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Ab initio study of the electron-phonon coupling at the Cr(001) surface
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It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi
level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle
dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate
dxz/dyz states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of
ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon
mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2

surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement
factors are not in agreement with the experimental data even if we use realistic values for the temperature
range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally
an electron-phonon mass-enhancement factor of 0.70 ± 0.10 is obtained, which is not in agreement with our
calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the
Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.
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I. INTRODUCTION

The electrode-electrolyte interface in a battery, topological
insulators, multilayer devices, and at contacts are examples
where surface physics plays an important role. In the field
of spintronics magnetic multilayers are used to exploit the
different tunneling probabilities of the spin-up and spin-down
electrons for the development of novel devices. For this
purpose a thorough understanding of the physical mechanisms
behind the tunneling process is required [1,2]. For example, in
chromium magnetic multilayers it is known that complicated
many-body effects at the surface are responsible for the
tunneling [3].

Surface physics is also fundamentally very interesting
due to the occurrence of new and unexpected features. For
example, for the Cr(001) surface a sharp resonance close to the
Fermi level is observed in angular resolved photoemission and
scanning tunneling experiments [4–7]. Another reason for the
large interest in chromium is its peculiar magnetic properties.
Its magnetic ground state is described by a spin-density wave
with a long period modulating the amplitude of the magnetic
moments along the 〈001〉 direction, which is incommensurate
with the underlying body centered cubic structure [8].

In order to understand the physical origin of the observed
resonance at the Fermi level several experimental and theo-
retical investigations were conducted. The first idea was to
explain the resonance in terms of a single particle dz2 surface
state [7,9]. A shortcoming of this idea was the unrealistic
reduction of the magnetic moment required to obtain the
correct resonance position. Another interpretation in terms
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of an orbital Kondo effect involving the degenerate dxz and
dyz states was proposed to explain the scanning tunneling
spectroscopy experiments on very clean Cr(001) surfaces
[10,11]. Then, scanning tunneling spectroscopy experiments
were performed in a wide temperature range [12]. It was
observed that the experimental data could be explained both
in terms of the dz2 surface state and orbital Kondo effect.
Although for the former an electron-phonon coupling strength
5–10 times larger than in the bulk had to be assumed. On
the other hand the orbital Kondo effect was called into
question by a combination of scanning tunneling spectroscopy,
photoemission spectroscopy, and inverse photoemission spec-
troscopy experiments [13]. It was demonstrated that the res-
onance above the Fermi level was mainly of dz2 character.
However, it should be realized that the resolution of inverse
photoemission spectroscopy is not sufficient to be conclusive
about the character of the sharp resonance emerging at low
temperatures.

In the newest experiments a different behavior is observed
than in the earlier experiments [14]. Namely a pseudogap
is found below roughly 200 K and the emergence of a
sharp resonance below 75 K. These observations hint in the
direction of a many-body interpretation of the resonance just
as recent dynamical mean-field theory (DMFT) calculations
do [15,16]. For example, based on DMFT calculations within
the continuous-time quantum Monte Carlo (CTQMC) solver
it was observed that the resonance was very robust against
artificial shifts in the one-particle energies of the dxz, dyz, and
dz2 states. In contrast for DMFT calculations based on the
spin-polarized T-matrix fluctuation exchange approximation,
which is suitable for weakly and moderately correlated sys-
tems, no resonance was observed. However, the high-energy
features, everything except the resonance, of the spectrum were
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successfully explained within this method. Finally, the non-
crossing approximation (NCA) was employed within DMFT,
which is basically designed to capture (orbital) Kondo-like
processes. Depending on the starting point, it was observed
that an orbital Kondo resonance might evolve in the presence
of a strong magnetic field like in the Cr(001) surface. This
could not be verified due to spurious behavior involved with
the spin-polarized version of the NCA method [16,17].

In this paper it is investigated whether the dz2 surface
state renormalized by means of the electron-phonon coupling
is responsible for the experimentally observed resonance at
the Fermi level of Cr(001) surfaces. More precisely, the
electron-phonon mass-enhancement factor of the Cr(001)
surface is investigated and a comparison is made with that
of the bulk by means of ab initio calculations. For this
purpose a linear response scheme in terms of the density
functional perturbation theory (DFPT) within a pseudopo-
tential plane-wave approach is employed [18–20]. We first
tested this method on paramagnetic and antiferromagnetic
Cr-bulk and found electron-phonon mass-enhancement factors
in reasonable agreement with strong-coupling theory and good
agreement with optical pump-and-probe experiment, respec-
tively [21,22]. For the Cr(001) surface we obtained for the
majority and minority spin dz2 surface states electron-phonon
mass-enhancement factors of, respectively, 0.19 and 0.16.
We show that these calculated values are not in agreement
with the experimental data even if we use realistic values
for the temperature range and surface Debye frequency for
the fit of the experimental data. More precisely, then ex-
perimentally an electron-phonon mass-enhancement factor of
0.70 ± 0.10 is obtained, which is not in agreement with our
calculated values of 0.19 and 0.16. Our findings suggest that
the experimentally observed resonance at the Cr(001) surface
is not due to electron-phonon effects but due to electron-
electron correlation effects. More studies are needed to exactly
determine which many-body processes are responsible for the
resonance.

The rest of the paper is organized as follows. The method
and computational details are presented in Sec. II. Section III
contains the results and discussion, and finally in Sec. IV we
conclude.

II. METHOD AND COMPUTATIONAL DETAILS

The response of an electron system to external perturbations
is commonly studied in physics. An efficient and accurate
technique to do this is density-functional perturbation the-
ory (DFPT), which is a combination of density-functional
theory (DFT) and linear response theory [18,19,23,24]. For
example, this method allows the investigation of the cou-
pling between the electrons and phonons in a system. It is
known that many physical properties are determined by this
coupling, e.g., electrical and thermal conductivity, and super-
conductivity.

DFT is based on the fact that the total energy of an
interacting electron system is a functional of the electron
density and the variational principle [23]. In order to ob-
tain the ground state of the interacting electron system in
general a mapping to a set of single-particle equations is

performed [24],

ĤDFTψkν =
(

p̂2

2m
+ Veff [n]

)
ψkν = εkνψkν,

Veff [n] = Vion[n] + VH [n] + Vxc[n]. (1)

Here the first term between brackets is the kinetic energy
operator. The ψkν and εkν are the so-called Kohn-Sham
eigenstates and eigenenergies. Further, Veff is the effective
potential which is a functional of the electron density. This
functional can be separated into three parts: the interaction
of the electrons with the ions (Vion), a Hartree term (VH ),
and exchange-correlation part (Vxc). The latter contains the
exchange and correlation effects among the electrons. For this
part the functional dependence on the density is not exactly
known and approximations are used in practice. The most
popular approximations are derived in the limit of a (nearly)
uniform electron gas, i.e., the local density approximation
(LDA) and the generalized gradient approximation (GGA)
[25–27]. Then, by using the following expression for the
electron density,

n(r) =
∑
kν

fkν |ψkν |2, (2)

the system can be solved self-consistently. Here, fkν corre-
sponds to the occupation number of the state ψkν .

After obtaining the self-consistent solution of Eqs. (1)
and (2), linear response theory can be used to investigate
the coupling of the phonon and electron systems. For this
purpose the displacement pattern corresponding to a phonon
is considered as a static perturbation for the electron system
within DFPT, i.e., the Born-Oppenheimer approximation. As
can be inferred from Eq. (1) a perturbation will lead to a change
of the electron density �n and effective potential �Veff , which
within linear response can be obtained self-consistently from
the following set of equations

�n = 4Re

occ∑
kν

ψ∗
kν�ψkν,

(ĤDFT − εkν)�ψkν = −(�Veff − �εkν)ψkν,

�Veff = �Vion+ 1

2

∫
�n(r′)
|r − r′|dr′+ dVxc

dn

∣∣∣∣
n

�n.

(3)

Here the tag occ above the summation correponds to a summa-
tion over occupied states only and �εkν = 〈ψkν |�Veff |ψkν〉 is
the first-order variation of the Kohn-Sham eigenvalue.

After the set of equations in Eq. (3) has been solved
self-consistently for the atomic perturbations, phonon and
electron-phonon coupling related quantities can be calculated.
For example, with the Hellman-Feynman theorem it can be
shown that from the linear response of the density �n the
dynamical matrix can be constructed from which the phonon
frequencies and modes can be computed. Further, from the
first-order derivative of the self-consistent Kohn-Sham poten-
tial �Veff the electron-phonon coupling matrix elements can be
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obtained

g
qj,νμ

k+q,k =
(

h̄

2ωqj

)1/2

〈ψk+qμ|�V
qj

eff |ψkν〉, (4)

where ωqj refers to the phonon frequency corresponding to
the phonon mode with wave vector q and index j . From these
electron-phonon coupling matrix elements and the phonon
frequencies important quantities can be determined such as
the spectral function (isotropic Eliashberg function) α2F (ω)
and the isotropic coupling constant (electron-phonon mass-
enhancement factor) λ,

α2F (ω) = 1

N (εF )

∑
μν

∑
qj

δ(ω − ωqj )
∑

k

∣∣gqj,νμ

k+q,k

∣∣2

× δ(εk+qμ − εF )δ(εkν − εF ),

λ = 2
∫

α2F (ω)

ω
dω. (5)

Here N (εF ) is the density of states at the Fermi level indicated
by εF .

From temperature dependent scanning tunneling spec-
troscopy experiments on the Cr(001)-surface an electron-
phonon mass-enhancement factor 5–10 times larger than in
the bulk is predicted [12]. This prediction is obtained under
the assumption that the resonance at the Fermi level is due to
a dz2 -surface state renormalized by electron-phonon coupling.
Thus, this predicted λ corresponds to the dz2 state of the surface
layer. However, computationally a Cr(001) surface is simulated
by a finite number of layers. Then, the λ calculated from
Eq. (5) corresponds in general to the whole system, i.e., not
specifically to the top layer. Therefore, a projection is required
to obtain λ corresponding to the top layer and dz2 state. In
principle one could argue that a surface layer projection could
be obtained by a consideration of the surface phonon modes
only. Namely, it might be expected that the electronic surface
states couple the strongest to surface phonon modes. However,
we investigated this and found that the electronic surface states
couple the strongest to phonons involving vibrations in all the
layers. Therefore, in order to obtain a proper projection it is
instructive to first consider the ψkν dependence of the spectral
function explicitly

α2Fkν(ω) =
∑

μ

∑
qj

δ(ω − ωqj )
∣∣gqj,νμ

k+q,k

∣∣2
δ(εk+qμ − εF ). (6)

Here α2F (ω) of Eq. (5) is obtained by performing
the following average over the Fermi surface α2F (ω) =

1
N(εF )

∑
kν α2Fkν(ω)δ(εkν − εF ). The projection of the α2F̂ (ω)

operator onto the local basis |Rξ 〉 (with R referring to the layer
and ξ = mσ containing both the orbital and spin projection)
can be expressed in terms of Eq. (6) and the 〈Rξ |kν〉 coeffi-
cients,

〈Rξ |α2F̂ (ω)|R′ξ ′〉 =
∑
kν

〈Rξ |kν〉α2Fkν(ω)〈kν|R′ξ ′〉, (7)

where α2Fkν(ω) = 〈kν|α2F̂ (ω)|kν〉. Then, by performing the
appropriate summation and averaging over the Fermi surface

the |Rξ 〉 dependence of α2F (ω) can be obtained

α2FRξ (ω) = 1

N (εF )Rξ

∑
R′ξ ′

〈Rξ |α2F̂ (ω)|R′ξ ′〉

×〈R′ξ ′|δ(ĤDFT − εF )|Rξ 〉
= 1

N (εF )Rξ

∑
kν

α2Fkν(ω)δ(εkν − εF )|〈Rξ |kν〉|2.

(8)

The expression in the last line of this equation is obtained by
employing the unity operator

∑
kν |kν〉〈kν| twice and inserting

Eq. (7). Here N (εF )Rξ is the projected density of states at the
Fermi energy at the site with position vector R and of the state
indicated by ξ = mσ . Further, α2F (ω) of Eq. (5) is obtained
by performing the summation 1

N(EF )

∑
Rξ α2FRξ (ω)N (εF )Rξ .

On its turn α2FRξ (ω) of Eq. (8) can used to calculate the
|Rξ 〉 projected electron-phonon mass-enhancement factor λRξ

and averaged λ [of Eq. (5)] via

λRξ = 2
∫

α2FRξ (ω)

ω
dω,

λ = 1

N (εF )

∑
Rξ

λRξN (εF )Rξ . (9)

The calculations in this work are performed by employing
the DF(P)T implementation of the QUANTUM ESPRESSO code
[28,29]. An ultrasoft pseudopotential is used to reduce the
required plane-wave kinetic energy cutoff with respect to
norm-conserving pseudopotentials [30,31]. For details on the
DFPT implementation with ultrasoft pseudopotentials we refer
the reader to Ref. [32]. Unless stated otherwise, the calculations
are performed with an exchange-correlation functional in the
generalized gradient approximation (GGA) as formulated by
Perdew, Burke, and Ernzerhof (PBE) [27]. For the Cr(001)-
surface calculations a kinetic energy cutoff for the expansion
into plane waves of the wave functions and density of, re-
spectively, 70 Ry and 800 Ry were taken. In case of Cr-bulk
calculations 50 Ry and 600 Ry were used. It was tested that
the relevant quantities in this work, e.g. the electron-phonon
mass-enhancement factors, are converged with respect to these
energy cutoffs.

From Eqs. (5) and (8) it can be seen that summations over
electronic (k) and phononic (q) meshes are required. Since the
electron-phonon coupling matrix elements are known to de-
pend smoothly on k and q, the interpolation scheme presented
in Ref. [20] is adapted. For the Cr(001)-surface calculations we
tested that for a 15 × 15 × 1 to 30 × 30 × 1 interpolation of
the k mesh and 5 × 5 × 1 to 10 × 10 × 1 interpolation of the
q-mesh convergence of the quantities of interest is achieved.
As for the Cr-bulk calculations an interpolation of the k mesh
from 15 × 15 × 15 to 30 × 30 × 30 and for the q mesh from
5 × 5 × 5 to 10 × 10 × 10 was found to be adequate.

Further, the calculations were scalar relativistic and spin
polarized, where an antiferromagnetic magnetic structure was
taken. In addition for all DF(P)T calculations a geometry
optimalization is performed such that the total energy and
forces are converged to within 10−5 Ry and 10−4 a.u. For
the Cr(001)-surface calculations a large vacuum of at least
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20 Å was introduced to prevent interactions between layers
of different unit cells. The Cr-bulk simulations were for the
bcc structure. After geometry optimization a lattice constant
of 2.87 Å was obtained for an antiferromagnetic magnetic
structure and 2.83 Å for the paramagnetic situation.

III. RESULTS AND DISCUSSION

Before the electron-phonon mass-enhancement factor of the
Cr(001) surface is investigated, first the Cr bulk is addressed. In
Table I the electron-phonon mass-enhancement factor (second
column) and the density of states at the Fermi level εF per
atom (third column) are presented for paramagnetic (PM)
and antiferromagnetic (AFM) Cr bulk. Further, both the LDA
and the GGA exchange-correlation functional were employed.
Since within LDA no stable AFM state could be obtained,
the electron-phonon mass-enhancement factor could not be
determined. The lack of a stable AFM solution within LDA is
also observed in other studies [9,33]. However, for the param-
agnetic state the difference between LDA and GGA appears to
be small. Furthermore, from this table a large suppression in λ

of about a factor 3 can be observed for the antiferromagnetic
structure compared to that of the paramagnetic case. Inter-
estingly, this same factor also corresponds to the difference
observed in the density of states at the Fermi level. Such a
dependence of λ on the density of states at the Fermi level can
be inferred from Eq. (6) by assuming that the electron-phonon
matrix elements (gqj,νμ

k+q,k) are approximately constant and that
the phonon energies (ωqj ) can be neglected with respect to the
electronic energies. Then, the term

∑
qμ δ(εk+qμ − εF ) gives

the proportionality with the density of states at the Fermi level.
The suppression of superconductivity in the antiferromag-

netic phase for Cr bulk is a known phenomenon [21]. Note that
λ is the central quantity in superconducting theory. Further,
our calculated value of λ for the antiferromagnetic phase
is found to be in good agreement with optical pump-and-
probe experiment, λ = 0.13 ± 0.02 [21]. Unfortunately, the
λ obtained for the paramagnetic phase cannot be compared
with experiment. However, strong coupling theory predicted a
λ of 0.25 for the paramagnetic phase, which is in reasonable
agreement with our result [22]. It should be noted that the
method we employed is much more sophisticated than strong
coupling theory.

In the following the electron-phonon mass-enhancement
factor of the Cr(001) surface is investigated. For this purpose
it is instructive to first inspect the 3d projected density of
states of the Cr(001) surface, i.e., the top layer of a system
consisting of multiple layers. For this surface layer the total 3d

TABLE I. The electron-phonon mass-enhancement factor λ and
density of states at the Fermi level per atom εF for paramagnetic (PM)
and antiferromagnetic (AFM) Cr bulk are presented. Here LDA and
GGA refer to the employed exchange-correlation functional.

λ N (εF )

PM (LDA) 0.37 4.7
PM (GGA) 0.35 4.8
AFM (GGA) 0.12 1.7

FIG. 1. The total 3d projected density of states of the surface layer
for calculations in which different numbers of layers are considered.
Here black corresponds to a calculation of four layers, red to six layers,
blue to eight layers, and pink to ten layers.

projected density of states is depicted in Fig. 1 for calculations
in which different numbers of layers are considered. Here black
corresponds to a calculation of four layers, red to six layers,
blue to eight layers, and pink to ten layers. From Fig. 1 it
can be observed that for eight layers the projected density of
states can be considered converged with respect to the total
number of layers. Especially note that the important region
for the electron-phonon mass-enhancement factor, which is
around the Fermi level, is well converged for eight layers.
Further, our computed 3d projected density of states is in
good agreement with what is obtained in previous DFT studies
[9,15]. In addition, in Ref. [9] a detailed analysis can be found
of the orbital and layer projected band structure.

In Fig. 2 the electron-phonon mass-enhancement factor of
Eq. (9) corresponding to the top layer and the different 3d
states is presented for calculations of different numbers of
layers. Here the top figure refers to the majority spin state
and the bottom figure to the minority spin state. Further,
black corresponds to dz2 , red to dxz/dyz (are equivalent due to
symmetry at the surface), blue to dx2−y2 , pink to dxy , and green
to the per spin averaged 1

N(EF )Rσ

∑
m λRmσN (εF )Rξ , where

Rξ = Rmσ , m is the sum over the different 3d states, and
N (EF )Rσ is the spin-projected and layer-projected density of
states at the Fermi level. From this figure it can be observed
that for all majority spin 3d states the electron-phonon mass-
enhancement factor appears to be quite well converged with
respect to the number of layers. For the minority spin 3d
states the fluctuation as function of the number of layers
is a bit larger. This is especially the case for the dxz/dyz

states. However, the important observation is that for the
(majority and minority) dz2 surface state the electron-phonon
mass-enhancement factor seems to be converged already for
six layers. Therefore, we consider 0.19 and 0.16 to be the
electron-phonon mass-enhancement factor for, respectively,
the majority and minority dz2 surface state of the Cr(001)
surface.
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FIG. 2. The electron-phonon mass-enhancement factor of Eq. (9)
corresponding to the top layer and the different 3d states is pre-
sented for calculations of different numbers of layers. Here the top
figure refers to the majority spin states and the bottom figure to
the minority spin states. Further, black corresponds to dz2 , red to
dxz/dyz, blue to dx2−y2 , pink to dxy , and green to the spin averaged

1
N(εF )Rσ

∑
m λRmσ N (εF )Rξ , where Rξ = Rmσ , m is the sum over

the different 3d states and N (EF )Rσ is the spin-projected and layer-
projected density of states at the Fermi level.

A further inspection of Fig. 2 shows that on average the
electron-phonon mass-enhancement factor for the majority 3d
states is a bit larger than for the minority 3d states. The largest
electron-phonon mass-enhancement factor is obtained for the
dxz/dyz majority states, while the smallest for the dxz/dyz

minority states.
It is also interesting to investigate the electron-phonon

mass-enhancement factor of the 3d states corresponding to the
bulk layer (middle layer). This is presented in Fig. 3, where
results for the Cr bulk (indicated by ‘bulk’) are also included.
Note that for Cr bulk due to symmetry the dz2 and dx2−y2 states
are equivalent, and also the dxz, dyz, and dxy states. Therefore,
for these states the electron-phonon mass-enhancement factors
should become equivalent as the number of layers increases.
For eight layers the majority dxz, dyz, and dxy states are
equivalent, even though the bulk value is not reached. This

FIG. 3. The electron-phonon mass-enhancement factor of Eq. (9)
corresponding to the bulk layer (middle layer) and the different 3d
states is presented for calculations of different numbers of layers.
Here the top figure refers to the majority spin states and the bottom
figure to the minority spin states. Further, black corresponds to dz2 ,
red to dxz/dyz, blue to dx2−y2 , pink to dxy , and green to the spin
averaged 1

N(EF )Rσ

∑
m λRmσ N (εF )Rξ , where Rξ = Rmσ , m is the sum

over the different 3d states, and N (EF )Rσ is the spin-projected and
layer-projected density of states at the Fermi level.

also occurs for the minority dxz, dyz, and dxy states, and dz2

and dx2−y2 states. That the bulklike values are not achieved
for eight layers can be partly explained by the fact that the
projected density of states at the Fermi level is not converged
with respect to the number of layers. As a typical example, the
dz2 projected density of states of the bulk layer is presented as
a function of the number of layers in Fig. 4. From this figure it
is clear that for ten layers the projected density of states around
the Fermi level is not converged with respect to the number of
layers.

As mentioned above the main interest is the electron-
phonon mass-enhancement factor of the dz2 state correspond-
ing to the top layer. It was found that this quantity is converged
already for six layers, which is in contrast to what was
obtained for the bulk layer. Therefore, the electron-phonon
mass-enhancement factors of the majority and minority dz2
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FIG. 4. The dz2 projected density of states of the bulk layer
(middle layer) for calculations in which different numbers of layers
are considered. Here black corresponds to a calculation of four layers,
red to six layers, blue to eight layers, and pink to ten layers. The solid
lines refer to the majority spin channel and the dashed lines to the
minority spin channel. The bottom figure is a zoom-in of the top
figure around the Fermi level.

surface states, 0.19 and 0.16, are compared directly to those
corresponding to the bulk of 0.11 and 0.14. There is less
than a factor 2 difference between them. The same holds
when a comparison is made with the bulk spin averaged
electron-phonon mass-enhancement factors of 0.12 and 0.13.
On the other hand, experimentally a factor of about 5–10 was
predicted. For convenience, the values of 0.19 and 0.16 can
also be directly compared with the absolute value predicted
in experiment, 1.53 ± 0.40 [12]. It is clear that none of our
calculated values are in agreement with this prediction.

It should be noted that the mismatch with experiment
is smaller, when realistic values for the temperature range
and surface Debye frequency are employed for the fit of the
experimental data. In order to understand this, the procedure
to obtain the electron-phonon mass-enhancement factor in
Ref. [12] has to be inspected more closely. In their work the

experimental data is fitted with the following model,

�e−ph(T ) = �ee + λsur
2π

ω2
D

∫ ωD

0
dE′E′2[1 − f (E0 − E′)

+ 2n(E′) + f (E0 + E′)]. (10)

Here ωD is the Debye frequency corresponding to the sur-
face, T the temperature, λsur is the electron-phonon mass-
enhancement factor of thedz2 -surface state,E0 is the position of
the resonance, f (E) the Fermi distribution, and n(E) the Bose-
Einstein distribution. Further, �e-ph is the inverse lifetime due
to electron-phonon processes within the Debye model, and �ee

is the inverse lifetime due to the electron-electron interactions.
The latter can be approximated by a constant for energies close
to the Fermi level and low enough temperatures, i.e., it then
corresponds to the offset observed at zero temperature.

The first thing we noticed is that in Ref. [12] λsur is assumed
to be constant, while the model of Eq. (10) is used to fit the
data in a temperature range of 4–350 K. The problem is that in
this temperature range the paramagnetic to antiferromagnetic
phase transition is crossed at 311 K. From for example Table I
it is clear that the electron-phonon mass-enhancement factor
can change drastically between these regimes. Therefore, we
performed a fitting in the temperature range 4–178 K with
Eq. (10) to obtain �ee, λsur, and ωD , where we took E0 =
20 ± 5 meV (same as in Ref. [12]). It appears then that the
error bars of the experimental data are too large to accurately
predict these quantities, �ee = 14 ± 9, λsur = 1.50 ± 1, and
ωD = 48 ± 25. This is the reason why in Ref. [12] (and also
in Ref. [34]) only two quantities are fitted at a time and for
the other a ‘reasonable’ guess is taken. More precisely, in
Ref. [12] first the Debye frequency ωD corresponding to the
surface is taken to be equal to the bulk, 52.5 meV, for the
determination of �ee and λ. However, for the Cr(001) surface
the Debye frequency has been found both experimentally and
theoretically to be at least two times smaller than in the bulk
[35,36]. On the other hand, �ee = 19.5 ± 5 meV seems to be
a reasonable approximation for the offset observed at zero
temperature in Fig. 3(b) of Ref. [12]. Then, taking ωD =
26 meV (half of the bulk value) and �ee = 19.5 ± 5 meV (and
E0 = 20 ± 5 meV) we find for λsur by employing Eq. (10) in
the temperature range 4–178 K the following, λsur = 0.77 ±
0.16. It is clear that this value is not in agreement with the
calculated electron-phonon mass-enhancement factors of the
majority and minority spin surface dz2 states (0.19 and 0.16).

We could also use �ee = 19.5 ± 5 meV and E0 = 20 ±
5 meV to find both λsur and ωD (corresponding to the surface)
by employing Eq. (10) in the temperature range 4–178 K. Then,
λ = 1.44 ± 0.83 and ωD = 48 ± 25 are found. From these re-
sults it appears again that the error bars of the experimental data
points are too large to accurately determine these quantities.
Therefore, we are convinced that it is better to take ωD =
16 meV from experiment [35]. Then, employing Eq. (10) with
�ee = 19.5 ± 5 meV and E0 = 20 ± 5 meV in a temperature
range of 4–178 K results in λsur = 0.70 ± 0.10, which is not
in agreement with our calculations.

It is instructive to verify whether the Debye model can be
employed to fit the experimental data. This can be conveniently
done by an inspection of the Eliashberg function of Eq. (8).
Therefore, the Eliashberg function corresponding to the top
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FIG. 5. For an eight layer calculation the Eliashberg function of
Eq. (8) corresponding to the top layer and dz2 state is presented for
the majority (top) and minority (bottom) spin states. Further, in the
inset graphs the red line corresponds to a second order polynomial fit,
i.e., the Debye model.

layer and the dz2 state is presented in Fig. 5. Here the top figure
corresponds to the majority spin state and the bottom figure
to the minority spin state. Further, in the inset graphs the red
line corresponds to a second order polynomial fit, the Debye
model, of the low energy frequencies. From these inset graphs
it can be observed that for the majority spin state the agreement
with the Debye model is reasonable, and for the minority spin
state it is very good. Therefore, we are convinced that a fit by
means of the Debye model is appropriate for the experimental
data.

Besides the difference of about a factor 3 between our
calculations and the experimental prediction, there is a subtlety
that should be addressed in more detail. This subtlety is
related with the interpretation of the experimentally observed
resonance at the Fermi level of Cr(001) surfaces in terms of
a dz2 -surface state renormalized by electron-phonon coupling.
Namely in absence of the electron-phonon coupling, i.e., at
zero temperature, there should still be a peak at the Fermi level
with a width determined by electron-electron interactions (�ee)
and impurities. However, from our DFT calculations it is clear
that there is no such dz2 peak in the vicinity of the Fermi level

(see the bottom figure of Fig. 1). The closest peak is at about
0.2 eV with a width of roughly 0.25 eV. This position is too
far from the Fermi level and the width too large for the peak
to allow for a substantial renormalization by electron-phonon
coupling. For a substantial renormalization by means of the
electron-phonon coupling it is known that both the position
(with respect to the Fermi level) and the width of the peak can
be at most of the order of the Debye frequency [37]. In an earlier
work it was proposed that the overestimation of the magnetic
moment within DFT was responsible for the wrong peak
position [9]. However, it was immediately found that a correct
peak position would result in an unrealistic underestimation of
the magnetic moment [9]. In addition, the too large width of the
peak could not be resolved by this. Another reason for the lack
of a dz2 peak with a correct width at the Fermi level could be an
insufficient treatment of electron-electron correlation effects.
In recent DFT+DMFT calculations within the CTQMC solver,
it has been demonstrated that depending on the double counting
a dz2 peak can emerge at the Fermi level (see Fig. 3(d) of
Ref. [15]).

IV. CONCLUSION

We have performed density functional perturbation theory
calculations within a pseudopotential plane-wave approach
to investigate the electron-phonon mass-enhancement factor
of Cr(001) surfaces and Cr bulk. For Cr bulk we made the
interesting observation that within the paramagnetic phase the
electron-phonon mass-enhancement factor is about three times
larger than in the antiferromagnetic phase. The same difference
is found in the density of states at the Fermi level, which
explains this behavior. Further, for the antiferromagnetic phase
the calculated electron-phonon mass-enhancement factor is
found to be in good agreement with experiment, while for
the paramagnetic phase a reasonable agreement with strong
coupling theory is obtained. For the paramagnetic phase it was
also found that there is only a small difference between the
electron-phonon mass-enhancement factor obtained in LDA
and GGA.

For the Cr(001) surface we obtained for the majority and
minority spin dz2 surface states an electron-phonon mass-
enhancement factor of, respectively, 0.19 and 0.16. Compared
to the bulk these are less than a factor 2 larger, while experi-
mentally a factor 5–10 difference was predicted. Further, we
showed that the difference between experiment and our calcu-
lations is smaller if we use realistic values for the temperature
range and surface Debye frequency to fit the experimental
data. More precisely, then experimentally an electron-phonon
mass-enhancement factor of 0.70 ± 0.10 is obtained, which is
not in agreement with our calculated values of 0.19 and 0.16.

These findings suggest that the experimentally observed
sharp resonance at the Fermi level of the Cr(001) surface
is not due to electron-phonon effects, i.e., is not due to a
dz2 surface state renormalized by electron-phonon coupling.
Instead, electron-electron correlations effects are expected to
be responsible for the occurrence of the resonance. However,
more studies are needed to exclude the importance of electron-
phonon coupling effects beyond the Eliashberg theory and to
investigate the effect of the electron-electron related many-
body processes.
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