5, as well as the paraelectric
cubic state, discussed in the text. The same vertical scale is used as
in Fig. 3, for comparison. The error bars on the diagonal elements of
the strain tensor are about 7×10−4 at 335 K, that is at least one order
of magnitude smaller than the average values of such strain elements.
The error bar on ηH,5 is about 10−3 at 335 K, which is about three
times smaller than the average value of this shear strain component.

orthorhombic symmetry for Phase 1, as consistent with a
Pca21 space group.

On the other hand, Figures 6–9, along with Table III, are
full of new information (note, in particular, that Table III is
going to be rather useful to analyze tilting patterns, especially
because Fig. 8 demonstrates that 〈ωR〉 experiences rather large
fluctuations, likely because several phases have similar free
energies). For instance, at about 332 K, a transition from Phase
1 to a state coined here as Phase 2 is happening in the MC
simulations. Phase 2 is characterized by ηH,2 being now the
smallest-in magnitude (but still negative) diagonal element of
the strain tensor, while the (negative too) ηH,3 becomes now
equal to ηH,1 and the only nonzero shear strain is now ηH,5.
Such change in strain is linked to modifications of the tilting
patterns: The antiphase tiltings are now about both the x and
z axes, with these two tiltings being not necessarily equal to
each other anymore in magnitude (see Fig. 8), while the tilting
about the y axis has now the 2π

alat
( 1

2 , 1
6 , 1

2 ) k point as its majority
k point. However, Table III further informs us that two other k

points, namely 2π
alat

( 1
2 , 1

4 , 1
2 ) and the M point, are also involved

to a lesser extent in the oxygen octahedral pattern about the
y axis in Phase 2 (note that the occurrence of this M point is
fully consistent with the small but finite and nearly constant
value of 〈ωMy〉 shown in Fig. 9 between 332 K and 338 K). The
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FIG. 7. Temperature dependency of the supercell average of the
local mode vectors between 320 and 390 K, as predicted by the
presently developed effective Hamiltonian. The vertical solid lines
depict transition temperatures, and the ‘1,’ ‘2,’ ‘3,’ ‘4,’ ‘5,’ and ‘cubic’
notations refer to the Phases 1, 2, 3, 4, and 5, as well as the paraelectric
cubic state, discussed in the text. The same vertical scale is used as
in Fig. 4, for comparison. The error bar on 〈uy〉 is equal to 6×10−4 at
335 K, which is of the same order as 〈uy〉 itself, implying that 〈uy〉 is
statistically null—as consistent with the ‘N/A’ wording used for ku,y

in Table III.

resulting pattern of oxygen octahedral tilting about the y axis
is found to be of the periodic form “−−+++++−−+++”
when moving along any [010] line. Phase 2 is therefore also
a nanotwin phase [44] but now having a periodicity of twelve
lattice constants along the y direction. One can then propose
to characterize such a tilting pattern by extending the Glazer
notation as a−bcomplex,12c− to indicate that the x- and z-axis
experience antiphase tiltings that are not necessarily of the
same magnitude while there is a complex tilting of 12-lattice
constant periodicity about they axis in Phase 2. Note that in that
extension of the Glazer notations, the tilting pattern of Phase 1
(which is our P phase) is described as a−a−ccomplex,4 and
that we will use such extended notations to characterize other
phases to be discussed soon. On the other hand, no overall
long-range polar or antipolar cation motions occur in Phase 2,
as evidenced by the “N/A” wording ascribed to ku,x, ku,y,
ku,z in Table III. We propose that Phase 2 is the R state of
NaNbO3, especially since its majority k point is 2π

alat
( 1

2 , 1
6 , 1

2 )
and thus will imply a periodicity of six lattice constants (when
taken alone), as indeed proposed in Refs. [12,55,74]. Note
that it is the additional 2π

alat
( 1

2 , 1
4 , 1

2 ) of Table III that, altogether

with 2π
alat

( 1
2 , 1

6 , 1
2 ), makes our Phase 2 adopting a periodicity

of 12 rather than 6 lattice constants along its long axis. It is
also important to realize that the P -to-R transition has been
observed to be of first order [12], which is also in line with the
predicted jump of some strain components at about 332 K in
our Fig. 6.
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FIG. 8. Temperature dependency of the 〈ωR〉 antiphase tilting
vector between 320 and 390 K, as predicted by the presently devel-
oped effective Hamiltonian. The vertical solid lines depict transition
temperatures, and the ‘1,’ ‘2,’ ‘3,’ ‘4,’ ‘5,’ and ‘cubic’ notations refer
to the Phases 1, 2, 3, 4, and 5, as well as the paraelectric cubic state,
discussed in the text. The same vertical scale is used as in Fig. 5, for
comparison. The error bars on 〈ωR,x〉 and 〈ωR,z〉 range between 1 and
2×10−2 at 335 K, that is about three to four times smaller than 〈ωR,x〉
and 〈ωR,z〉.

Moreover, Phase 2 is found to persist up to 338 K, at which
point it makes way to a state that we denote as Phase 3 and that
remains stable until 340 K. Some changes between Phases 2
and 3 are rather subtle, in the sense that (i) all three significant
k points characterizing the tilting pattern about the y axis of
Phase 2 are still there in Phase 3 but with the difference that the
majority point is now the M point, as evidenced by the sudden
increase of 〈ωMy〉 when increasing the temperature from 338
K to 341 K, as shown in Fig. 9, and (ii) an additional k point
emerges in such a tilting pattern, that is 2π

alat
( 1

2 , 1
12 , 1

2 ), therefore
further emphasizing an overall periodicity along the y axis
of 12 lattice constants. Note that the tilting pattern of Phase 3
about the y axis varies from that of Phase 2, via the formation of
the “−−++++++−+++” periodic series along any [010]
line, that is by replacing the − sign in the eighth site of the
tilting sequence in Phase 2 by an opposite sign in Phase 3.
Phase 3 differs also from Phase 2 by the vanishing of antiphase
tiltings about the x axis, unlike for the z axis. In other words,
Phase 3 is still a nanotwin state (likely of orthorhombic or
monoclinic symmetry, according to the finite strain elements
depicted in Fig. 6) but with a description being of the form
a0bcomplex,12c−. Such a Phase 3 is presently suggested to be
the documented S state of NaNbO3, which has also been
reported to have a 12-lattice constant periodicity along a
pseudocubic 〈100〉 axis [12] (note that the longer periodicity
is along the y axis in our case while it is about the z axis in
Ref. [12], but such axes are symmetrically equivalent—that
is, we can also find in our simulations a Phase 3 for which
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FIG. 9. Temperature dependency of the y component of the 〈ωMy〉
in-phase tilting pseudovector between 320 and 390 K, as predicted
by the presently developed effective Hamiltonian. The vertical solid
lines depict transition temperatures, and the ‘1,’ ‘2,’ ‘3,’ ‘4,’ ‘5,’ and
‘cubic’ notations refer to the Phases 1, 2, 3, 4, and 5, as well as the
paraelectric cubic state, discussed in the text. The same vertical scale
is used as in Figs. 5 and 8, for comparison. The error bar on 〈ωMy,y〉
is about 10−2 at 370 K, that is about one order of magnitude smaller
than 〈ωMy,y〉.

the longer axis is along the pseudocubic [001] direction). It
is also interesting to realize that Refs. [13,55] rather proposed
that the S structure is of the type a−b+c+, a+b+ccomplex,4 or
a0b+ccomplex,4, that is either having an in-phase tilting or a
complex tilting of four-lattice constant periodicity about the
z axis and that such tiltings are in fact related to k points
appearing in Table III for Phase 3 too when interchanging the
y and z axes [i.e., 2π

alat
( 1

2 , 1
2 ,0) and 2π

alat
( 1

2 , 1
2 , 1

4 )]. However, as
indicated above, the overall periodicity about the long axis of
Phase 3 is presently found to be of 12 lattice constants because
of the presence of the minority 2π

alat
( 1

2 , 1
12 , 1

2 ) k point, as well

as the existence of 2π
alat

( 1
2 , 1

6 , 1
2 ) in addition to 2π

alat
( 1

2 , 1
4 , 1

2 ). The

fact that 2π
alat

( 1
2 , 1

12 , 1
2 ) and 2π

alat
( 1

2 , 1
6 , 1

2 ) are of minority rather
than of majority may explain why Refs. [13,55] did not
report an overall periodicity of 12 lattice constants for the
S state.

A phase, termed as Phase 4, emerges at about 340 K
and is stable up to 342 K. Phase 4 differs from Phase 3 by
the occurrence of “only” in-phase tiltings about the y axis.
In other words, Phase 4 is not a nanotwin anymore but is
rather a state that is described by the conventional Glazer
notation [68] as a0b+c−. Such a simpler state is consistent
with the a−b0c+ phase proposed for the so-called T1 phase
of NaNbO3 [13], which is orthorhombic and of Ccmm space
group. Note that the new tilting pattern of Phase 4 with respect
to Phase 3 leads to the stabilization of 〈ωMy〉 to a fixed value
(see Fig. 9).
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TABLE III. Significant k points associated with the phases numerically found by the MC simulations using the presently developed effective
Hamiltonian, in 2π

alat
unit. The wordings “maj” and “min” refer to k points having majority and minority weights, respectively. The value in

percentage corresponds to the weight of the Fourier component of the corresponding pattern on these k points for the temperature of 10 K in
Phase 1, 335 K in Phase 2, 339 K in Phase 3, 341.5 K in Phase 4, and 370 K in Phase 5. Note also that the weight on 2π

alat
(0,0, 1

4 ) is identical

to that on the opposite 2π

alat
(0,0, − 1

4 ) k point for the pattern associated with the x component or y component of the local modes. Similarly, the

eight k points defined by 2π

alat
(± 1

2 ,± 1
n
, ± 1

2 ) [respectively, 2π

alat
(± 1

2 ,± 1
2 ,± 1

n
)], with n being 4, 6, or 12, all have the same weight for the pattern

inherent to the y component (respectively, z component) of the AFD pseudovectors.

State ku,x ku,y ku,z kAFD,x kAFD,y kAFD,z

Phase 1 (0,0, 1
4 ), 48.2% (0,0, 1

4 ), 48.2% 0 (maj, 87.8%) ( 1
2 , 1

2 , 1
2 ),99.8% ( 1

2 , 1
2 , 1

2 ), 99.8% ( 1
2 , 1

2 , 1
4 ), 49.9%

(0,0, 1
2 ) (min, 9.6%)

Phase 2 N/A N/A N/A ( 1
2 , 1

2 , 1
2 ), 45.5% ( 1

2 , 1
6 , 1

2 ) (maj, 17.9%) ( 1
2 , 1

2 , 1
2 ), 50.6%

( 1
2 , 1

4 , 1
2 ) (min, 9.1%)

( 1
2 ,0, 1

2 ) (min, 7.5%)

Phase 3 N/A N/A N/A N/A ( 1
2 ,0, 1

2 ) (maj, 19.5%) ( 1
2 , 1

2 , 1
2 ), 52.6%

( 1
2 , 1

4 , 1
2 ) (min, 10.4%)

( 1
2 , 1

6 , 1
2 ) (min, 9.2%)

( 1
2 , 1

12 , 1
2 ) (min, 5.6%)

Phase 4 N/A N/A N/A N/A ( 1
2 ,0, 1

2 ), 57.9% ( 1
2 , 1

2 , 1
2 ), 11.5%

Phase 5 N/A N/A N/A N/A ( 1
2 ,0, 1

2 ), 71.9% N/A

Another transition occurs at about 342 K, resulting in
the vanishing of the antiphase tilting about the z axis and
in the formation of Phase 5. Such a latter phase therefore
adopts the rather simple a0b+a0 Glazer notation [68] and is
the known T2 state of NaNbO3 [76] having the P 4/mbm

symmetry. This state is thus tetragonal, as consistent with the
nonzero strain components depicted in Fig. 6. As shown in
Fig. 9, the magnitude of the in-phase tilting is decreasing
as the temperature increases from 342 K to 373 K, until
Phase 5 transforms into the Pm3̄m paraelectric cubic state
(which is the so-called U state of NaNbO3 [12,14]) at this
latter temperature.

One should also realize that the simulated transition tem-
peratures are smaller than the experimental ones, as typical
of effective Hamiltonian techniques for some systems [26],
including KNbO3 [77] (one possible reason for such underesti-
mation is discussed in Ref. [78]). For instance, the temperature
of the transition from Phase 5 to Pm3̄m is about 373 K in the
MC computations while the corresponding transition from T2

to U occurs at about 914 K in measurements [76]. Similarly,
the stability range of some phases is too small with respect to
observations. For instance, our Phase 4 has only a temperature
window of about 2 K while it is nearly 55 K in experiments
for the corresponding T1 state [12–14]. On the other hand,
it is rather remarkable that the currently developed effective
Hamiltonian is not only able to find R3c to be the ground
state of NaNbO3 (see Sec. III A) but also to correctly predict the
existence of five other states (namely, Phases 1 to 5), with some
of them being rather complex, in the phase transition sequence
of NaNbO3, before reaching Pm3̄m at high temperature. It
thus appears that this presently developed Heff can rather well
qualitatively describe the enormous complexity inherent to
NaNbO3. Let us thus take advantage of it, and more precisely
of its parameters listed in Table I, to better understand subtle
features of NaNbO3 that make such a compound deserving
its nickname of “the most complicated perovskite system.”

We may also wonder which other perovskites systems can
have effects that are similar to the ones described above, in
general, and that can be well described by the analytical form
of our developed effective Hamiltonian [see Eqs. (1)–(6)], in
particular.

IV. DISCUSSION

For that, we will mostly proceed by asking questions
that are not trivial in our minds and then will answer them
by pointing out some specific important parameters of the
effective Hamiltonian.

(1) Why does NaNbO3 first adopt in-phase tilting rather
than antiphase tilting when reducing the temperature from
the cubic paraelectric state, that is in Phase 5? The answer
to this question, in fact, resides in the negative sign of the
k2 AFD short-range parameter that does favor in-phase tilting
with respect to antiphase tilting. A further proof of such fact
is numerically found by increasing by hand the magnitude
of this coefficient while keeping it negative. In that case, the
temperature range of stability of Phase 5 gets enhanced with
respect to the one shown in Figs. 6–9.

(2) Why does NaNbO3 exhibit antiphase and/or complex
tilting associated with the k point being halfway between the R

and M points in its two lowest-in-energy phases (i.e., R3c and
Phase 1) at low temperature, while it prefers to exhibit in-phase
tilting in the higher-temperature Phase 5? As documented in
Sec. III A, some subtle interactions (e.g., those involving Exyxy

and Dii,xy) coefficients between antiphase oxygen octahedral
tiltings, the complex tilting inherent to 2π

alat
( 1

2 , 1
2 , 1

4 ) and cation
displacements do help to stabilize, at low temperature, R3c

and Phase 1—that do not possess in-phase tilting (unlike, e.g.,
Pnma).

(3) Why do antipolar or polar motions only become im-
portant at low temperatures in NaNbO3? As indicated in
Table III, we only found that cation displacements are
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long-range ordered in Phase 1, that is below 338 K in our
calculations. Cation displacements are also seen in all the
low-temperature (10 K) phases of Table II. The reason that
such cation displacements do not play a large role at higher
temperatures (e.g., in Phases 2–5) is that the internal energy of
purely polar or antipolar phases is much smaller than that of
pure AFD phases, as one can interfere from the rather small
values of the coefficients entering Eq. (3) with respect to those
appearing in the first four energetic terms of Eq. (5). For
instance, we numerically found that the purely ferroelectric
R3m state (that has a polarization along [111]) has an internal
energy higher by an order of 0.1 eV/5 atom from the purely
AFD R3̄c state (that solely exhibits antiphase tilting about
[111]) at 10 K, when using the Heff parameters of Table I.
Moreover, some interactions between cation displacements
and AFD pseudovectors are repulsive in nature (see, e.g., the
positive sign and large values of Exxxx and Exxyy), therefore
making the condensation of local modes even more difficult
in some phases. On the other hand, once low-enough tem-
peratures are reached and as aforementioned, some specific
couplings between local modes and oxygen octahedral tiltings
result in the stabilization of some phases exhibiting both cation
displacements and AFD vectors.

(4) Why does NaNbO3 exhibit nanotwins in Phases 2 and 3,
that are characterized by some k vectors being in between the
R and M points of the cubic first Brillouin zone but not equal
to 2π

alat
( 1

2 , 1
2 , 1

4 )? The competition between item (1) (favoring
in-phase tilting) and item (2) (that wishes to make NaNbO3

possessing antiphase and/or the complex tiltings associated
with 2π

alat
( 1

2 , 1
2 , 1

4 ) at low temperature) can make the system adopt
a compromise and therefore have k points being in between the
zone border M and R points but not equal to 2π

alat
( 1

2 , 1
2 , 1

4 ). Such
a possibility becomes even more probable when realizing that
the k2 parameter of Table I is of very small magnitude, which
automatically implies that the phonon branch bridging the R to
M points in the cubic state is very flat. Note that such flatness
has in fact been seen in previous works [81].

(5) What other systems can be well described by the
analytical form of the proposed effective Hamiltonian? It
is very likely that examples of such systems are AgTaO3
and AgNbO3, because they are experimentally known to
exhibit various similar complex phases [82–89]. Interestingly,
NaNbO3, AgTaO3, and AgNbO3 all share an almost identical
tolerance factor, which is of the order of 0.97 (see Ref. [90] for
the computation of the tolerance factor). Such a fact therefore
suggests a strong connection between the existence of complex
phases (and/or complicated phase transition sequence) and the
value of the tolerance factor.

V. SUMMARY

In summary, we have developed an effective Hamiltonian,
and further used direct first-principles calculations, to shed
some light into the extraordinary complexity of NaNbO3.
This effective Hamiltonian indicates that the ground state of
NaNbO3 (which is the state called N ) is ferroelectric R3c

rather than purely simple or more complex tilting phases,
because of some subtle and delicate couplings involving cation

displacements and oxygen octahedral tiltings. Moreover, both
effective Hamiltonian computations and direct ab initio calcu-
lations predict that the so-called P state of NaNbO3 should
be revisited, in the sense that it is likely of Pca21 rather
than Pbcm symmetry, and therefore has an additional (inho-
mogeneous) polarization along the [001] axis in addition to
antiphase tilting about [110] and a “++−−” tilting pattern
about the z axis when moving along any [001] line. Our
simulations for the T1, T2, and U states are consistent with some
phases previously proposed in the literature, that are simple
tilting pattern a0b+c− and a0b+a0 for T1 and T2, respectively,
versus the paraelectric Pm3̄m state for U . Moreover, our
effective Hamiltonian computations also lead to the prediction
of phases for the controversial R and S states, both of them
being nanotwins of large periodicity along the long axis,
namely 12-lattice constants in our case, and involving several
k points for the complex tiltings occurring along such a long
axis. Interestingly, the coexistence of several k points to fully
describe complex tilting patterns has also been suggested in a
recent article on Li-doped NaNbO3 compound [91].

Finally, by pointing out some specific important parameters
of the effective Hamiltonian listed in Table I, we further
elucidate nontrivial issues pertaining to the complexity of
NaNbO3. We therefore hope that this work leads to a revisiting
and a better understanding of the most complex perovskite
system and will encourage experimentalists to confirm some
of our predictions. We also humbly but strongly believe that
the present study firmly establishes that atomistic effective
Hamiltonians are nowadays able to treat incredibly compli-
cated compounds. They are therefore promising to tackle and
understand other complex materials such as, e.g., AgTaO3
[82–84] and AgNbO3 [85–89], and, for instance, explain why
R3c is the ground state of the former and not of the latter.
Effective Hamiltonians can thus be used hand-in-hand with
experimentalists in order to extract, confirm, and understand
unusual phases from measured data. The presently developed
effective Hamiltonian may also be put in use to study epitaxial
films made of NaNbO3 in the hope of finding novel phases or
phenomena [92].
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