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Magnetomechanical coupling in thermal amorphous solids
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Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau
functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into
account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence
of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings
and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical
strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction
for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with
emergent self-affine free interfaces requires a careful definition of the film “width” and its change due to the
magnetostriction effect.
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I. INTRODUCTION

The subject of the interaction between mechanical and
magnetic properties in magnetic glasses has been relatively
neglected by theorists. Despite the enormous amount of work
on magnetism in crystalline materials (including “spin glasses”
where spins are restricted to reside on a lattice), and the
equally enormous amount of work on nonmagnetic glasses,
there have been almost no theoretical studies of elastic,
plastic, and magnetic responses to shear and to external mag-
netic fields in glasses with magnetic properties until recently
[1–7]. The crucial difference is that particles in a glass are
free to move around whether they carry spins or not, and
therefore there is a strong coupling between the mechanical
and the magnetic properties of these materials. A generic
plastic event in such materials is accompanied by simultaneous
discontinuous changes in stress, energy, and magnetization, cf.
Fig. 1. A number of model glasses with magnetic interaction
were put forward, allowing highly accurate simulations for
which one could offer detailed theories [4–7]. It was shown that
magnetism can be induced by plastic events [6]. One could also
study with exquisite detail the statistics of Barkhausen noise
in magnetic glasses to discover that it can belong to a number
of different universality classes depending on the details of the
magnetic interactions [8].

One of the best known and important cross effects between
mechanics and magnetism is magnetostriction (shape change
due to to applied magnetic fields) and its inverse, the Villari
effect (induced magnetization due to mechanical strain). The
theory of magnetostriction as applied to solids and thin films
typically makes a number of implicit assumptions about the
solids investigated. Often one presumes that the considered
solid has a crystalline structure and the magnetic atoms lie at
well defined lattice sites (up to thermal fluctuations). In conse-
quence, due to spin-orbit coupling, there exist global magnetic
easy axes along which the macroscopic magnetization prefers
to orient at low temperatures. In the absence of such easy axes,
if the only magnetic interaction is an exchange interaction, all

directions are degenerate in the absence of an applied magnetic
field. Usually the assumption is also made that we are dealing
with a low temperature situation in which the magnetization
is saturated in magnitude and thus the easy axis controls the
angle but not the magnitude of the magnetization m. If these
were the only magnetic energy terms there would not exist
any magnetostriction. But there also exists strain energy in
the solid and this is coupled to the magnetization, resulting
in a strained configuration of the solid as the lowest energy
state of the system. This can be seen in the easiest way if we
write down the Landau function F for the magnetic and strain
energies. Taking for example a cubic lattice at low temperatures
T � Tc with saturated magnetization,

F = K
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(
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Here αi are the cosines of the angles between the magnetization
direction and the cube easy axes xi , while εij is the strain
tensor. K is the strength of the anisotropy energy, B1 and B2

are magnetoelastic coupling constants, while cij are the elastic
moduli of the cube. By minimizing the Landau functional with
respect to strain ∂F/∂εij = 0 we can find explicit expressions
for the strain in the material that minimizes the energy

εii = B1
[
c12 − α2

i (c11 + 2c12)
]

[(c11 − c12)(c11 + 2c12)]

εij = −B2αiαj

c44
. (2)

Using Eq. (2), the magnetostriction in a direction β ≡
(β1,β2,β3) where the βi are the cosines of the angles between
the measurement direction and the cube axes xi is then
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FIG. 1. Energy, stress, and magnetization changes during plastic
events as a result of increasing strain in a magnetic amorphous solids.
The data is taken from Ref. [9] for an athermal example.

given by

δ�/� =
∑
i�j

εijβiβj . (3)

This result was first derived by N. Akulov in 1926 [10].
In this paper we focus on situations involving amorphous

solids and metallic glasses, where the basic assumptions made
in deriving Eqs. (1) and (2) do not apply as in amorphous solids
there is typically no global easy axis in the material. Moreover,
we are often interested in situations where we are in a glass
phase T < Tg but above or close to the Curie temperature T ≈
Tc so that we cannot assume either that the magnetization is
saturated or that applied magnetic fields B do not have a strong
influence on the size of the magnetization m. Finally Eq. (1)
is a macroscopic energy functional and we would like to look
at magnetostriction in a more microscopic (atomistic) context
in glasses.

The structure of this paper is as follows: In Sec. II we present
atomistic models for magnetic glasses. In Sec. III we describe
the general approach to the responses of magnetic glasses to
mechanical and magnetic strains. In Sec. IV the numerical
simulations are presented, stressing results for magnetostric-
tion in both bulk and film glasses. Section V applies the general
results of Sec. III to extracting the magnetostriction coefficient
in thermal glassy materials. Section VI provides a summary of
the paper and some discussion.

II. MICROSCOPIC MODELS

The potential energy U of N point particles in an amorphous
magnetic solids in the presence of a magnetic field B can be
written as

U ({r i},{Si}) = Umech({r i}) + Umag({r i},{Si}; B), (4)

where {r i}Ni=1 are the positions of the particles and Si are spin
variables.

A. The mechanical interactions

The mechanical part of our Hamiltonian Eq. (4) can be taken
as any of the standard models of glass formers, and we will
assume that it is a sum of binary interactions such that

Umech({r i}) =
∑
〈ij〉

φ(rij ), (5)

where 〈ij 〉 means “all distinct pairs,” rij ≡ |r i − rj | are the
instantaneous distances between particles i and j . This still
leaves a lot of freedom, as the literature attests to a variety
of models with binary interactions that produce good glass
formers. To generate a glass, we simulate a Kob-Andersen bi-
nary mixture of two types of particles [11–13]. We address the
particles as type-A particles which are magnetic and the other
type of particles, which are nonmagnetic, as type-B particles.
The ratio of the number of A and B type particles is taken
as 80 : 20. The mechanical part of interatomic interactions is
defined by truncated and shifted Lennard-Jones potentials

φij (r) =
{

φLJ
ij (r) + Cij if r � Rcut

ij ,

0 if r > Rcut
ij ,

(6)

where Cij = −φLJ
ij (Rcut

ij ) and

φLJ
ij (r) = 4eij

[(
σij

r

)12

−
(

σij

r

)6]
. (7)

To simplify the simulations the pair interactions in Eq. (6)
are truncated at distance Rcut

ij = 2.5σij . It is convenient to
introduce reduced units, with σAA being the unit of length
and eAA the unit of energy. Parameters for A-B and B-B
interactions are given by σBB/σAA = 0.88, σAB/σAA = 0.8,
eBB/eAA = 0.5, and eAB/eAA = 1.5. The reported glass tran-
sition temperature Tg of the Kob-Andersen binary mixture in
3D [13] is Tg = 0.28.

B. The magnetic interactions

The magnetic properties of amorphous magnets are ex-
tremely varied and cannot be represented by a unique Hamilto-
nian. For example spins can be effectively localized on individ-
ual atoms, or be dominated by delocalized spins on conduction
electrons. If localized the total angular momentum of unpaired
electrons will depend on the atomic species considered. In
this paper we shall consider the simplest Heisenberg magnetic
Hamiltonian that couples magnetic and mechanical properties
in amorphous solids—namely an exchange interaction in
which the exchange integral is an explicit function of particle
positions

Umag({r i},{Si}; B) = −
∑
〈ij〉

J (rij )Si · Sj − gμB

∑
i

Si · B.

(8)

The first term on the right hand side is the short range
exchange interaction Uex({r i},{Si}). Typically the exchange
integral J (r) > 0, thus encouraging ferromagnetism, and will
be peaked at some distance r1 or else be an exponentially
decreasing function of r . Note that J (rij ) will couple mag-
netism and strain in a nontrivial fashion. The exchange energy
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of interaction between Heisenberg spins is chosen, following
Ref. [14] as a Yukawa type potential of the form

J (x) = J0
exp(−κx)

x
. (9)

Like the Lennard-Jones interaction, the exchange interaction is
also truncated at x = 2.5 and shifted to zero at that point. The
screening parameter κ determines the range of the interaction.
We have taken κ = 3.6. Finally, in our case J0 = 3.0.

III. MECHANICAL AND MAGNETIC RESPONSES
AT FINITE TEMPERATURES

The theory of mechanical and magnetic responses of amor-
phous solids at zero temperature is available, and for complete-
ness we summarize the main results in Appendix B. Here we
present the theory for thermal glasses, taking into account the
effects of thermal fluctuations. Given any dynamical variable
Y ({r i ,Si}Ni=1) its thermal average is determined by

〈Y 〉 =
∫

dXdSYe−βU (X,S)

Z

Z =
∫

dXdSe−βU (X,S) (10)

X ≡ {r i}Ni=1, S ≡ {Si}Ni=1.

Noticing that 〈Y 〉 is a function of the magnetic field and the
mechanical strain we can compute

∂〈Y 〉
∂Bα

=
〈

∂Y

∂Bα

〉
− β

[〈
Y

∂U

∂Bα

〉
−

〈
∂U

∂Bα

〉
〈Y 〉

]
,

∂〈Y 〉
∂εαβ

=
〈

∂Y

∂εαβ

〉
− β

[〈
Y

∂U

∂εαβ

〉
−

〈
∂U

∂εαβ

〉
〈Y 〉

]
. (11)

Specializing these equations to the stress tensor and the magne-
tization we get the explicit expressions for the magnetostriction
and the Villari effects in thermal systems:

∂〈σαβ〉
∂Bγ

=
〈
∂σαβ

∂Bγ

〉
− β

[〈
σαβ

∂U

∂Bγ

〉
−

〈
∂U

∂Bγ

〉
〈σαβ〉

]
, (12)

∂〈mγ 〉
∂εαβ

=
〈
∂mγ

∂εαβ

〉
− β

[〈
mγ

∂U

∂εαβ

〉
−

〈
∂U

∂εαβ

〉
〈mγ 〉

]
. (13)

Magnetostriction is actually determined by the strain response
to the magnetization, but using linear elasticity theory we can
easily invert from the stress response to the strain response, as

σαβ = cαβγ δεγ δ, (14)

where c is the elastic modulus tensor. Equations (12) and (13)
can be simplified further by using the identities

∂U

∂Bγ

= −V nmγ , mγ = gμB

Ns

∑
Si (15)

∂U

∂εαβ

= V σαβ. (16)

Here n is the number of spins per unit volume and Ns the
number of particles carrying spins in the system. The reader
should note that here mγ and σαβ are the instantaneous variable
rather than thermal averages. Using these identities in Eqs. (12)

and (13) we get the final results

∂〈σαβ〉
∂Bγ

=
〈
∂σαβ

∂Bγ

〉
+ βV n[〈σαβmγ 〉 − 〈mγ 〉〈σαβ〉], (17)

∂〈mγ 〉
∂εαβ

=
〈
∂mγ

∂εαβ

〉
− βV [〈mγ σαβ〉 − 〈σαβ〉〈mγ 〉]. (18)

While the first term in the r.h.s of Eqs. (17), also called the Born
term [15], defines the affine part, the second term comes from
the nonaffine fluctuation at finite temperature. The fluctuation
term does not necessarily vanish for T → 0. This is due to the
fact that the particle displacements need not follow an imposed
macroscopic strain affinely. While the fluctuation term gives
the extent of these nonaffine displacements [16], the Born term
reflects the affine part of the particle displacements.

From the identity of the mixed second derivatives of U we
can derive immediately the Maxwell relation

∂〈σαβ〉
∂Bγ

= −n
∂〈mγ 〉
∂εαβ

. (19)

In the next subsection we motivate further discussion by
specializing to Lennard-Jones glass formers.

IV. NUMERICAL SIMULATIONS

The numerical creation of glassy bulk and film phases and
their equilibration using Monte Carlo techniques is presented
in Appendix A. We discuss separately the results for bulk and
film.

A. Bulk phase

In the bulk phase, we simulate N = 4000 particles con-
tained in a cell endowed with periodic boundary condition in all
three directions to mimic an infinite system. The pressure and
the temperature were fixed at P = 2.2 and T = 0.23 (below
Tg but above Tc).

Taking the external field to point in the z direction, we define

s ≡
〈∑

i S
z
i

Ns

〉
. (20)

This quantity was computed in an NPT ensemble and its
dependence on the external field is shown in Fig. 2. At zero
field the system is disordered and at high values of the field
the magnetization saturates. In Monte Carlo simulations at
fixed pressure the average volume changes with increasing
the external field. This is measured by the changing length
L of the simulation cell; the probability distribution function
(pdf) P (L) at different values of applied external field h is
shown in Fig. 3. In general, this magnetostriction effect is
weak but clearly observable. The magnetostriction is quantified
as the fractional change in length of the sample γ = δL/L.
When γ is measured at high values of the external magnetic
field (i.e., when the magnetization saturates) one refers to
the “saturation magnetostriction.” In fact it is advantageous
to define the magnetostriction effect by its dependence on
s (see, e.g., Ref. [17]). Indeed, the experimental results in
Ref. [17] exhibit a linear dependence of the magnetostriction
when plotted as a function of s2. The same result was obtained
analytically using the model discussed in Ref. [18]. Results of
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FIG. 2. Dependence of s on the applied magnetic field for the bulk
magnetic glass. Here h ≡ gμBB.

our simulations for the bulk phase are in agreement, cf. Fig. 4
where the dependence of L on s2 is observed. Fitting the data
by least squares and denoting the length of the simulation cell
at zero magnetization L0 the quantity γ = (L0 − L)/L0 was
calculated. Therefore, one can write

γ = λs2. (21)

B. Film construction

A nanothin film is generated on top of a face-centered
cubic crystalline substrate composed of fixed NS = 1152
identical particles interacting via Lennard-Jones potential with
the film particles. The interaction parameters are: σSA/σAA =
σSB/σAA = 0.8, eSA/εAA = eSB/eAA = 1.5. The subscript S

stands for substrate.
The substrate particles are taken to be nonmagnetic. The

substrate density in equilibrium is ρS = 2.1, providing a
support to the film whose lateral dimensions are L × L. To
create a film of the binary mixture we return to our bulk
simulation and cut off a slab of desired width w perpendicular
to the z direction with lateral dimensions L × L. The geometric
fit of the film slab to the substrate is obtained by taking the bulk
at density ρ = 1.22.

When the slab is positioned on the substrate it is placed
with a gap between the film and the substrate which is 21/6σSA
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FIG. 3. P (L) in NPT simulations of the amorphous glass at
different values of the applied magnetic field.
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FIG. 4. Dependence of average value of L in NPT simulations s2.

at the minimum of the Lennard-Jones potential between the
substrate and the A particles. The created simulation box is
kept periodic in the x and y directions with the length of the
periodicity cell begin L = 14.86. The substrate acts as a fixed
wall at the bottom of the film. In order to create an equilibrated
film we first impose a maximal extent of the film on the upper
boundary. Switching on the Monte Carlo algorithm, when a
particle attempts to cross the upper boundary, this move is
rejected. The initial gap between the upper particles in the
film and and this boundary is 2.5σAA. Clearly, when the NVT
Monte Carlo steps accumulate, the film adjusts the height along
z creating an upper free boundary.

C. Computing the film width

Due to the existence of the substrate at the bottom (z = 0
is defined at the top of the crystalline substrate) and a free
film at the top, translational invariance in the z direction is
lost. Indeed, the local density along z for two films of different
widths is shown in Fig. 5. Like in liquid phases (see Ref. [19])
the films show ordering near the substrate. In the wider film the
region farther from the substrate reaches the average density in
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FIG. 5. The local density as a function of z for two films
containing different number of particles, N = 867 and N = 1940,
respectively. The red constant line represents the average density of
the bulk phase from which the film was created.

174105-4



MAGNETOMECHANICAL COUPLING IN THERMAL … PHYSICAL REVIEW B 97, 174105 (2018)

5 6 7
w

loc

0

0.5

1

1.5

P
(w

lo
c)

l=0.04
l=0.16
l=0.8

FIG. 6. Example of distributions of the local width for different
size of subdomains l × l in a film at temperature T = 0.23.

the bulk phase. In both cases near the free boundary there is a
smooth crossover from the dense phase to vacuum. This makes
the influence of film topography on the film width nontrivial.
For large films the surface will be self-affine. Here we are
specifically interested in how to treat nanofilms in which the
fluctuations of the free surface are of the order of the film width.

In general the width of a given film will depend on the
number of particles N and the magnetization s. In order to
define the film width, the area of the simulation cell is divided
into subdomains of size l × l. In each subdomain, one creates a
list of particles ordered according to their z coordinate from top
to bottom. After every Monte-Carlo sweep we determine again
this ordering. In each realization the particle with the highest
value of z in each subdomain determines the position of the free
surface, defined as wloc. The typical distributions of the local
widths in a film of binary mixture for different l is shown in
Fig. 6. The position of the maximum of this distribution defines
“the width” of the film w(l,s). As one can see the estimated
width of a film increases with increasing l. The dependence of
the width on s measured at different values of l is shown in
Fig. 7. Examining Fig. 7 we conclude that the apparent width
w(l,s) depends linearly on s2 with a different intercept and
slope for each l. These functions can be summarized

by the equation

w(l,s) = w(l) − b(l)s2, (22)
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w
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,s
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FIG. 7. Dependence of the film width on the magnetization at
different values of l. Particle number in the simulation cell N = 1940.
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FIG. 8. Top panel: dependence of the coefficient w(l) on the
inverse value of l. Extrapolating to l → ∞ we estimate the film
width in the absence of the external magnetic field w(l → ∞) = w0.
The red triangle indicates extrapolated value w0 = 4.46. Bottom
panel: dependence of the coefficient b(l) on the inverse value of
l. Extrapolated to l → ∞ value of this coefficient is related to the
magnetostriction coefficient of the film by b = b(l → ∞) = λw0.
The red triangle indicates extrapolated value b = 0.03. Coefficients
in Eq. (22) are estimated from the data shown in Fig. 7 for the film
with particle number in the simulation cell N = 1940.

where w(l) ≡ w(l,s = 0). Careful fitting indicates that b(l)
has a systematic dependence on l. From this equation we can
extract the l dependent magnetostriction coefficient as

γ (l) = w(l) − w(l,s)

w(l)
= λ(l)s2, (23)

where λ(l) = b(l)/w(l). Finally, the magnetostriction coeffi-
cient for the films is defined as

γ = γ (l → ∞) = λs2, (24)

where λ ≡ λ(l → ∞). Repeating the procedure in films with a
different number of particles N we find that λ has a dependence
on N and we attempt next to determine the “best” value of λ.
To this aim we fit the data in Fig. 7 and extrapolate the slopes
and intercepts to l → ∞. This is done in Fig. 8. It follows
from Eq. (22), Eq. (23), and Eq. (24) that for a given film with
N particles the film width at s = 0 is defined by w(l → ∞) =
w0(N ) and the slope in Eq. (22) tends to b(l → ∞) = λw0(N ).

In Fig. 9 we plot the simulations result for b ≡ b(l → ∞) as
a function of w0 as the black circles. The linear character of this
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FIG. 9. The coefficient b as a function of the film width w0.
Simulational results are represented by black dots. The theoretical
results are the mean-field theory presented in Sec. V C culminating
with Eq. (46).

relationship indicates that the saturation magnetostriction of
wide enough films depends on their width as (see also Ref. [20])

λ = λbulk + �

w0
, (25)

where λbulk is the bulk value which is obtained when the width
of the film tends to infinity. For purposes here we are interested
in the slope of b vs w0 (λbulk), not in the intercept (we will
discuss the intercept below). Fitting a least-square line to the
data we estimate

λbulk ≈ (4.5 ± 0.2) × 10−3. (26)

In the rest of this paper we provide the theory which will
culminate in a first principle evaluation of this magnetostriction
coefficient and we will also argue how we expect it to change
with the width of the film.

V. CALCULATION OF THE MAGNETOSTRICTION

In this section we develop the general theory described in
Sec. III with the aim of rationalizing the results obtained in
the numerical simulations. Our aim is to compute 〈εzz〉 as a
function of s. As usual, since the strain tensor ε is not a state
variable, we need to compute the stress response σ and extract
the strain tensor from standard relations of elasticity theory.
Thus our starting point is Eq. (17) for the response of the stress
to the magnetic field. The RHS of this equation contains two
terms, the Born term and the nonaffine fluctuations term.

A. The nonaffine term

To gain insight on the nonaffine term in Eq. (17) we employ
our simulations. Measuring the two terms at temperature T =
0.23 we conclude that the two terms cancel each other and the
stress and spin fluctuations are practically decoupled. In fact,
dividing the difference between the two terms by the magnitude
of either of them we find numbers of the order 10−5–10−4 for all
values of m. The same result was obtained for all the nonaffine
components in the response of the tensor 〈σ 〉. We thus conclude

that to a high approximation

〈σαβmγ 〉 ≈ 〈mγ 〉〈σαβ〉. (27)

It should be stated that in the ferromagnetic phase at low tem-
peratures this conclusion may change drastically, and see for
example the T = 0 results in Appendix B. Indeed, the athermal
results in Refs. [4–7] show that nonaffine contributions to the
magnetostriction and other responses are comparable in size to
their respective Born terms. This can also be seen in the results
quoted in Fig. 1 where the discontinuities in all the measured
quantities are due to nonaffine responses.

A corollary of Eq. (27) is that in calculating the Born term
in the response of the stress tensor we can employ a mean-field
decoupling between the stress and the magnetization fluctua-
tions. This simplifies the analytic calculation considerably.

B. Calculation of the Born term for magnetostriction

1. Definition of the strain tensor

In thermal systems the particles are restricted dynamically
to their cages for long enough time τ which is nevertheless
shorter than the diffusion time. Therefore we can compute a
temperature dependent average position and an average spin
orientation:

〈r i〉 = 1

τ

∫ τ

0
dt r i(t), 〈Si〉 = 1

τ

∫ τ

0
dt Si(t). (28)

Once we apply an external strain hij (γ ) and a magnetic
field B the average position and average spin orientation will
experience an affine and a nonaffine response.

〈r i〉(γ,B) = hij (γ )〈rj 〉 + ui(γ,B). (29)

Here ui is the nonaffine response that takes place as a result
of the affine external strain and magnetic field, after which
the system returns to thermal equilibrium. Defining the strain
tensor εαβ in terms of the change in distance between pairs of
particles,

〈rij 〉(γ,B) ≡ 〈rij 〉

√√√√1 + 2
εαβ

〈
rα
ij

〉〈
r

β

ij

〉
〈rij 〉2

, (30)

where rα
ij is the α component of r ij . Expanding this transfor-

mation to second order in εαβ we find,

〈rij 〉(γ,B) = 〈rij 〉 + εαβ

〈
rα
ij

〉〈
r

β

ij

〉
〈rij 〉 − εαβεγ δ

〈
rα
ij

〉〈
r

β

ij

〉〈
r

γ

ij

〉〈
rδ
ij

〉
2〈rij 〉3

.

(31)

For the analysis below we define

δrij ≡ 〈rij 〉(γ,B) − 〈rij 〉. (32)

2. The affine stress response

To compute 〈∂σαβ/∂Bγ 〉 we express it in the form〈
∂σαβ

∂Bγ

〉
= 1

V

〈
∂2U

∂εαβ∂Bγ

〉
. (33)
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Under a strain εαβ the mechanical energy (Lennard Jones
interaction) will transform as:

Umech =
∑
i 	=j

φ(rij ) +
∑
i 	=j

dφ

drij

δrij + 1

2

∑
i 	=j

d2φ

dr2
ij

δr2
ij . (34)

Using Eq. (32) we can now write

Umech = Umech(γ = 0) + V

[
εαβc

(1)
αβ + 1

2
εαβεγ δc

(2)
αβγ δ

]
,

(35)

where

c
(1)
αβ = (1/V )

∑
i 	=j

dφ

drij

rα
ij r

β

ij

rij

c
(2)
αβγ δ = (1/V )

∑
i 	=j

[
1

r2
ij

d2φ

dr2
ij

− 1

r3
ij

dφ

drij

]
rα
ij r

β

ij r
γ

ij r
δ
ij . (36)

We can now express the mechanical contribution to the stress
tensor σ mech

αβ = ∂〈Umech〉/V ∂εαβ as

σαβ = c
(1)
αβ + εγ δc

(2)
αβγ δ without exchange interaction. (37)

This is the stress in the material in the paramagnetic state in the
absence of external magnetic fields. Let us now consider the
additional strain imposed on the material in the ferromagnetic
state or due to the application of an external magnetic field.

3. Exchange energy under strain in the glass phase

Under a strain εαβ the exchange coefficientJ (rij ) transforms
as

J (〈rij 〉(γ )) = J (〈rij 〉) + dJ (rij )

drij

εαβ

〈rα
ij 〉〈rβ

ij 〉
〈rij 〉 + O(ε2),

(38)

where derivatives dJ (x)/dx are always computed at x = 〈rij 〉.
We have only expanded J (rij ) to first order in the strain as in
the exchange energy this will generate a term of O(εs2) and
therefore the second order term can be neglected. The effect of
strain εαβ on the average exchange interaction in the glass phase
is then given by 〈Uex〉 = − ∑

i 	=j

J (rij )〈Si · Sj 〉. To estimate this

term let us make the mean field approximation and replace
〈Si · Sj 〉 ≈ 〈Si〉〈Sj 〉 = s2. Then we expand this energy to first
order in εαβ as

〈Uex〉 = −s2

⎡
⎣∑

i 	=j

J (〈rij 〉) + dJ (rij )

drij

εαβ

〈rα
ij 〉〈rβ

ij 〉
〈rij 〉

⎤
⎦, (39)

or

〈Uex〉 = −V (a + εαβbαβ)s2 (40)

where we have used the notation

a = (1/V )
∑
i 	=j

J (〈rij 〉)

bαβ = (1/V )
∑
i 	=j

dJ (rij )

drij

rα
ij r

β

ij

〈rij 〉 . (41)

Combining the effects of strain on the mechanical and magnetic
energies we find

〈U 〉 = 〈Umech + Uex〉 = Umech(γ = 0)

+V

[
εαβc

(1)
αβ + 1

2
εαβεγ δc

(2)
αβγ δ − (a + εγ δbγ δ)s2

]
(42)

So

σαβ(m) =
〈

∂U

V ∂εαβ

〉
= c

(1)
αβ + εγ δc

(2)
αβγ δ − bαβs2. (43)

C. Magnetostriction near T = Tc for amorphous solids
below the glass transition T < Tg

In our system, due to magnetization, a compressive strain
is generated along the z direction. Further, the compressive
stress obeys σzz = 0 as the film has a free surface both in the
nonmagnetic and magnetic states. Thus in the nonmagnetic
state we can use Eq. (35) to write

σzz = 0 = c(1)
zz + εγ δc

(2)
zzγ δ, (44)

while in the magnetic state we can use Eq. (43) to write

σzz(m) = 0 = c(1)
zz + εγ δc

(2)
zzγ δ + γ c(2)

zzzz − bzzs
2. (45)

Subtracting Eq. (44) from Eq. (43) we find the magnetostriction
coefficient

γ = bzzs
2

c
(2)
zzzz

= s2

∑
i 	=j

1
〈rij 〉

dJ (rij )
drij

(zi − zj )2

∑
i 	=j

[
1
r2
ij

d2φ

dr2
ij

− 1
r3
ij

dφ

drij

]
(zi − zj )4

. (46)

The first important result predicted by Eq. (46) is that the
magnetostriction coefficient γ scales quadratically with the
magnetization. The second important result concerns the width
dependence of γ for a film of width w0. An accurate analysis
of the results of the numerical simulations indicates that the
saturation magnetostriction of wide enough films depends on
the width according to Eq. (25). We can use our theory to
understand this dependence. Using Eqs. (36) and (41), we
can split formally the coefficient bzz in Eq. (46) into two
contributions bzz ≈ bb

zz + bs
zz/w0 where the subscripts b and

s stand for bulk and surface. Similarly we can write c(2)
zzzz ≈

c(2,b)
zzzz + c(2,s)

zzzz /w0. Thus for magnetic films of width w0 we find

γ (s,w0) = s2 w0b
b
zz + bs

zz

w0c
(2,b)
zzzz + c

(2,s)
zzzz

. (47)

As w0 tends to infinity we compute

λbulk = bb
zz

c
(2,b)
zzzz

. (48)

In fact, we can use the general equation Eq. (46) to compute the
magnetostriction coefficient of a film. In contrast to films on a
substrate considered in Sec. IV this approach corresponds to
films with two free boundaries. Nevertheless, we can compare
the asymptotic bulk value of the saturated magnetostriction
coefficient in these two cases. Plotting the coefficients of s2 in
Eq. (46) multiplied by w0 (in order to obtain the coefficient b)
as a function of w0 we find the red triangles in Fig. 9. The best
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linear fit results in the estimate

λbulk ≈ 3.8 × 10−3. (49)

Comparing with the numerical result in Eq. (26) we conclude
that the agreement between the mean-field theory and the
simulations is very satisfactory. Of course we need to stress
that the theory still depends on the numerical measurement of
the coefficients bzz and czzzz.

Finally we can expand Eq. (47) in inverse powers of w0

and the leading result will read exactly like Eq. (25). The
coefficient � cannot be directly compared between theory and
experiment because it stems from two different sources. One
is purely geometric, particles in the center of the film have
more interaction than close to the two surfaces. The second
comes from the interaction between the film and substrate. In
the theory we did not take particular care of the interaction
between the film and the substrate so the intercept in Fig. 9.

VI. SUMMARY AND DISCUSSION

In summary, we have presented a theory for the mechanical
and magnetic responses of amorphous solids which is equally
applicable to a bulk sample or a film whose width is in the
nano scale. In this paper we focused on the magnetostriction
as a good measure of the interplay between mechanical strain
and magnetic fields. Analytic theory for all the other responses
was offered both at T = 0 or at finite temperature. We found
that for intermediate temperatures between Tc and Tg the
nonaffine contribution to the magnetostriction was negligible
in the nanofilm. This simplifies the theoretical calculation
of the magnetostriction coefficient which is found to be in
good agreement with the numerical simulations. Interestingly
enough, both in bulk and in nanofilm the magnetostriction
coefficient is proportional to s2 and therefore to the square of
the magnetization. It is expected that at low temperatures, 0 <

T � Tc, the nonaffine contribution should be significant, since
at T = 0 it is of the same order as the Born contribution. It is
therefore interesting to examine this issue both in experiments
and in simulations at this range of temperatures.
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APPENDIX A: MONTE CARLO EQUILIBRATION

The Monte Carlo (MC) simulations were performed in both
NPT (in a bulk phase) and NVT (in a film) ensembles. In a bulk
phase we start with an initial face-centered-cubic arrangement
of A type particles with periodic boundary conditions in three
directions. Then a randomly chosen 20% of the particles were
changed toB type. The initial configuration of a film (of desired
height) was cut along the z axis from a bulk glass and put on top
of the crystalline substrate. Then the system (the bulk phase
or the film) was equilibrated at high temperature T = 5. Once
equilibrated, the systems were quenched instantaneously to
T = 0.23. In each NVT ensemble MC sweep we attempt to
move each particle once. We chose the maximum position dis-
placement such that the acceptance ratio of the trial moves was

around 30%. In the case of NPT ensembles, in addition to the
trial moves we attempt to change the length of the simulation
box in every 20 MC sweeps. We chose the maximum change in
box length such that the acceptance ratio of the trial moves was
around 30%. Optimum particle displacements and changes in
the box length are obtained for 200 000 MC sweeps before
starting to gather thermal statistics. To update the spins, we
use Wolf’s cluster algorithm [21] when there is no external
magnetic field. We made two modifications to this algorithm.
Firstly, concentrating on any given particle i we refer to its
neighbors, as any particle j that resides within a distance of 2.5
from it. Secondly, the coupling defined by J (rij ) [see Eq. (9)]
is not a constant as in a common lattice problem. We attempt
the particle move and spin flip in the following sequence: Two
sweeps, in each of which we attempt to move each particle
once, are followed by the construction of one Wolf cluster after
which the Monte Carlo proceeds with the next two sweeps. In
the presence of magnetic field the Wolf’s cluster algorithm is
not effective. Hence we apply a single spin flip algorithm in
which we attempt to randomly flip each spin once.

APPENDIX B: RESPONSES AT ZERO TEMPERATURE

All the important response functions exhibited by magnetic
amorphous solids at T = 0 have been studied in great detail
[16,22,23] and can be expressed in terms of the eigenvalues
and eigenfunctions of a Hessian matrix H for N particles in d

dimensions where

H (r r)
ij ≡ ∂2U

∂ r i∂ rj

(dN × dN matrix)

H (r S)
ij ≡ ∂2U

∂ r i∂ Sj

(dN × dN matrix)

(B1)

H (Sr)
ij ≡ ∂2U

∂ Si∂ rj

(dN × dN matrix)

H (SS)
ij ≡ ∂2U

∂ Si∂ Sj

(dN × dN matrix),

and four ‘mismatch forces’ � that represent the forces and
torques on the particles before the nonaffine flows ensure new
local minima for the particle positions and spins. For notational
simplicity let us assume that we can replace the stress tensor
εαβ by a scalar γ here, then the particle positions and spins can
be written {r i(γ,B)},{Si(γ,B)}. Then the mismatch forces can
be written

�
(γ,r)
i ≡ ∂2U

∂γ ∂ r i

�
(γ,S)
i ≡ ∂2U

∂γ ∂ S i
(B2)

�
(B,r)
i ≡ ∂2U

∂B∂ r i

�
(B,S)
i ≡ ∂2U

∂B∂ S i
.

In terms of these Hessian and mismatch forces we can find
all the modulii that describe the mechanical and magnetic
properties of magnetic glasses.
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Thus the shear modulus takes the form

μ(γ,B) = ∂2U

∂γ 2

∣∣∣∣
B

− �(γ ) · H−1 · �(γ ). (B3)

Note the nonaffine contribution reduces the shear modulus.
The magnetic susceptibility χ (γ,B) can similarly be ex-

pressed in terms of a classic thermodynamic form that exists for
crystalline solids and an additional term required for magnetic
equilibrium in the case of amorphous solids

χ (γ,B) = −∂2U

∂B2

∣∣∣∣
γ

+ �(B) · H−1 · �(B). (B4)

Here the additional positive definite form exists due to the
existence of nonaffine flows that can help minimize the
potential energy of the magnetic glass. Magnetostriction can
be measured from the change of stress of a specimen with

changing magnetic field B

χσ,B(γ,B) = dσ

dB

∣∣∣∣
γ

= ∂2U

∂B∂γ
− �(γ ) · H−1 · �(B). (B5)

While magnetoelasticity and magnetoplasticity involve the
magnetic response of a material to applied strain

χM,γ (γ,B) = dM

dγ

∣∣∣∣
B

= − ∂2U

∂γ ∂B
+ �(B) · H−1 · �(γ ).

(B6)

Note that for crystalline solids we have the Maxwell rela-
tion between magnetostriction and magnetoelasticity ∂σ

∂B
|γ =

− ∂M
∂γ

|B . For metallic glasses as the Hessian matrix is hermitian
we have an analogous Maxwell relationship

dσ

dB

∣∣∣∣
γ

= −dM

dγ

∣∣∣∣
B

.
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