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Universal Majorana thermoelectric noise
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Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields
and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the
microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling
mechanisms to two contacts, one may achieve various situations where the electric current induced by an external
bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even
more exciting physics emerges when the system’s electronic degrees freedom split to form Majorana fermions
which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures
of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond
linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias
voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the
contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system’s parameters,
thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages
where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric
signatures.
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I. INTRODUCTION

Originally proposed [1] in the late 1930’s, the Majorana
representation [2], making the Dirac equation real, has since
then always been a challenge for experiments on elementary
particles to reveal, e.g., via neutrinoless double beta decay,
a fundamental particle representing on equal footing its own
antiparticle. Referred to as Majorana fermions, these are hy-
pothetical spin- 1

2 neutral fundamental particles with neutrinos
as possible candidates for massive Majorana particles.

In parallel to Majorana challenges within the particle
physics, another way to implement Majorana fermions is to
construct condensed matter systems with quasiparticles being
identical to their own antiquasiparticles. This is indeed possible
when a system acquires a finite superconducting order param-
eter. Here, Dirac fermions may become highly nonlocal in real
space, i.e., they may split, or fractionalize, into two Majorana
fermions localized at the system’s edges. Although these zero-
energy Majorana bound states are not fundamental particles
as in the case of the particle physics, they are effectively
quasiparticles which are their own antiquasiparticles. Despite
their non-Abelian statistics, these zero-energy Majorana bound
states are still referred to as Majorana fermions. The Kitaev
model [3] is an example of a one-dimensional condensed
matter system hosting two Majorana fermions at its ends.
The topological superconducting phase realized in the Kitaev
model has various [4–6] physical implementations among
which systems based on topological insulators [7,8] and spin-
orbit coupled semiconductors [9,10] are of particular interest.
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Once implemented in a condensed matter setup, Majorana
fermions need an experimental proof of their existence via
unique signatures characteristic of exclusively these fraction-
alized quasiparticles. To this end, transport experiments offer
a relatively simple way to detect unique Majorana signatures
in a given condensed matter system.

The majority of transport proposals focus on mean elec-
tric current, often providing low-energy behavior of the
system’s electrical conductance. Examples are given by
superconductor–Luttinger-liquid junctions [11], Kondo effect
in quantum dots side coupled to a topological superconductor
supporting Majorana fermions at its ends [12], driven topo-
logical superconductors [13], Josephson junctions on surfaces
of three-dimensional topological insulators [14], Kondo effect
in topological superconductor–quantum dot–normal lead junc-
tion [15], normal metal-superconducting semiconductor–
normal metal structures [16], spinon-antispinon systems [17],
Coulomb blockaded systems [18], disordered Josephson junc-
tions in tilted magnetic fields [19], and many others.

Transport experiments [20,21] oriented on measurements
of the mean current, in particular, on its low-energy behavior
are steadily improving their analysis of the zero-bias anomaly
present in the electrical conductance from which stronger
signatures of Majoranas may be extracted [22]. Although it
is often necessary to perform additional analysis to disentan-
gle the Majorana physics from possible interaction-induced
effects, such as the Kondo effect, or from effects related to
partially separated Andreev bound states [23,24], recent works
[25,26] suggest an alternative proof of the nonlocal nature
and topological protection of Majorana zero modes via local
measurements of the zero-bias conductance.

To avoid uncertainty and make transport experiments pro-
vide more unique signatures of Majorana fermions, one may,
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in conjunction with measurements of zero-bias conductance,
resort to measurements of the electric current fluctuations.
Here, there are not as many proposals [27–30] for Majorana
noise as for the mean electric current. Again, the most attention
is paid to the low-energy behavior of the electric current
noise. Because of the fluctuation-dissipation theorem [31–33],
this equilibrium noise, accessed within the system’s linear
response, is not independent of the mean electric current.
Beyond linear response the electric current fluctuates indepen-
dently of its mean value and, thus, this nonequilibrium noise
is able to provide alternative Majorana fingerprints which,
what is remarkable, turn out to be of universal nature [34,35].
In particular, in Ref. [35] it has been demonstrated that this
universal Majorana noise is characterized by two effective
charges e∗

l = e/2 and e∗
h = 3e/2 at low and high energies,

respectively. It has also been shown that the low-energy
Majorana effective charge e∗

l = e/2, whose Majorana nature
is additionally confirmed via Majorana tunneling entropy
calculations [36], may be sensitive to thermal fluctuations
while the high-energy Majorana effective charge e∗

h = 3e/2
is accessed at high-bias voltages which protect this effective
charge from thermal noise and, therefore, its measurement may
be performed at relatively high temperatures easily reachable
in modern laboratories. It is important to note that modern
experiments have already reached such a high level at which
one can get the effective charge with very high accuracy as, for
example, in experiments on quantum dots where the effective
charge has been measured in the Kondo regime [37].

Another realm of transport experiments is provided by
systems hosting Majorana fermions and possessing tempera-
ture inhomogeneities. Here, examples include heat conduction
in a Majorana metal, where the heat conduction happens
via Majorana fermions bound to defects [38], and thermal
quantum Hall effect [39], where a net heat current results
from a temperature difference between the edges which sup-
port Majorana chiral edge modes arising, for example, in a
chiral p-wave superconductor. The latter case of dispersive
Majorana fermions is particularly attractive for future research
on thermoelectric phenomena in systems where Majorana
dispersion relations may undergo qualitative changes such as,
for example, the evolution of a Majorana conic dispersion
relation into a Majorana arc-shaped dispersion relation [40].
In the context of nanoscopic systems, one is usually interested
in setups where a nanoscopic system interacts via tunneling
mechanisms with two normal metals playing the role of the
contacts. An external bias voltage is applied to these contacts
which may also have different temperatures. Here, one may
easily tune the system’s parameters, making the electric current
induced by the bias voltage and the electric current excited by
the temperature difference interfere with one another, leading
to a highly nontrivial thermoelectric transport [41,42]. When
a nanoscopic setup is designed to host Majorana degrees
of freedom, the system’s thermoelectric response undergoes
essential changes which might be used to identify Majorana
fermions in, e.g., normal metal–quantum dot–Majorana bound
states junction [43], Majorana–side-coupled quantum dots
[44,45], Majorana bound states system coupled to two normal
leads [46].

Up to now Majorana thermoelectric transport has been
investigated via analysis of the mean electric current often

restricted to its low-energy behavior to obtain linear conduc-
tances. Fluctuations of the electric current excited by both
the bias voltage and temperature difference have not been
addressed. At the same time, as discussed above, fluctuations
provide much more unique fingerprints of a given system.
Therefore, thermoelectric noise is an important and highly
conclusive tool to uniquely reveal whether Majorana fermions
are present in a given nanoscopic system.

In this work, we explore fluctuations of thermoelectric
transport through quantum dots interacting via tunneling mech-
anisms with two contacts and one end of a one-dimensional Ki-
taev’s chain, supporting two Majorana fermions at its ends. The
contacts are normal metals to which an external bias voltage is
applied and in general the temperatures of the two contacts are
not identical. We obtain for this system both the mean electric
current and thermoelectric noise as well as their nonlinear
response coefficients in the transport regime governed by Ma-
jorana degrees of freedom. We find (1) that mean thermoelec-
tric quantities become universal only for large-bias voltages,
while having nonuniversal behavior below the energy scale
characterizing the overlap of the Majorana modes; (2) that in
contrast to the mean quantities, thermoelectric noise is univer-
sal in the whole voltage range when the dynamics is essentially
governed by Majorana bound states; (3) that the differential
thermoelectric noise has a universal two-plateau structure with
the truly universal values of the plateaus (e3/h)[1 + ln(2)] and
(e3/h)[1 + ln(21/2)], depending on whether the ratio between
the bias voltage and the thermal voltage is less than or greater
than one; (4) analytical universal high-energy asymptotics of
the nonlinear response coefficients of the thermoelectric noise;
(5) universal ratios between nonlinear response coefficients of
the thermoelectric noise and mean current; (6) that at large-bias
voltages these thermoelectric ratios saturate to truly universal
constants independent of the bias voltage; (7) analytical values
of these constants; (8) that these values are protected by
high-bias voltages, making them robust against thermal noise
and, therefore, these values represent unique truly universal
Majorana thermoelectric signatures which could be measured
in modern experiments even at relatively high temperatures.

The paper is organized as follows. In Sec. II we describe in
detail an example of a system where thermoelectric transport
in presence of Majorana fermions may be analyzed on the
level of both mean quantities and fluctuations. The description
of the system is given in terms of the Keldysh field integral
most convenient to explore different correlation functions in
stationary nonequilibrium which is the case here. In Sec. III
thermoelectric transport is analyzed in terms of nonlinear
response coefficients: first on the level of mean quantities,
in Sec. III A, and afterwards on the level of fluctuations,
in Sec. III B. In Sec. IV we summarize the main results of
the paper, draw conclusions, and discuss some open issues.
Finally, the Appendix provides the main technical steps in the
calculation of the current-current correlator.

II. NONEQUILIBRIUM FIELD-THEORETIC
FRAMEWORK: KELDYSH ACTION

To explore Majorana thermoelectric transport in a
nanoscopic setup, we focus on a particular example of a quan-
tum dot system shown in Fig. 1. It includes a noninteracting
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FIG. 1. The physical system represents a quantum dot whose
single-particle energy level εd may be tuned by an external gate
voltage to make the quantum dot filled (εd < 0) or empty (εd > 0).
The left (L) and right (R) contacts are normal metals assumed to be
in equilibrium characterized by the Fermi-Dirac distributions fL,R(ε)
specified by the chemical potentials μL,R and the temperatures TL,R .
They are coupled via tunneling interactions (with the strengths �L,R)
to the quantum dot. An external bias voltage V is applied to the
contacts, μL − μR = eV < 0. The left contact is hot (shown as red)
while the right one is cold (shown as blue), TL = T + �T , TR = T ,
�T ≥ 0. The grounded topological superconductor, implemented,
e.g, by means of the Kitaev’s chain, supports two Majorana modes
γ1,2 at its ends. One of these ends, namely, the one supporting the
Majorana mode γ1, is coupled via another tunneling interaction (with
the strength η) to the quantum dot. The blue and red arrows illustrate
schematically the electric current flows excited by the external bias
voltage V and the temperature difference �T , respectively. The noise
of the electric current S>(t) and the mean electric current I are
measured in the hot (left) contact S>(t) = 〈δIL(t)δIL(0)〉, I = 〈IL〉.

quantum dot with a single-particle energy level εd which is spin
nondegenerate. Physical realization may represent a quantum
dot subjected to a Zeeman field leading to a spin-polarized
energy level εd . Additionally, the position of this energy level
with respect to the chemical potential may be controlled by
an external gate voltage so that the quantum dot is filled
when εd < 0 and empty when εd > 0. The Hamiltonian of
the isolated quantum dot is

Ĥd = εdd
†d, (1)

where d and d† are, respectively, the quantum dot Dirac
fermion annihilation and creation operators with the usual anti-
commutation relations {d,d} = 0, {d,d†} = 1. If, as mentioned
above, a Zeeman field is applied to the quantum dot, it will
destroy the correlation effects due to the Kondo effect [47]
so that the latter is not important for the Majorana physics
discussed below. Moreover, as is well known, the Kondo effect
in the present setup would require the quantum dot to be
filled (εd < 0). However, for the case of the empty quantum
dot (εd > 0) the Kondo effect does not arise. On the other
side, as will be shown below (see also Ref. [35] for pure
electric Majorana noise), the thermoelectric Majorana noise is
universal and it does not depend on whether εd < 0 or εd > 0.
Therefore, in order to completely exclude the Kondo effect
from the physical setup, we will below always consider the
case εd > 0.

The setup also contains two contacts labeled as left (L)
and right (R). They represent noninteracting normal metals
which are assumed to be in equilibrium characterized by the
Fermi-Dirac distributions:

fL,R(ε) = 1

exp
( ε−μL,R

TL,R

)+1
, (2)

where μL,R and TL,R are, respectively, the chemical potentials
and temperatures of the contacts. An external bias voltage V

may be applied to the contacts so that μL − μR = eV , where
e is the electron charge, and we will assume the symmetric
bias μL,R = ±eV/2, with eV < 0. The temperatures of the
contacts are TL = T + �T , TR = T with T ≥ 0, �T ≥ 0, i.e.,
the left contact is hot and the right contact is cold. We consider
a typical setup where the two contacts are characterized by the
same set of quantum numbers k and energy spectrum εk . In
this case, the Hamiltonian of the contacts is

Ĥc =
∑

l={L,R}

∑
k

εkc
†
lkclk, (3)

where clk and c
†
lk are, respectively, the contacts’ Dirac fermion

annihilation and creation operators with the usual anticom-
mutation relations {clk,cl′k′ } = 0, {clk,c

†
l′k′ } = δll′δkk′ . If the

quantum dot energy level εd is spin polarized, i.e., it has a
definite spin σ realized via a Zeeman splitting, as mentioned
above, then Eq. (3) describes the electrons in the normal
metals with the same spin σ . Additionally, we assume massive
contacts so that their energy spectrum is continuous and their
density of states per spin may be characterized by a constant
νc/2 within the energy range relevant for transport.

The quantum dot interacts with the contacts via tunneling

Ĥd-c =
∑

l={L,R}

∑
k

Tlkc
†
lkd + H.c., (4)

where the dependence of the tunneling matrix elements on
the contacts’ quantum numbers is usually neglected, Tlk = Tl .
The strength of the tunneling between the quantum dot and
the left or right contact is characterized by the quantity �l ≡
πνc|Tl|2 while the total tunneling strength is defined as � ≡∑

l={L,R} �l = �L + �R .
The final constituent of the setup is a grounded topological

superconductor implementing the Kitaev’s one-dimensional
chain supporting two Majorana zero modes localized at its
edges. Due to a finite length of the topological superconductor,
these Majorana bound states may have a finite overlap with
a characteristic energy scale ξ . For large values of ξ , the
two Majorana fermions merge and behave as a single Dirac
fermion, while for small values of ξ the low-energy physics
is essentially governed by Majorana degrees of freedom. The
effective low-energy Hamiltonian of the topological supercon-
ductor is

Ĥtsc = i

2
ξγ2γ1, (5)

where γ1,2 are the Majorana fermion annihilation operators
identical to the corresponding creation operators γ

†
1,2 = γ1,2.

These annihilation operators satisfy the anticommutation re-
lations {γi,γj } = 2δij , implying that the associative algebra
generated by the set {1,γ1,γ2} is the Clifford algebra [48].
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The quantum dot interacts with the topological super-
conductor via tunneling involving only the Majorana mode
γ1, as has been suggested in numerous literature (see, e.g.,
Refs. [15,27,28,44]),

Ĥd-tsc = η∗d†γ1 + H.c., (6)

where the absolute value |η| of the tunneling matrix element
characterizes the strength of the tunneling between the quan-
tum dot and the topological superconductor.

To explore nonlinear thermoelectric response of the system
specified by the Hamiltonian

Ĥ = Ĥd + Ĥc + Ĥd-c + Ĥtsc + Ĥd-tsc, (7)

it is convenient to resort to the Keldysh field integral frame-
work [49,50] as a general tool providing various correlation
functions in a simple systematic way. To this end, we write the
source-dependent Keldysh generating functional:

Z[Jl(t)] =
∫

D[θ̄(t),θ (t)]e
i
h̄
SK [θ̄ (t),θ(t);Jl (t)], (8)

where {θ̄ (t),θ (t)} = {ψ̄(t),ψ(t); φ̄lk(t),φlk(t); ζ̄ (t),ζ (t)} is the
set of the Grassmann fields of, respectively, the quantum dot,
contacts, and topological superconductor while Jl(t) is the
source field. Note, the fundamental normalization Z[Jl(t) =
0] = 1. In Eq. (8) the time argument t runs over the Keldysh
closed-time contour CK , t ∈ CK .

The total Keldysh action SK [θ̄(t),θ (t); Jl(t)] consists of the
Keldysh actions of the isolated quantum dot, contacts, and
topological superconductor, the tunneling actions describing
the interaction of the quantum dot with the contacts and
topological superconductor as well as the source action.

The Keldysh actions of the isolated quantum dot
Sd [ψ̄(t),ψ(t)], contacts Sc[φ̄lk(t),φlk(t)], and topological su-
perconductor Stsc[ζ̄ (t),ζ (t)] have the conventional form of
upper triangular 2 × 2 matrices in the retarded-advanced space
with the upper/lower diagonal elements representing the in-
verse retarded/advanced Green’s functions of the correspond-
ing isolated system while the upper off-diagonal elements of
these matrices have the form i δ (1 − 2f ) where δ → 0+ and
f is the corresponding Fermi-Dirac distribution which, e.g.,
for the contacts is given by Eq. (2).

The tunneling actions describing the interactions of the
quantum dot with the contacts and topological superconductor
are, respectively, given as

Sd-c[ψ̄(t),ψ(t); φ̄lk(t),φlk(t)]

= −
∫ ∞

−∞
dt

∑
l={L,R}

∑
k

{Tl[φ̄lk+(t)ψ+(t)

− φ̄lk−(t)ψ−(t)] + G.c.}, (9)

Sd-tsc[ψ̄(t),ψ(t); ζ̄ (t),ζ (t)]

= −
∫ ∞

−∞
dt{η∗[ψ̄+(t)ζ+(t) + ψ̄+(t)ζ̄+(t)

− ψ̄−(t)ζ−(t) − ψ̄−(t)ζ̄−(t)] + G.c.}, (10)

where in the right-hand side the time argument t runs over the
real axis and the subindex +/− denotes the forward/backward
branches of the Keldysh closed-time contour. The abbreviation
G.c. stands for the Grassmann conjugation, the generalization

of the Hermitian conjugation for the case when Grassmann
variables are involved in a mathematical expression.

Finally, the source action is

Sscr [ψ̄(t),ψ(t); φ̄lk(t),φlk(t); Jl(t)]

= −
∫ ∞

−∞
dt

∑
l={L,R}

∑
q={+,−}

Jlq(t)Ilq(t), (11)

where Ilq(t) is the field representing the electric current in the
left (l = L) or right (l = R) contact on the forward (q = +) or
backward (q = −) branch of the Keldysh closed-time contour:

Ilq(t) ≡ ie

h̄

∑
k

[Tlφ̄lkq(t)ψq(t) − G.c.]. (12)

Using the total Keldysh action,

SK [θ̄(t),θ (t); Jl(t)]

= Sd [ψ̄(t),ψ(t)] + Sc[φ̄lk(t),φlk(t)]

+ Stsc[ζ̄ (t),ζ (t)] + Sd-c[ψ̄(t),ψ(t); φ̄lk(t),φlk(t)]

+ Sd-tsc[ψ̄(t),ψ(t); ζ̄ (t),ζ (t)]

+ Sscr [ψ̄(t),ψ(t); φ̄lk(t),φlk(t); Jl(t)], (13)

one can easily obtain the mean electric current in the left (l =
L) or right (l = R) contact by taking the first derivative of
Z[Jl(t)] with respect to the corresponding source field:

〈Il〉 ≡ 〈Ilq(t)〉SK
= ih̄

δZ[Jl(t)]

δJlq(t)

∣∣∣∣
Jlq (t)=0

, (14)

where the angular brackets 〈. . . 〉SK
denote the average of a

functional of Grassmann fields with respect to the total Keldysh
action (13) taken at zero source field,

〈F[θ̄(t),θ (t)]〉SK

≡
∫

D[θ̄(t̃),θ (t̃)]e
i
h̄
SK [θ̄ (t̃),θ(t̃)]F[θ̄(t),θ (t)], (15)

SK [θ̄(t),θ (t)] ≡ SK [θ̄(t),θ (t); Jl(t) = 0]

= Sd [ψ̄(t),ψ(t)] + Sc[φ̄lk(t),φlk(t)]

+ Stsc[ζ̄ (t),ζ (t)] + Sd-c[ψ̄(t),ψ(t); φ̄lk(t),φlk(t)]

+ Sd-tsc[ψ̄(t),ψ(t); ζ̄ (t),ζ (t)]. (16)

The values of q and t in Eq. (14) are arbitrary since the
final result does not depend on the choice of a branch of
the Keldysh closed-time contour as well as on the choice of
an instant of time on that branch because we consider only
stationary nonequilibrium states. It is straightforward to verify
that Eq. (14) leads to the Meir-Wingreen result [51].

In a similar way, one can obtain the current-current corre-
lator by taking the second derivative of Z[Jl(t)] with respect
to the corresponding source fields:

〈Il(t)Il′(t
′)〉 ≡ 〈Il−(t)Il′+(t ′)〉SK

= (ih̄)2 δ2Z[Jl(t)]

δJl−(t)δJl′+(t ′)

∣∣∣∣
Jlq (t)=0

. (17)

The technical steps one makes in the calculation of the second
derivative in Eq. (17) are mainly straightforward. One should
only take proper care of the fact that due to the presence of
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the topological superconductor, there will appear anomalous
contributions when averaging products of four Grassmann
fields of the quantum dot. To facilitate one’s derivation of the
anomalous terms and to avoid technicalities in the main text,
we provide the main details relevant for the calculation of the
second derivative in Eq. (17) in the Appendix.

The first and second derivatives of the Keldysh generating
functional are enough to explore nonlinear Majorana thermo-
electric response of the system in terms of the mean value and
fluctuations of the electric current.

III. UNIVERSAL MAJORANA
THERMOELECTRIC TRANSPORT

For definiteness, below we focus on transport measurements
in the left (L) contact which is assumed to be hot. The
temperature difference �T between the contacts may be
parametrized by a thermal voltage VT ,

VT ≡ kB�T

e
, (18)

where kB is the Boltzmann constant. Additionally, we will
consider the situation when the quantum dot couples symmet-
rically to the left and right contacts �L = �R = �/2.

To solely focus on universal Majorana physics, we explore
the regime dominated by the Majorana tunneling,

|η| > max{|εd |,|eV |,eVT ,kBT ,�,ξ}. (19)

Here, εd may be tuned by an external gate voltage to satisfy
(19). Similarly, the bias voltage V , thermal voltage VT , and
temperature T may be externally adjusted to satisfy (19).
The Majorana overlap ξ will be small if the topological
superconductor in the setup is chosen to be long enough so that
the two Majorana fermions do not merge into a single Dirac
fermion during the tunneling into the quantum dot. In modern
experiments [52], the values of |η| and � are readily controlled
via external gates whose potentials can increase or decrease the
height of the potential barriers between the quantum dot and
contacts in order to vary � as well as between the quantum dot
and topological superconductor in order to vary |η|. In this way
in modern laboratories |η| may be increased while � may be
decreased in order to reach the condition in (19). Thus, aside
from its theoretical importance, the Majorana transport regime,
specified by (19), is of particular experimental interest.

Before we start to discuss our results, it is important to men-
tion how we obtain various nonlinear response coefficients. In
what follows, we use the formalism presented in Sec. II and
the Appendix and perform numerical calculations of corre-
sponding integrals in the energy domain to obtain the mean
electric current and current-current correlations. This formal-
ism allows one to compute not only the mean electric current
and current-current correlations, but also various derivatives
of these quantities. The calculations of the derivatives may be
performed in two different ways. On one side, one can calculate
derivatives using finite differences. In this case, one computes
the mean electric current and current-current correlations on
a fine grid of the bias voltage and thermal voltage and after
that applies conventional finite-difference schemes for the first
and second derivatives. On the other side, one notices (see
the Appendix) that the dependence of both the mean electric

current and current-current correlations on the bias voltage and
thermal voltage enters through the Keldysh components of the
Green’s functions, more specifically, through the Fermi-Dirac
distributions (2). Therefore, one can first calculate various
derivatives of corresponding integrands. This simply reduces
to analytical differentiations of the Fermi-Dirac distributions
(2). After that, one performs numerical integration of these
differentiated integrands which now involve various analytical
derivatives of the Fermi-Dirac distributions (2). We find that in
all of our calculations these two ways of computing derivatives
give the same results within a good numerical precision. This
is a very good test that our numerical results are reliable.
However, in order to reach higher precision to obtain analytical
expressions, which will be discussed below, we prefer to use
the second way involving analytical differentiations of the
Fermi-Dirac distributions (2).

Another important aspect concerns the analytical asymp-
totic limits presented below. They are obtained by inspection
of our numerical results. We will use the term asymptotic limit
for an analytical expression if our numerical results reproduce
this analytical expression with any desired numerical precision
by adjusting the physical parameters of the system to satisfy
the inequalities, specifying the regime of applicability of this
analytical expression, with any desired degree of accuracy.
In more mathematical terms, referring to an analytical ex-
pression as an asymptotic limit means that the stronger the
inequalities, specifying the regime of applicability of this
analytical expression, are fulfilled the more digits after the
decimal point in our numerical results reproduce this analytical
expression. In other words, for the theoretical model presented
in Sec. II, the asymptotic limits presented below are analytical
expressions to which numerical results converge when one
gradually increases the numerical precision and no further
approximation to the theoretical model in Sec. II is assumed.

Finally, we would like to specify what we understand under
universality of our results which will be presented below. We
will call a quantity universal if this quantity is independent of
the parameters characterizing exclusively the quantum dot. In
our case, such a parameter is εd which is tuned by an external
gate voltage. This is experimentally relevant because in a
realistic experiment one may easily vary the gate voltage and
observe which transport quantities do not change in response to
this variation of the gate voltage. Similar universality happens
in the Kondo effect [47] where universality is understood as
independence of response coefficients on εd which enters only
through the Kondo temperature TK . The difference between
the Majorana universality and Kondo universality is in the
scaling. For the present case of the Majorana universality, the
scaling is given by � whereas for the Kondo universality it is
given by the Kondo temperature TK which is also a function
of �. In all of our calculations presented below we use εd > 0.
More specifically, to perform concrete calculations, we put
εd = 8� but universal results do not change if one uses other
values for εd satisfying the condition in (19). Using positive
values for εd , one puts the quantum dot in the empty orbital
regime [47]. As a result, in a realistic experiment the Kondo
effect is switched off and one observes only the Majorana
universality. Note that in the absence of the Majorana bound
states, one would observe strong dependence of response
coefficients on εd for bias voltages |eV | ∼ εd . Therefore,

165434-5



SERGEY SMIRNOV PHYSICAL REVIEW B 97, 165434 (2018)

observing independence of transport quantities on the gate
voltage for any bias voltage already provides information
about signatures of unpaired Majorana fermions. Of course,
such a quantity, which is universal in the above sense, may
depend on the tunneling coupling to the contacts � or on
the tunneling coupling to the topological superconductor η, or
on both. Thus, the universality understood in the above sense
is only a qualitative Majorana signature but not quantitative.
For example, a response coefficient may have a universal
asymptotic behavior at high-bias voltages. Let us assume
that this universal asymptotic behavior is given by a certain
universal (independent of εd ) function of eV/�. Although
the universality of this function is a qualitative signature of
unpaired Majorana fermions, the values of the coefficients in
the expansion of this universal function in powers of eV/� will
depend on the definition of � and cannot serve as a quantitative
signature of unpaired Majorana fermions. To provide quantita-
tive signatures of unpaired Majorana fermions, we define truly
universal quantities. We will call a quantity truly universal if
this quantity does not depend on both the parameters of the
quantum dot, such as εd , and the tunneling couplings to the
contacts �, as well as to the topological superconductor η. For
example, if there are two universal quantities, the ratio between
these two quantities may be truly universal because � and η

may cancel out in this ratio, which therefore becomes a unique
quantitative signature of unpaired Majorana fermions. Below
in the discussion of our results, we will always distinguish
between universal and truly universal results.

A. Nonequilibrium response of the mean thermoelectric current

Let us first examine the universal Majorana signatures one
can detect in the thermoelectric response of the mean electric
current I (V,VT ) as a function of the bias voltage and thermal
voltage. It is obtained from Eq. (14) with l = L, that is,
I (V,VT ) ≡ 〈IL〉.

In Fig. 2 we show the magnitude of the thermoelectric
coefficient representing the first derivative of the mean electric
current with respect to the thermal voltage |∂I (V,VT )/∂VT |
as a function of the bias voltage V at zero temperature for the
case eVT � � and for different gate voltages parametrized
by the values of εd . One can see that despite the fact that
the Majorana fermions are well separated (ξ/� = 10−4) and
the Majorana tunneling is strong (|η|/� = 103), the curves do
not collapse on a single universal (independent of εd ) curve.
We find that only for |eV |  ξ the curves do collapse on a
single universal curve whose shape does not depend on the
gate voltage which regulates the value of εd . As mentioned
in Sec. II, we show only the case εd > 0 since universal
Majorana signatures do not depend on both the magnitude
and sign of εd . At the same time, for εd > 0 the quantum
dot is in the empty orbital regime which excludes the Kondo
resonance [47] from the physical setup. Thus, we conclude that
the linear thermoelectric response, i.e., response at small-bias
voltages (|eV | � ξ ), of the mean electric current provides
only nonuniversal Majorana signatures and, therefore, it does
not represent any interest as a unique universal signature of
Majorana fermions.

To access the universal Majorana physics in the mean
thermoelectric quantities, one has to resort to the nonlinear

FIG. 2. The magnitude of the first derivative of the mean electric
current with respect to the thermal voltage |∂I (V,VT )/∂VT | as a
function of the bias voltage V at T = 0, eVT /� = 10−5 and for
different gate voltages, specified by the quantum dot single-particle
energy level εd . The Majorana fermions overlap weakly, ξ/� = 10−4.
The strength of the Majorana tunneling is |η|/� = 103. Here, the
dips in the nonuniversal (|eV | � ξ ) behavior of the curves with
εd/� = 4.0 and εd/� = 8.0 correspond to those values of the bias
voltage where ∂I (V,VT )/∂VT = 0, that is to those values of V where
∂I (V,VT )/∂VT changes its sign. The inset shows the robustness of the
universal (independent of εd ) behavior of the second derivative of the
mean electric current with respect to the thermal voltage at large-bias
voltages when the temperature increases. At higher temperatures,
there are values of the bias voltage where ∂2I (V,VT )/∂V 2

T = 0, that
is points where ∂2I (V,VT )/∂V 2

T changes its sign. Since we use the
logarithmic scale, we plot the magnitude of the second derivative
|∂2I (V,VT )/∂V 2

T |, which displays dips at its zeros.

(|eV | > ξ ) thermoelectric response. In this universal regime
we find the following asymptotic limits for the thermoelectric
coefficient ∂I (V,VT )/∂VT :

∂I (V,VT )

∂VT

= −e2

h

4π2

3

|eV |
�

eVT

�
(20)

for

|η|  �  (|eV |,eVT ), |eV |  ξ (21)

and

∂I (V,VT )

∂VT

= −e2

h

4π2

3

( |eV |
�

)−3
eVT

�
(22)

for

|η|  |eV |  �  eVT , �  ξ. (23)

The universal laws given by Eqs. (20) and (22) are depicted by
dashed lines in Fig. 2.

The inset in Fig. 2 shows the universal (independent of εd )
Majorana behavior of the thermoelectric coefficient represent-
ing the second derivative of the mean electric current with
respect to the thermal voltage ∂2I (V,VT )/∂V 2

T as a function
of the bias voltage V in the high-energy regime specified by
the inequality in (23). This universal Majorana high-energy
behavior is independent of the thermal voltage VT . As one can
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FIG. 3. The first derivative of the mean current with respect to
the thermal voltage ∂I (V,VT )/∂VT as a universal (independent of
εd ) function of the thermal voltage VT at T = 0, |eV |/� = 10−2.
The other parameters have the same values as in Fig. 2. The inset
shows the robustness of the universal (independent of εd ) behavior
of the second mixed derivative ∂2I (V,VT )/∂V ∂VT at large thermal
voltages when the temperature increases.

see, the second derivative ∂2I (V,VT )/∂V 2
T is very robust with

respect to high temperatures. At high-bias voltages it is given
by the asymptotic limit

∂2I (V,VT )

∂V 2
T

= − e3

�h

4π2

3

( |eV |
�

)−3

, (24)

shown as the dashed line in the inset in Fig. 2. The expression
in Eq. (24) follows from Eq. (22) if the inequality in (23)
is fulfilled. The universal behavior of ∂2I (V,VT )/∂V 2

T given
by Eq. (24) is almost unchanged for |eV |  kBT when the
temperature increases up to kBT ∼ 10 �, or in units of |η|,
kBT ∼ 0.01 |η|.

As it follows from the above analysis, to focus on universal
thermoelectric Majorana signatures in the mean electric current
one has to apply bias voltages |eV |  ξ . In Fig. 3 we
show the universal Majorana behavior of the thermoelectric
coefficient representing the first derivative of the mean electric
current with respect to the thermal voltage ∂I (V,VT )/∂VT as
a function of the thermal voltage VT at zero temperature and
at a fixed value of the bias voltage �  |eV |  ξ . For the
particular example shown in Fig. 3, we put |eV |/ξ = 100,
|eV |/� = 0.01. As a result, the curve in Fig. 3 is universal in
the whole range of the thermal voltage. The universal behavior
of ∂I (V,VT )/∂VT as a function of the thermal voltage VT in
the regime specified by the inequality (21) is given by the
asymptotic limit, Eq. (20), shown in Fig. 3 as the dashed line
with a positive slope. However, for

|η|  eVT  �  |eV |  ξ, (25)

we find the following universal asymptotic limit:

∂I (V,VT )

∂VT

= −e2

h

π

16

|eV |
�

(
eVT

�

)−2

(26)

which is shown in Fig. 3 as the dashed line with a negative
slope.

The inset in Fig. 3 shows the universal Majorana behavior
of the thermoelectric coefficient representing the second mixed
derivative of the mean electric current with respect to the
thermal voltage and the bias voltage ∂2I (V,VT )/∂V ∂VT as
a function of the thermal voltage VT in the high-energy regime
specified by the inequality in (25). The universal Majorana
high-energy behavior of ∂2I (V,VT )/∂V ∂VT is independent of
the bias voltage V . Like the second derivative ∂2I (V,VT )/∂V 2

T

as a function of the bias voltage V , the second mixed derivative
∂2I (V,VT )/∂V ∂VT as a function of the thermal voltage VT

is robust with respect to high temperatures. At high thermal
voltages it is given by the asymptotic limit obtained from
Eq. (26) if the inequality in (25) is fulfilled. Its universal
behavior is shown by the dashed line in the inset in Fig. 3. It is
protected by high thermal voltages eVT  kBT from thermal
destruction effects as shown in the inset for high temperatures
kBT ∼ 10 � (kBT ∼ 0.01 |η|).

B. Thermoelectric fluctuations beyond linear response

Now, we address the universal Majorana signatures present
in the thermoelectric response of the fluctuations of the electric
current. To this end, we use Eq. (17) with l = l′ = L to obtain
the current-current correlator 〈IL(t)IL(t ′)〉. Finite deviations
of the electric current from its mean value δIL(t) = IL(t) −
I (V,VT ) may be characterized via the greater current-current
correlator defined as S>(t,t ′; V,VT ) ≡ 〈δIL(t)δIL(t ′)〉. It can
be expressed through the correlator 〈IL(t)IL(t ′)〉 as follows:

S>(t,t ′; V,VT ) = 〈IL(t)IL(t ′)〉 − I 2(V,VT ). (27)

Due to the stationary nonequilibrium S>(t,t ′; V,VT ) = S>(t −
t ′; V,VT ) and the physical quantity measured experimentally
is the Fourier transform

S>(ω; V,VT ) =
∫ ∞

−∞
dt eiωtS>(t ; V,VT ). (28)

Below, we focus on the zero-frequency noise as a function of
the bias voltage and thermal voltage:

S>(V,VT ) ≡ S>(ω = 0; V,VT ). (29)

As we know from the previous subsection, the mean Majo-
rana thermoelectric response becomes universal (independent
of εd ) only if the bias voltage is large enough, |eV |  ξ .
The first question is thus whether the same happens with the
Majorana thermoelectric response of the fluctuations of the
electric current. We find that, in contrast to the mean Majorana
thermoelectric response, the fluctuations of the electric current
are universal in the whole range of the bias voltage. This
means that the Majorana thermoelectric response of the electric
current noise is independent of εd at any bias voltage V . In
Fig. 4, we show the thermoelectric coefficient representing the
first derivative of the greater noise with respect to the thermal
voltage ∂S>(V,VT )/∂VT as a function of the gate voltage,
parametrized by the value of εd , at zero temperature, zero-
bias voltage, eVT � �, and different values of the Majorana
overlap energy ξ in the regime specified in (19) where the
Majorana tunneling dominates. As can be seen, for large
values of the Majorana overlap energy, there is a very strong
dependence on the gate voltage with the unit plateau at small
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FIG. 4. The first derivative of the greater current-current correla-
tor with respect to the thermal voltage ∂S>(V,VT )/∂VT as a function
of the gate voltage, specified by the quantum dot single-particle energy
level εd , for different values of the Majorana overlap energy ξ . Here,
the parameters are as follows: T = 0, V = 0, eVT /� = 10−6, and
η/� = 103.

gate voltages. When ξ decreases, the value of the plateau grows
and the plateau becomes wider. Finally, when ξ is very small
(the same as in the previous subsection on the mean electric
current ξ/� = 10−4), the Majorana fermions overlap very
weakly. In this situation, the value of the plateau saturates at the
asymptotic limit (e3/h)[1 + ln(2)] and the width of the plateau
gets extremely wide. Therefore, when the Majorana tunneling
is strong enough, so that (19) is satisfied, the fluctuation ther-
moelectric coefficient ∂S>(V,VT )/∂VT becomes independent
of εd , �, and η, that is, it becomes truly universal with the value
(e3/h)[1 + ln(2)] (the black horizontal line in Fig. 4).

The universal Majorana behavior of the fluctuation ther-
moelectric coefficient ∂S>(V,VT )/∂VT as a function of the
bias voltage V is shown in Fig. 5 at zero temperature and
eVT � �. The values of ξ and |η| are the same as for the

FIG. 5. The first derivative of the greater current-current cor-
relator with respect to the thermal voltage ∂S>(V,VT )/∂VT as a
universal (independent of εd ) function of the bias voltage V at T = 0,
eVT /� = 10−5. The Majorana overlap energy and the strength of the
Majorana tunneling are ξ/� = 10−4 and |η|/� = 103, respectively.
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FIG. 6. The first derivative of the greater current-current correla-
tor with respect to the thermal voltage ∂S>(V,VT )/∂VT as a universal
(independent of εd ) function of the thermal voltage VT at T = 0,
|eV |/� = 10−5. The Majorana overlap energy and the strength of the
Majorana tunneling are ξ/� = 10−4 and |η|/� = 103, respectively.

mean electric current from the previous subsection so that the
Majorana overlap is very weak and the Majorana tunneling is
very strong. For

|η|  �  eVT  |eV |, �  ξ (30)

it turns out that the fluctuation thermoelectric coefficient
∂S>(V,VT )/∂VT does not depend on V and is truly universal
(independent of εd , �, and η). The asymptotic limit of this truly
universal constant is

∂S>(V,VT )

∂VT

= e3

h
[1 + ln(2)]. (31)

For

|η|  �  |eV |  eVT , �  ξ (32)

the fluctuation thermoelectric coefficient ∂S>(V,VT )/∂VT

does not depend on V either and is equal to a different truly
universal constant. The asymptotic limit in this case is

∂S>(V,VT )

∂VT

= e3

h

[
1 + 1

2
ln(2)

]
. (33)

These two plateaus are explicitly visible in Fig. 5.
In the high-energy regime specified in (23), the universal

asymptotic limit of the fluctuation thermoelectric coefficient
∂S>(V,VT )/∂VT is

∂S>(V,VT )

∂VT

= e3

h

ln(2)

2

( |eV |
�

)−2

. (34)

As a function of the thermal voltage VT , the fluctuation
thermoelectric coefficient ∂S>(V,VT )/∂VT is shown in Fig. 6.
In the regimes specified in (30) and (32), this dependence has,
respectively, the plateaus (31) and (33) with the only difference
in the order of these plateaus. Here, the lowest plateau (33) is
followed by the highest one (31).

The physical mechanism underlying the fact that the truly
universal plateau (31) in the regime (30) is larger than the truly
universal plateau (33) in the regime (32) can be understood
as follows. As schematically shown in Fig. 1, at T = 0 the
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Fermi-Dirac distribution in the left (hot) contact is smeared
over the energy range eVT around the Fermi energy of this
contact. When we have eVT  |eV |, there exist two electron
flows. The first flow, from the right (cold) contact to the left
contact, is induced by electrons coming from the filled states
below the Fermi energy of the right contact to the partially
filled states below and above the Fermi energy of the left
contact. The second flow, from the left contact to the right
contact, is induced by electrons coming from the partially
filled states above the Fermi energy of the left contact to the
empty states above the Fermi energy of the right contact. Both
of these electron flows fluctuate and contribute to the total
noise S>(V,VT ) which grows linearly as a function of VT

with the slope given by Eq. (31). However, when we decrease
the thermal voltage up to the bias voltage, eVT ∼ |eV |, the
second flow significantly decays and becomes negligible for
eVT � |eV | because the population of the states in the left
contact above its Fermi energy rapidly goes to zero. In this
situation, the noise contribution from the second flow vanishes
and only fluctuations of the first flow essentially contribute
to the total noise S>(V,VT ) which still grows linearly as a
function of VT but with the reduced slope given by Eq. (33).

In the high-energy regime,

|η|  eVT  �  |eV |, �  ξ (35)

however, we were unable to identify the universal asymp-
totic limit of the fluctuation thermoelectric coefficient
∂S>(V,VT )/∂VT . This high-energy universal law is definitely
not a power dependence and it will be a challenge for future
research.

In Fig. 7 we show the high-energy universal behavior of the
fluctuation thermoelectric coefficient representing the second
mixed derivative of the greater noise with respect to the thermal
voltage and the bias voltage ∂2S>(V,VT )/∂V ∂VT as a function
of the bias voltage at eVT � � and for different temperatures.
As one can see, at |eV |  kBT the high-energy behavior of the
fluctuation thermoelectric coefficient ∂2S>(V,VT )/∂V ∂VT is
almost independent of the temperature and obeys the universal
asymptotic limit

∂2S>(V,VT )

∂V ∂VT

= − e4

�h
ln(2)

( |eV |
�

)−3

, (36)

shown in Fig. 7 as the dashed line. The high-energy uni-
versal behavior (36) follows from the high-energy universal
behavior (34) of the fluctuation thermoelectric coefficient
∂S>(V,VT )/∂VT .

Comparison of the high-energy universal behavior of the
mean thermoelectric coefficient ∂2I (V,VT )/∂V 2

T in Eq. (24)
with the high-energy universal behavior of the fluctuation
thermoelectric coefficient ∂2S>(V,VT )/∂V ∂VT in Eq. (36)
shows that the ratio between these two nonlinear response
coefficients is a truly universal constant with the asymptotic
limit

∂2S>(V,VT )
∂V ∂VT

∂2[eI (V,VT )]
∂V 2

T

= 3 ln(2)

4π2
, (37)

shown in the inset in Fig. 7 as the dashed horizontal line.
As can be seen in the inset, indeed, at zero temperature and
large-bias voltages |eV |  �, in the regime specified in (19)

FIG. 7. The universal (independent of εd ) behavior of the second
mixed derivative of the greater current-current correlator with respect
to the thermal voltage and the bias voltage ∂2S>(V,VT )/∂V ∂VT

at large-bias voltages V . The thermal voltage is eVT /� = 10−2.
The Majorana overlap energy and the strength of the Majorana
tunneling are ξ/� = 10−4 and |η|/� = 103, respectively. The curves
demonstrate robustness of ∂2S>(V,VT )/∂V ∂VT at |eV |  kBT when
the temperature increases. The inset shows the universal nonlinear
response thermoelectric ratio of the second mixed derivative of the
greater current-current correlator with respect to the thermal voltage
and the bias voltage to the second derivative of the mean electric
current times the electron charge with respect to the thermal voltage
{∂2S>(V,VT )/∂V ∂VT }/{∂2[eI (V,VT )]/∂V 2

T } at T = 0.

the thermoelectric ratio between ∂2S>(V,VT )/∂V ∂VT and
∂2[eI (V,VT )]/∂V 2

T is independent of εd , �, η, and the bias
voltage V . However, outside the high-energy regime, e.g.,
|eV | ∼ �, or when the Majorana tunneling condition (19) is not
satisfied, e.g., |eV | > |η|, one can see deviations from the truly
universal value (37). The inset in Fig. 7 demonstrates that at
low-bias voltages there are strong deviations from the truly uni-
versal value (37). Since these deviations depend on �, the be-
havior at low-bias voltages is not truly universal. Nevertheless,
the thermoelectric ratio between ∂2S>(V,VT )/∂V ∂VT and
∂2[eI (V,VT )]/∂V 2

T is still universal even at low-bias voltages
because it does not depend on εd in this voltage range. As
expected, we find that outside the validity of the Majorana
tunneling condition (19), e.g., |eV | > |η|, the thermoelectric
ratio between ∂2S>(V,VT )/∂V ∂VT and ∂2[eI (V,VT )]/∂V 2

T is
not universal (i.e., it depends on εd ) because the Majorana
tunneling is not effective at such large-bias voltages where the
physics is not governed anymore by the Majorana fermions of
the topological superconductor.

In Fig. 8 we show the high-energy universal behavior of
the fluctuation nonlinear response coefficient representing the
second derivative of the greater noise with respect to the bias
voltage ∂2S>(V,VT )/∂V 2 as a function of the bias voltage
at eVT � � and for different temperatures. In the regime
specified in (23) the fluctuation nonlinear response coefficient
∂2S>(V,VT )/∂V 2 is pretty much insensitive at |eV |  kBT to
the temperature increase and its universal asymptotic limit is

∂2S>(V,VT )

∂V 2
= − e4

�h

3

2

( |eV |
�

)−3

. (38)
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FIG. 8. The universal (independent of εd ) behavior of the second
derivative of the greater current-current correlator with respect to the
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voltage is eVT /� = 10−5. The Majorana overlap energy and the
strength of the Majorana tunneling are ξ/� = 10−4 and |η|/� = 103,
respectively. The curves are shown for different temperatures and
demonstrate remarkable robustness of ∂2S>(V,VT )/∂V 2 at |eV | 
kBT when the temperature increases.

Comparing Eq. (24) with Eq. (38) one obtains that
the thermoelectric ratio between ∂2S>(V,VT )/∂V 2 and
∂2[eI (V,VT )]/∂V 2

T is a truly universal constant with the
asymptotic limit

∂2S>(V,VT )
∂V 2

∂2[eI (V,VT )]
∂V 2

T

= 9

8π2
(39)

in the regime specified in (23). This truly universal constant is
shown in Fig. 9 as the dashed horizontal line. As demonstrated
in Fig. 9, in the regime specified in (23) the universal Majorana
thermoelectric ratio between the fluctuation nonlinear response
coefficient ∂2S>(V,VT )/∂V 2 and the mean nonlinear coeffi-
cient ∂2[eI (V,VT )]/∂V 2

T is remarkably robust at |eV |  kBT

with respect to thermal noise excited at high temperatures.
At this point, it is important to notice that the truly universal

ratios (37) and (39), which are valid in the Majorana tunneling
regime (19) and at high-bias voltages |eV |  �, might result
from symmetries of the full counting statistics as has been
discussed in Refs. [53–56]. In particular, in Refs. [55,56]
symmetries of the full counting statistics were used to derive
relations between nonlinear response coefficients beyond the
Onsager-Casimir relation. Generalization of those relations
between nonlinear response coefficients and derivation of (37)
and (39) using symmetries of the full counting statistics in the
presence of topological superconductors supporting Majorana
bound states is an important fundamental task which is, to our
knowledge, still unexplored and definitely represents a special
topic for future research.

Let us estimate at which temperatures one can experi-
mentally observe the truly universal high-energy Majorana
plateau (39) in the thermoelectric ratio between the fluctuation
nonlinear response coefficient ∂2S>(V,VT )/∂V 2 and the mean
nonlinear response coefficient ∂2I (V,VT )/∂V 2

T . We take the
highest temperature shown in Fig. 9, that is, kBT = 10 �. In
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FIG. 9. The universal nonlinear response thermoelectric ratio of
the second derivative of the greater current-current correlator with
respect to the bias voltage to the second derivative of the mean electric
current times the electron charge with respect to the thermal voltage
{∂2S>(V,VT )/∂V 2}/{∂2[eI (V,VT )]/∂V 2

T }. The thermal voltage is
eVT /� = 10−5. The Majorana overlap energy and the strength of the
Majorana tunneling are ξ/� = 10−4 and |η|/� = 103, respectively.
The curves are shown for different temperatures and demonstrate that
at |eV |  kBT this universal nonlinear response thermoelectric ratio
is remarkably robust against thermal fluctuations whose amplitude
grows when the temperature increases.

units of |η| we have kBT = 0.01 |η|. Since |η| is the largest
energy scale, it should not exceed the induced superconducting
energy gap � so as not to excite the bulk quasiparticles.
Therefore, we assume |η| ∼ �. In Ref. [20] the induced su-
perconducting energy gap is estimated as � ≈ 250 μeV. One
then obtains the temperature T ≈ 2.5 μeV/kB ≈ 0.03 K =
30 mK. In Ref. [57] a higher value of � is reported, � ≈
15 meV. In this case, one has T ≈ 1.8 K. Such temperatures
are already high enough and thus may easily be achieved in
modern laboratories. As a consequence, the truly universal
thermoelectric constant (39) represents a unique and highly
conclusive Majorana signature to be detected in a realistic
experiment.

IV. CONCLUSION

In this work we have explored thermoelectric Majorana
response of both the mean value and the fluctuations of the elec-
tric current. The research has been focused on unique universal
Majorana thermoelectric signatures which may be detected in
nanoscopic systems such as quantum dots. It has been shown
that mean thermoelectric quantities become universal only at
bias voltages high enough to exceed the overlap energy of
the two Majorana bound states. For bias voltages below the
Majorana overlap energy, mean thermoelectric quantities are
not universal even if the Majorana fermions are well separated.
As a consequence, in order to obtain universal Majorana sig-
natures from measurements of mean thermoelectric quantities,
one has to resort to essentially nonlinear response. In contrast,
the thermoelectric response of the fluctuations of the electric
current turns out to be universal at any bias voltage if the Ma-
jorana fermions are well separated. We have obtained various
fluctuation thermoelectric coefficients in different transport
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regimes. In particular, it has been shown that the differential
thermoelectric noise has a universal two-plateau structure with
the truly universal values of the plateaus (e3/h)[1 + ln(2)] and
(e3/h)[1 + ln(21/2)] depending on whether the ratio between
the bias voltage and the thermal voltage (characterizing the
temperature difference between the contacts) is less than or
greater than one. Further, universal high-energy behavior of the
fluctuation nonlinear response coefficients has been presented
and universal ratios between nonlinear response coefficients
of the thermoelectric noise and the mean current have been
obtained. Finally, we have demonstrated that at large-bias
voltages, these thermoelectric ratios saturate to truly universal
constants independent of the bias voltage and found the asymp-
totic limits of these truly universal constants. Importantly,
these truly universal constants are protected by high-bias
voltages, making them robust against thermal noise. This
robustness is crucial for realistic measurements. Therefore, the
truly universal constants characterizing thermoelectric ratios at
high-bias voltages represent unique truly universal Majorana
signatures challenging modern experiments on thermoelectric
noise in quantum dots.

It is fair to mention that many issues within Majorana noise
still remain to be addressed. In particular, the above results

have been demonstrated for a simple model where only one
single-particle energy level of the quantum dot is involved
in transport. However, in many realistic systems, several
single-particle energy levels of the quantum dot may often
contribute to transport. It is, therefore, interesting whether
the results demonstrated here will change and, if so, what
kind of Majorana fluctuation fingerprints one might expect
in a multilevel system. This question as well as many other
interesting issues will be a challenge for our future research on
Majorana noise.
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APPENDIX: BASIC STEPS IN THE CALCULATION OF
THE CURRENT-CURRENT CORRELATOR

Taking the second derivative in Eq. (17), one easily finds
that the current-current correlator is the sum of one-particle
S1ll′ (t,t

′) and two-particle S2ll′ (t,t
′) terms

〈Il(t)Il′(t
′)〉 = S1ll′ (t,t

′) + S2ll′ (t,t
′). (A1)

The one-particle contribution has the form

S1ll′ (t,t
′) = δll′ |Tl|2(−i)

(
e

2h̄

)2∑
k

{〈[ψ1(t ′) + ψ2(t ′)][−ψ̄1(t) + ψ̄2(t)]〉SK

[
GR

lk(t − t ′) + GK
lk (t − t ′)

−GA
lk(t − t ′)

]+〈[ψ1(t) − ψ2(t)][ψ̄1(t ′) + ψ̄2(t ′)]〉SK

[−GR
lk(t ′ − t) + GK

lk (t ′ − t) + GA
lk(t ′ − t)

]}
, (A2)

where the angular brackets are defined in Eq. (15), GR,A,K
lk (t − t ′) are, respectively, the retarded, advanced, and Keldysh Green’s

functions of the isolated contacts, and we have performed the Keldysh rotation of the Grassmann fields of the quantum dot

ψq(t) = 1√
2

[ψ1(t) + qψ2(t)], ψ̄q(t) = 1√
2

[ψ̄2(t) + qψ̄1(t)]. (A3)

The one-particle contribution in Eq. (A2) involves averages of products of only two Grassmann fields of the quantum dot. This
contribution contains only normal terms, that is, terms of the form 〈ψs(t)ψ̄s ′(t ′)〉SK

, where s,s ′ = 1,2. It is obvious that anomalous
terms, that is terms of the form 〈ψs(t)ψs ′(t ′)〉SK

or 〈ψ̄s(t)ψ̄s ′ (t ′)〉SK
, cannot appear in this case. However, such terms do arise when

one averages products of four Grassmann fields in the two-particle contribution S2ll′ (t,t
′).

The two-particle contribution has the form

S2ll′ (t,t
′) = |Tl|2|Tl′ |2 (−1)

h̄2

(
e

2h̄

)2∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑
k1,k2

〈{
[−ψ1(t) + ψ2(t)]

[
ψ̄1(t2)GR

lk2
(t2 − t)

− ψ̄1(t2)GK
lk2

(t2 − t) − ψ̄2(t2)GA
lk2

(t2 − t)
]−[

GR
lk2

(t − t2)ψ1(t2) + GK
lk2

(t − t2)ψ2(t2)

−GA
lk2

(t − t2)ψ2(t2)
]
[−ψ̄1(t) + ψ̄2(t)]

}{
[ψ1(t ′) + ψ2(t ′)]

[
ψ̄1(t1)GR

l′k1
(t1 − t ′) + ψ̄1(t1)GK

l′k1
(t1 − t ′)

+ ψ̄2(t1)GA
l′k1

(t1 − t ′)
]−[

GR
l′k1

(t ′ − t1)ψ1(t1) + GK
l′k1

(t ′ − t1)ψ2(t1) + GA
l′k1

(t ′ − t1)ψ2(t1)
]
[ψ̄1(t ′) + ψ̄2(t ′)]

}〉
SK

.

(A4)

Since the total Keldysh action in Eq. (16) is quadratic, the
average of four Grassmann fields is given as the sum of
products of the averages of two Grassmann fields

〈ψ1ψ̄2ψ3ψ̄4〉SK
= 〈ψ1ψ̄2〉SK

〈ψ3ψ̄4〉SK
− 〈ψ1ψ̄4〉SK

〈ψ3ψ̄2〉SK

−〈ψ1ψ3〉SK
〈ψ̄2ψ̄4〉SK

. (A5)

In Eq. (A5), ψ1, ψ̄2, ψ3, ψ̄4 schematically denote those
Grassmann fields which are taken from a given product of
four square brackets in Eq. (A4) in the same order as these
Grassmann fields appear in these four square brackets.

All those terms in Eq. (A4) which correspond to the first
term in the right-hand side of Eq. (A5) do not represent interest
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for the calculation of the greater current-current correlator
S>(t,t ′; V,VT ) in Eq. (27) because they give just the square
of the mean electric current which is subtracted from the
current-current correlator 〈IL(t)IL(t ′)〉 in Eq. (27).

All those terms in Eq. (A4) which correspond to the
second and third terms in the right-hand side of Eq. (A5)
give, respectively, the normal and anomalous two-particle
contributions to S>(t,t ′; V,VT ).

To treat the normal and anomalous contributions to
S>(t,t ′; V,VT ) from both S1ll′ (t,t

′) and S2ll′ (t,t
′), it is con-

venient to introduce a particle-hole space via the Grassmann
fields ψis (i = p,h; s = 1,2):

ψis(t) ≡ ψ̄s(t), i = p; ψis(t) ≡ ψs(t), i = h. (A6)

The averages in Eqs. (A2) and (A4) are then expressed
in terms of the hole-particle, hole-hole, and particle-particle
retarded, advanced, and Keldysh Green’s functions of the
quantum dot via, respectively, the following relations:

〈ψhs(t)ψps ′ (t ′)〉SK
=

(
i GR

hp(t − t ′) i GK
hp(t − t ′)

0 i GA
hp(t − t ′)

)
, (A7)

〈ψhs(t)ψhs ′(t ′)〉SK
=

(
i GK

hh(t − t ′) i GR
hh(t − t ′)

i GA
hh(t − t ′) 0

)
, (A8)

〈ψps(t)ψps ′(t ′)〉SK
=

(
0 i GA

pp(t − t ′)
i GR

pp(t − t ′) i GK
pp(t − t ′)

)
. (A9)

Since the total Keldysh action in Eq. (16) is quadratic, the
calculation of the Green’s functions in the right-hand sides of
Eqs. (A7)–(A9) is reduced to calculations of the corresponding
elements of the inverse kernel of this action. This is a quite sim-
ple, although somewhat lengthy, mathematical step which one
may easily perform. After this step, one finds the expressions
for the hole-particle, hole-hole, and particle-particle retarded,
advanced, and Keldysh Green’s functions of the quantum
dot. All the retarded and advanced Green’s functions have
already been found in Ref. [36] in the energy domain. For

completeness, we give them here:

GR
hp(ε) = NR

hp(ε)

f (ε)
, GR

hh(ε) = −8h̄(η∗)2ε

f (ε)
,

GR
pp(ε) = −8h̄η2ε

f (ε)
, GA

hp(ε) = [
GR

hp(ε)
]∗

,

GA
hh(ε) = [

GR
pp(ε)

]∗
, GA

pp(ε) = [
GR

hh(ε)
]∗

,

f (ε) = 4ε4 − ε2
(
�2 + 4ε2

d + 4ξ 2 + 16|η|2)
+ ξ 2

(
�2 + 4ε2

d

) + i 4�[ε3 − ε(ξ 2 + 2|η|2)],

NR
hp(ε) = 2h̄{−4|η|2ε − (ξ 2 − ε2)[i� + 2(εd + ε)]}.

(A10)

Finally, for the Keldysh components of the hole-particle, hole-
hole, and particle-particle Green’s functions one obtains the
following expressions:

GK
hp(ε) = NK

hp(ε)

|f (ε)|2 , GK
hh(ε) = NK

hh(ε)

|f (ε)|2 , GK
pp(ε) = NK

pp(ε)

|f (ε)|2 ,

NK
hp(ε) = −2 i �h̄([FL(ε) + FR(ε)]

× (ξ 2 − ε2)2[�2 + 4(εd + ε)2]

+ 16|η|2ε{[FL(ε) + FR(ε)](ξ 2 − ε2)(εd + ε)

+ |η|2ε[FL(ε) − FL(−ε) + FR(ε) − FR(−ε)]}),
NK

hh(ε) = 8�h̄(η∗)2ε((ξ 2 − ε2){[FL(ε) + FL(−ε) + FR(ε)

+FR(−ε)](� − 2 i εd )

+ 2 i ε[FL(−ε) − FL(ε) + FR(−ε) − FR(ε)]}
+ 4 i |η|2ε[FL(−ε) − FL(ε) + FR(−ε) − FR(ε)]),

NK
pp(ε) = −[

NK
hh(ε)

]∗
, (A11)

where FL,R(ε) ≡ 1 − 2fL,R(ε).
Using Eqs. (A2), (A4), (A5), and (A7)–(A11), one may

without much effort express the zero-frequency noise in
Eq. (29) as well as its various derivatives as integrals in the
energy domain. These integrals may be calculated numerically
to obtain the quantities discussed in the main text as functions
of the bias voltage and thermal voltage.
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