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Quantum mechanical treatment of large spin baths
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The electronic spin in quantum dots can be described by central spin models (CSMs) with a very large number
Neff ≈ 104 to 106 of bath spins posing a tremendous challenge to theoretical simulations. Here, a fully quantum
mechanical theory is developed for the limit Neff → ∞ by means of iterated equations of motion (iEoM). We
find that the CSM can be mapped to a four-dimensional impurity coupled to a noninteracting bosonic bath in this
limit. Remarkably, even for infinite bath the CSM does not become completely classical. The data obtained by the
proposed iEoM approach are tested successfully against data from other, established approaches. Thus the iEoM
mapping extends the set of theoretical tools that can be used to understand the spin dynamics in large CSMs.
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I. INTRODUCTION

Since the proposal to use the electronic spin of excess
electrons or holes in quantum dots [1] for the realization of
quantum bits [2], an enormous research activity has started,
both experimentally [3–6] and theoretically [7–11]. From the
theoretical side, the isotropic central spin model (CSM), first
introduced by Gaudin for its integrability [12,13], has become
the canonical starting point although various additional cou-
plings matter as well such as the dipole-dipole interaction
between the nuclear spins forming the spin bath [7,8], spin
anisotropies [14–16] including spin-orbit couplings [17,18],
and the quadrupolar couplings of the bath spins [19–21]. In
the present work, we restrict ourselves to the isotropic CSM
without further couplings.

In self-assembled quantum dots, Neff ≈ 105 bath spins are
relevant [7,8,22,23] or even Neff ≈ 106 in electrostatically
confined quantum dots [24]. This enormous number makes the
reliable computation of the central spin dynamics extremely
challenging despite the integrability of the model [25,26]. Only
a few tens of spins can be treated exactly and this remains
true for most numerical approaches as well, such as exact
diagonalization [8,27], Chebyshev expansion (CE) [16,28,29],
or a direct evolution of the density matrices via the Liouvillean
[30]. Density-matrix renormalization group (DMRG) can cope
with up to about 1000 spins, but it is restricted to short times
[31–33]. Persisting correlations at infinite times can be dealt
with by mathematically rigorous bounds [34,35]. Techniques
based on rate equations or on non-Markovian master equations
give access to large bath sizes, but they are well justified
only for sufficiently strong external fields [36–44]. So far, the
same holds true for an approach based on equations of motion
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[45,46]. Finally, cluster expansion techniques are powerful,
but restricted by the maximum treatable cluster size. This
restriction implies a time threshold up to which the results
are reliable [47–52].

The classical counterpart of the CSM approximates the
quantum mechanical spin dynamics well [32,53], see also
the related approach based on time-dependent mean-fields
[54,55]. This behavior can be justified either by the saddle
point approximation for a large spin bath [53] or even simpler
by the quantum fluctuations of the Overhauser field, which are
suppressed by the limit of infinite spin bath [31]. Until recently,
however, even the classical CSM could not be treated for
bath sizes comparable to the experimental ones. The Lanczos
approach or the exponential discretization of the spectral
density has provided a breakthrough to simulate infinitely large
systems up to very large times [56]. Classical or semiclassical
simulations capture many experimental observations nicely
[57,58].

Yet, the quantum mechanical dynamics is not fully captured
by the classical simulation. While the argument for classical
properties of the Overhauser field is strong, there is no such
argument for the central spin S = 1/2. Thus there still remains
the open issue to identify specific quantum mechanical effects
and to describe them quantitatively. The measurement of four-
point correlations provides experimental access to quantities
that depend strongly on the sequence of operators acting on
the central spin and hence on its quantumness [59–61].

For these reasons, the present paper proposes an approach
to the quantum mechanical CSM valid for large spin baths. It
is based on the equations of motion for spin operators [62,63]
and an expansion in the inverse effective number of bath spins
1/Neff.

The key finding of our approach is that the isotropic CSM
can be mapped to a four-dimensional impurity coupled to
a noninteracting bosonic bath. This mapping provides an
alternative view on the CSM in the limit of a large bath. In
order to establish this mapping, we exploit the simplifying limit
of large spin baths to compute quantum mechanical traces of
sums of large numbers of spins [35]. In this way, we evaluate
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the central spin autocorrelation function with and without a
magnetic field. In the limit Neff → ∞, the traces reduce to
Gaussian integrals. The approach is benchmarked against data
from exact methods, available only for small number of bath
spins. Even though this is not the optimum regime for the
application of the developped approach, the agreement found
is promising.

The setup of the paper is the following. After this introduc-
tion, we introduce the model in Sec. II and derive the advocated
approach in Sec. III. Then, we show in Sec. IV how its results
compare with data obtained by established techniques in order
to underline the validity of its derivation. Finally, the results
are summarized and an outlook is given in Sec. V.

II. MODEL

In the present paper, we focus on the paradigmatic isotropic
central spin model comprising a central spin �S0 with S = 1/2
and bath spins �Si with S = 1/2:

H = �S0 ·
N∑

i=1

Ji
�Si, (1)

where the Ji are the hyperfine couplings. The field �B composed
of all bath spins

�B =
N∑

i=1

Ji
�Si (2)

is called the Overhauser field. For concreteness, we will
consider the following generic set of hyperfine couplings

Ji = C exp(−iγ ), i ∈ N, (3)

which decrease exponentially as function of the parameter γ .
This is the typical scenario encountered in electronic quantum
dots where the coupling is proportional to the probability of
the electronic wave function at the location of the nuclear spin
[7,8]. In two dimensions, the above parametrization results
from Gaussian wave functions [56] and has been used in many
previous studies as well [25,26,35,38]. Note that (3) describes
the couplings for a single CSM. If we want to describe an
ensemble of quantum dots, the results have to be averaged
over the distribution of the different couplings for different
quantum dots.

In real quantum dots, further interactions such as dipole-
dipole and quadrupolar couplings of the nuclear spins play a
role on very long time scales. Here we restrict ourselves to the
isotropic CSM (1) for simplicity to establish our new approach,
which solves this model in the physically relevant limit of an
infinite spin bath.

We emphasize that we can treat an infinitely large spin bath
because i is not limited, i.e., the total number of bath spins N

may be set to infinity. But the physically relevant number is
the finite effective number of bath spins Neff, i.e., the number
of bath spins that are substantially coupled. This number can
be defined via the ratio of the squared sum of all couplings and
the sum of all squared couplings [7,8,31,32,56]. The latter is

given by

J 2
Q =

N∑
i=1

J 2
i . (4)

Note that JQ sets the energy scale of the dynamics on short
time scales, i.e., it is set to unity in the numerical evaluations
below. The effective number Neff of bath spins reads [56]

Neff = 2/γ + O(γ ). (5)

Thus γ ≈ 10−5 to 10−6 is an excellent small parameter suitable
to control a perturbative approach systematically. We stress that
the normalization JQ = 1 also implies that the overall prefactor
C in Eq. (3) is given by

√
2γ in the limit of small γ , i.e., it scales

like 1/
√

Neff. This means that the contribution of each individ-
ual bath spin alone is negligible. Only suitable sums over all
of them will have an impact, which is relevant in the limit
Neff → ∞.

III. DERIVATION OF THE APPROACH

A. General equation of motion of operators

We are interested in the dynamical spin-spin correlation
function of the CSM. Thus we start from the Heisenberg
equation of motion for an arbitrary operator A,

∂tA = i[H,A] = iLA, (6)

where we introduced the Liouville operator L, which acts as
linear mapping on the vector space of operators. To make the
vector space of operators a Hilbert space, we introduce the
scalar product of Frobenius type,

〈〈A|B〉〉 := 1

d
Tr(A†B), (7)

where d is the dimension of the Hilbert space of states. Clearly,
this definition requires that the local Hilbert space is finite so
that this definition only works for spins or fermions on discrete
sites [63]. Then it corresponds to the expectation values of the
two operators in the limit of infinite temperature where the
system is completely disordered so that any state is equally
probable.

Bosonic degrees of freedom can only be treated at the price
of a truncation of their local Hilbert spaces. Note, however,
that the above definition works also for models with an infinite
number of sites as long as the operators A and B affect only a
finite number of sites, i.e., they act on finite subclusters. This
is the situation we are dealing with here.

The key advantage of the definition (7) in comparison to
other choices is that the Liouville operator L is self-adjoint
with respect to this scalar product [63]:

〈〈A|LB〉〉 = 〈〈LA|B〉〉. (8)

Hence the operator dynamics induced by L shows oscillatory
behavior or, possibly complicated, superpositions of oscilla-
tions. But no power law or exponential divergences occur,
even if truncated orthonormal operator bases are used. We
emphasize that superpositions of oscillations are precisely
what one expects for quantum mechanical models.

The application of the equation of motion to the CSM
suggests to consider an operator basis made from products
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of components of spin operators at different sites [63]. In
principle, this does work and we implemented it (not shown).
But we quickly realized that one has to track essentially all
possible combinations of operators on all sites in order to
obtain reliable results. Hence the direct application of the
equations of motion quickly becomes impractical.

This conclusion is corroborated by an analytical argument.
Suppose for simplicity that the bath spins do not move. Then,
the Overhauser field �B = B �n is a static magnetic field of size
B pointing in the direction given by the unit vector �n about
which the central spin �S0 precesses according to [7]

�S0(t) = �n(�n · �S0(0)) + [�S0(0) − (�n · �S0(0))�n] cos(Bt)

−{�S0(0) × �n} sin(Bt). (9)

Note that the sign in the last term has been corrected. This
equation has been used by Merkulov et al. in order to describe
the spin dynamics in quantum dots by averaging it over a
Gaussian distribution of the Overhauser field [7].

Expression (9) reveals that arbitrary high powers of the
modulus B of the Overhauser field �B are required in order to
capture the dynamics for long times. Since the Overhauser field
is the weighted sum over all bath spin operators it is implied
that products with arbitrarily many factors of spin operators are
important. We will come back to this point later. The second
message of the result (9) is that it is not the individual bath spin
which influences the central spin, but sums of them.

B. Generalized Overhauser fields

The time evolution of the central spin is governed by the
couplings to the spin bath. However, as we see from Eq. (3)
and the subsequent normalization implying that the prefactor
C ∝ √

γ , the individual coupling Ji scales like O(1/
√

Neff),
making it almost negligibly small for a realistic number of bath
spins. Hence the dynamics of the individual bath spin is not a
promising starting point in the limit Neff → ∞. We conclude
that it is not the single coupling which is important, but rather
weighted sums of all couplings.

The first and most important sum is the Overhauser field
�B itself, including all couplings in linear order. This was first
realized in Ref. [7]. However, if we want to describe the time
evolution exactly, higher orders of the individual couplings
need to be taken into account. Using the same argument as
before, the nonlinear contributions of the individual couplings
Ji vanish in the limit Neff → ∞. But extensive sums of the
nonlinear contributions remain finite. This observation was
first used in the efficient description of the dynamics of the
classical CSM [56], but also carries over to the quantum
mechanical case as we show in the following.

We adopt the idea of introducing generalized Overhauser
fields where the weight of each spin is given by polynomials
pj of the couplings Ji :

�Pj := 2
N∑

i=1

pj (Ji)�Si, j ∈ N. (10)

Note that pj (x) are polynomials of degree j . This definition
deviates from the classical one by a factor of 2 in order to
ensure orthonormalization, see below. First, we require that

the polynomials are orthonormal with respect to the following
scalar product for real functions:

(pj |pk) :=
N∑

i=1

pj (Ji)pk(Ji) (11a)

= δjk. (11b)

Thus the theory of orthogonal polynomials tells us that they
can be reconstructed iteratively following the standard Lanczos
procedure:

xpj (x) = βjpj+1(x) + αjpj (x) + βj−1pj−1(x), (12)

where p0(x) = 0, p1(x) = x so that �P1 := 2 �B is the usual
Overhauser field up to a factor of 2. The recursion coefficients
αj and βj result from

βj−1 = (xpj |pj−1), (13a)

αj := (xpj |pj ), (13b)

βj :=
√

|xpj − αjpj − βj−1pj−1|2. (13c)

For the exponential couplings in Eq. (3), these coefficients are
explicitly derived in Ref. [56] for γ � 1. They read

αj = 4j 2

4j 2 − 1

√
γ

2
, (14a)

βj =
√

j (j + 1)

2j + 1

√
γ

2
. (14b)

We use these recursion coefficients to illustrate the first three
generalized Overhauser fields,

�P1 = 2
√

γ

N∑
i=1

J i
�Si (15a)

�P2 = 2
√

γ

N∑
i=1

(3J i −
√

8)J i
�Si (15b)

�P3 = 2
√

γ

N∑
i=1

√
3
(
5J

2
i − 6

√
2J i + 3

)
J i

�Si, (15c)

where J i := Ji/
√

γ .
Using the notation of the generalized Overhauser fields the

Hamiltonian can be denoted

H = 1
2
�S0 · �P1. (16)

For later use, we draw the reader’s attention to the fact that
the coefficients αj and βj are of order

√
γ , see (14) and the

comprehensive discussion in Ref. [56].
It is known [64,65] that the recursion coefficients can

be understood as the matrix elements of the real symmetric
tridiagonal matrix

T =

⎛
⎜⎜⎝

α1 β1 0 0 . . .

β1 α2 β2 0 . . .

0 β2 α3 β3 . . .
...

...
. . .

. . .
. . .

⎞
⎟⎟⎠, (17)
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which acts on the vector of orthonormal polynomials

p(x) = (p1(x), p2(x), ... pn(x))T (18)

according to

x p(x) = T p(x). (19)

This representation is useful because it tells us how to truncate.
Truncating the matrix dimension of T to the positive integer Ntr

we introduce an effective truncation scheme for the recursion
coefficients. We keep those that lie within the Ntr × Ntr-
dimensional upper left submatrix of T . This has proven to
be a powerful approach in the classical calculations [56].

We point out that due to the construction from orthogonal
polynomials, the generalized Overhauser fields are orthonor-
mal with respect to the Frobenius norm〈〈

P α
j

∣∣P β

k

〉〉 = δαβδjk. (20)

This is explicitly derived in Appendix A.

C. Higher powers of the generalized Overhauser fields

In the definition of the generalized Overhauser fields �Pj ,
we introduced higher powers of the couplings Ji by means of
certain orthogonal polynomials. The generalized Overhauser
fields are the above mentioned suitably weighted sums over
the spin operators. The weights are given by the orthogonal
polynomials. The precise form of these polynomials depends
on the set of couplings. However, each generalized Overhauser
field is still linear in the spin operators, see Eq. (10). In case of
commuting classical vectors this was sufficient [56].

For the quantum mechanical dynamics we are studying
here we need more, namely higher powers of the generalized
Overhauser fields P α

j . We show here that the appropriate way to
consider higher powers of the Overhauser fields is to consider
Hermite polynomials Hn of them. We emphasize that Hermite
polynomials are again orthogonal polynomials, but they are
used here for something different than the pj : the pj are
polynomials in the couplings while the Hermite polynomials to
be introduced are polynomials in the generalized Overhauser
fields.

In order to motivate that we need higher powers of the
Overhauser fields let us consider A = Sz

0 and insert it into
the right-hand side of the equation of motion (6) yielding
i[H,Sz

0] = (Sy

0 P x
1 − Sx

0 P
y

1 )/2. This expression is linear in the
Overhauser field. But if we iterate it as we have to do to capture
the quadratic time dependence, we consider A = S

y

0 P x
1 −

Sx
0 P

y

1 . A simple calculation reveals that [H,A] comprises terms
such as (P x

1 )2, P x
1 P z

1 , (P y

1 )2, or P
y

1 P z
1 , i.e., quadratic powers

of the Overhauser fields occur. This is just meant as a simple
motivating example. In computing the long-time dynamics
arbitrarily high powers will arise.

Therefore we include such higher powers in the operator
basis and thus have to consider their norm and scalar products
with other terms in the operator basis. Hence we are facing the
evaluation of traces of the general type

I = Tr
(
P

α1
j1

P
α2
j2

P
α3
j3

. . . P
αn−1
jn−1

P
αn

jn

)
, (21)

where the trace refers to the Hilbert space of the bath spins.
The fundamental observation starts from the normalization
〈〈P α

j |P α
j 〉〉 = 1 which results from a weighted sum over

the trace of (Sα
i )2 = 1/4. Since Neff spins are substantially

coupled, each single spin of them contributes only O(1/Neff).
Hence the prefactor pj (Ji) of Sα

i in P α
j is of order 1/

√
Neff,

see also Eq. (14).
For I to take a nonzero value even in the limit Neff → ∞,

one has to combine the operators P
αm

jm
to pairs. Let us call one

choice of combining all P
αm

jm
to pairs a “pairing.” In each pair,

the sum over the individual bath spins runs over Neff sites and
each summand contributes in order 4/Neff so that the pair yields
a nonvanishing contribution. So, the product of all pairs in each
pairing yields a finite contribution in the limit Neff → ∞. The
total value of I results from all possible pairings.

Let us consider triples (generally n-tuples with n > 2) of the
P

αm

jm
instead of pairs. By this we mean that the summation over

the bath spins Sα
i is done over trilinear terms such as Sx

i S
y

i Sz
i ,

where each factor is taken from one generalized Overhauser
field in the triple. Then the summation is more restricted so
that in total less summations can be done. This reduces the
contribution by at least a factor 1/Neff. For instance, the trace

X := 1

d
Tr

(
P x

1 P
y

2 P z
2 P x

1 P
y

2 P z
2

)
(22)

splits into a product of three pairs,

Xpair =
(

N∑
i=1

p2
1(Ji)Tr

(
Sx

i

)2

)(
N∑

i=1

p2
2(Ji)Tr

(
S

y

i

)2

)

×
(

N∑
i=1

p2
2(Ji)Tr

(
Sz

i

)2

)
, (23)

and into a product of two triples,

Xtriple = K

(
N∑

i=1

p1(Ji)p
2
2(Ji)Tr

(
Sx

i S
y

i Sz
i

))2

, (24)

with some combinatorial factor K and similar products of a
quadruple and a pair and a single 6-tuple. Note that the trace
in Eq. (22) refers to the Hilbert space of the total system while
the traces in Eqs. (23) and (24) refer to the local Hilbert space
of a single bath spin �Si . The crucial observation is that Xpair is
precisely unity due to the orthonomalization of the polynomials
pj whileXtriple is of order 1/Neff, i.e., subleading, because there
is one summation less. The same holds for any combinations of
n-tuples with n > 2 so that only pairings need to be considered
in leading order. In particular, we learn that n has to be even.
Due to the orthonormalization, each pair P α

j ,P
β

k yields the

factor 〈〈P α
j |P β

k 〉〉 = δαβδjk , cf. Eq. (20).
We conclude that the computation of the leading term of I in

an expansion in 1/Neff is straightforward. It can be simplified
even further by observing that the computation of all pairings
is exactly what is done in the evaluation of expectation values
of random variables fulfilling Gaussian distributions. This is
the content of Wick’s theorem for classical fields [66].

We arrive at the stunning conclusion that the computation
of the leading order of the quantum mechanical traces I

amounts to the calculation of classical expectation values of
the Gaussian random variables P α

j with the correlations given
by the scalar product (A1). This was first observed in Ref. [35].
Corrections are of order 1/Neff.
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We emphasize the important implication that the sequence
of the operators in the trace in Eq. (21) does not matter. This
is obviously true for the classical calculations. It does not
represent a contradiction to the quantum mechanical nature
of the spins in the bath because it only holds for the leading
contribution in an expansion in 1/Neff. In Appendix B, we
verify explicitly that the nonvanishing commutators are less
relevant with respect to an expansion in 1/Neff.

We summarize that the computation of the Frobenius scalar
product for functions of the generalized Overhauser field
is tantamount to computing these functions with respect to
Gaussian weights. But we emphasize that we are developing a
fully quantum mechanical treatment although the traces are
computed via classical integrals. These classical Gaussian
integrals are identical to the quantum mechanical traces up
to corrections of the order of 1/Neff ≈ 10−5 or even smaller.

In view of the Gaussian weights, it suggests itself to
consider Hermite polynomials to describe general functions
of the Overhauser fields because they are the orthogonal
polynomials for a Gaussian weight function [67,68]. We define
the normalized Hermite polynomials

Hn(x) = 1√
n!

(−1)ne
x2

2
dn

dxn
e− x2

2 , (25)

where the factor 1/
√

n! is added for notational convenience,
see below, beyond the standard definition in mathematical text
books. As pointed out above, these Hermite polynomials are
orthonormalized with respect to a Gaussian weight function
w(x) = (

√
2π )−1 exp(−x2/2), i.e., they fulfill

1√
2π

∫ ∞

−∞
Hn(x)Hm(x)e− x2

2 dx = δnm. (26)

Furthermore, the relations

xHn(x) = √
nHn−1(x) + √

n + 1Hn+1(x), (27a)

d

dx
Hn(x) = √

nHn−1(x) (27b)

hold and are very well known to physicists because they are
the eigenfunctions of the harmonic oscillators. We will exploit
the analogy to harmonic oscillators further below.

The Hermite polynomials provide a transparent way to
include higher powers of the generalized Overhauser fields
because in leading order in 1/Neff we have〈〈

Hn

(
P α

j

)∣∣Hm

(
P α

j

)〉〉
= 1

d
Tr

((
Hn

(
P α

j

))†
Hm

(
P α

j

))
(28a)

= 1√
2π

∫ ∞

−∞
Hn

(
P α

j

)
Hm

(
P α

j

)
e− 1

2 (P α
j )2

dP α
j (28b)

= δmn, (28c)

where d stands for the dimension of the underlying Hilbert
space of bath spins.

Next, we define operators that will form the basis in the
Hilbert space of operators. As usual, the operators acting on
the central spin are described by Pauli matrices σm with m ∈
{0,1,2,3}, where σ0 is the identity matrix. Furthermore, we
have to describe powers of the generalized Overhauser fields

to describe the dynamics of the spin bath. As explained above,
Hermite polynomials with the generalized Overhauser fields
as arguments are the appropriate choice because they imply
orthonormality of the operator basis. Concretely, we use the
shorthand

Hnj,α
:= Hnj,α

(
P α

j

)
, (29)

where nj,α carries its two subscripts because the degree of the
Hermite polynomial depends on the index of the Overhauser
field and its component α ∈ {x,y,z}. Then, a general basis
operator reads

b̂m
n := σmAn, (30a)

An := Hn1,x
Hn1,y

Hn1,z
Hn2,x

· · · , (30b)

n := (
n1,x , n1,y , . . . , nNtr,z

)
, (30c)

where the 3Ntr-tuple n as defined above stores the degrees
of the respective Hermite polynomials. For the notation to be
unique, the sequence of non-negative integers nj,α is defined as
shown in Eq. (30c). But for the evaluation of traces and hence
of the Frobenius scalar products it does not matter in leading
order in 1/Neff.

The orthonormality of the b̂n
m results from

〈〈
b̂k

n

∣∣b̂l
m

〉〉 = 1

d
Tr

⎛
⎝ Ntr∏

j=1

∏
α

(
σkHnj,α

)†
σlHmj,α

⎞
⎠ (31a)

= 1

2
Tr(σkσl)

1

2N
Tr

⎛
⎝ Ntr∏

j=1

∏
α

Hnj,α
Hmj,α

⎞
⎠ (31b)

= δklδnm, (31c)

where we used again that the traces can be computed by
Gaussian integrals and that the Hermite polynomials are
orthonormal with respect to these integrals. The Kronecker
symbol δnm is unity if both sequences of non-negative integers
n and m are equal; otherwise it vanishes. Thus the basis
spanned by the operators b̂n

m provides an excellent starting
point to treat the equations of motion of the CSM quantitatively.

D. Specific equation of motion

In this next step, we establish the equations of motion for
the developed basis of operator. Hence we have to know from
where we start and how the Liouville operator acts on b̂m

n .
We aim at the isotropic CSM without magnetic field in the

first place. We intend to compute the 〈Sz(t)Sz(0)〉 correlation
as function of time. Thus the initial basis operator is the
z component of the central spin while all bath spins are
supposed to be in a completely disordered state, i.e., there is
no operator acting on any bath spin. This choice is indicated
by the extremely small couplings Ji , which are surpassed by
the thermal energy even at 10 K so that the spin bath can be
considered to be at infinite temperature [4,9]. Thus, initially,
the spin bath is described by the Hermite polynomials H0 equal
to the identity for all j and all α, i.e., H0(P α

j ) = 1. The starting
operator is

b̂3
o = σ3H0H0H0 · · · . (32)
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In order to obtain the time evolution, we have to compute the
action ofL on the basis operators, which amounts to computing
the commutator between the Hamiltonian H in Eq. (16) and
b̂m

n , which is a product of an operator σm acting on the central
spin and of the operator An acting on the spin bath. Similarly,
the Hamiltonian consists of a sum of products of an operator
acting on the central spin and an operator acting on the spin
bath. If we use C and C ′ for operators of the central spin and
A and A′ for operators acting on the bath, the structure of the
commutator is

[CA,C ′A′] = [C,C ′]AA′ + C ′C[A,A′] (33a)

= [C,C ′]A′A + CC ′[A,A′], (33b)

where both right-hand sides are equivalent. This appears to
pose a problem because it introduces an ambiguity. In leading
order in 1/Neff the first terms in Eqs. (33a) and (33b) are
indistinguishable because the sequence of A and A′ does not
matter. In return, only the average of the second term can
matter. Hence we use the symmetrized relation

[CA,C ′A′] = T1 + T2, (34a)

T1 = 1
2 [C,C ′]{A,A′}, (34b)

T2 = 1
2 {C ′,C}[A,A′], (34c)

which avoids the ambiguity.
We consider L(σmAn) and attribute the resulting terms

to T1 or to T2 depending on whether they result from the
commutation of two operators of the central spin or from the
commutation of two operators of the spin bath. The explicit
calculation of T1 and T2 is performed in Appendix C. The
resulting expression for T1 is

T1[L(σmAn)]

= i

4

(
σm+1

{
P m−1

1 ,An
} − σm−1

{
P m+1

1 ,An
})

. (35)

To denote T2 concisely, we need two definitions:

Rα
j := βjP

α
j+1 + αjP

α
j + βj−1P

α
j−1 (36)

and the mapping π with

π(n,j,α) := (
n1,x , n1,y , . . . , nj,α − 1, . . . , nNtr,z

)
, (37)

which means that π (n,j,α) maps the sequence n to the same
sequence except that the degree nj,α is decremented by one.
Then T2 reads

T2[L(σmAn)] = −iσ0

2

Ntr∑
j=1

3∑
α,δ=1

εαmδ

√
nj,αRδ

jAπ(n,j,α) (38a)

for m ∈ {1,2,3}. For m = 0, we obtain

T2[L(σ0An)] = −i

2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδ

√
nj,ασβRδ

jAπ(n,j,α).

(38b)

The sum of Eqs. (35) and (38) yields the action of L on
a general basis operator b̂m

n = σmAn concluding the present
section. However, we will not use these equations in their
present form in explicit calculations because they are a bit

cumbersome. Instead, we will use creation and annihilation
operators to denote the action on the Hermite polynomials as
is done for the harmonic oscillator in any text book on quantum
mechanics. This is introduced in the next section.

E. Effective Hamilton operator without external magnetic fields

We view the Hilbert space of operators as a conventional
Hilbert space of states and denote the basis operators by kets∣∣b̂m

n

〉〉 = |m; n〉〉 (39a)

= |m; n1,xn1,yn1,z,n2,x . . . 〉〉. (39b)

We remind the readers that the scalar product of these operator
kets is given by the trace 〈〈A|B〉〉 := Tr(A†B)/d. In order to
express the Liouville dynamics in terms of operators by a
Hamiltonian dynamics on operator kets, we are looking for
an effective Hamiltonian which fulfills

d

dt
|m; n〉〉 = −iHeff|m; n〉〉. (40)

Once we have found this effective Hamiltonian Heff, we can
use any analytic or numerical tool developed to deal with
Hamiltonian dynamics.

Inspecting Eq. (38), one realizes that a single Hn is trans-
formed to

√
nHn−1, which is precisely the action of a bosonic

annihilation operator a, known from the analytic solution of
the harmonic oscillator. The other occurring action on Hermite
polynomials is the multiplication with their argument, see
Eq. (27a). This is represented by the sum a + a† of the bosonic
annihilation and creation operator.

Since the Hermite polynomials denoted by Hnj,α
depend on

different arguments P α
j , we have to introduce different bosonic

operators depending on the labels j,α. Thus we use aj,α and

a
†
j,α . These operators are sufficient to describe the action of L

on the spin bath.
In addition, we have to describe the action ofLon the central

spin, i.e., on the Pauli matrices describing the operators acting
on the central spin. There are two kinds of processes, namely
anticommutation and commutation, see Eqs. (34b) and (34c).

The anticommutation with σk is described by a matrix Mk

with k ∈ {1,2,3}, i.e., its matrix elements are computed by
means of the scalar product

〈〈n|Mk|m〉〉 := 1

2
〈〈σn|{σk,σm}〉〉 (41a)

=
{
δmk + δnk if nm = 0
0 otherwise (41b)

for n,m ∈ {0,1,2,3}. Note there is no need to introduce M0

because it equals the 4 × 4 identity matrix. These matrices are
given explicitly in Appendix D.

The commutation with σk is described by a matrix Kk with
k ∈ {1,2,3}, i.e., its matrix elements are computed by means
of the scalar product

〈〈n|Kk|m〉〉 = 1

2
〈〈σn|[σk,σm]〉〉 (42a)

=
{

0 if nm = 0
iεnkm otherwise (42b)
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FIG. 1. Sketch of the flow of bosons denoted “b” in the system described byHeff comprising the two terms given in Eq. (44). The components
x,y,z in the figure are denoted by 1,2,3 in the equations for notational simplicity. In addition to what is sketched, each local process proportional
to αj or hopping process proportional to βj also has an effect on the head of the chain, i.e., on CS, as expressed in Eq. (44b) by the matrices Mβ .

for n,m ∈ {0,1,2,3}. There is no need to introduce K0 because
it vanishes completely. These matrices are given explicitly in
Appendix D.

It is suitable to split the effective Hamiltonian in its parts
resulting from the terms of type T1 and from the terms of type
T2, respectively. Thus we consider

Heff = HCS
eff + Hch

eff, (43)

where the first term HCS
eff constitutes the head, i.e., site 0, of a

semi-infinite chain of sites j ∈ N, see Fig. 1. The second term
Hch

eff describes the action on the chain. These two terms read

HCS
eff = 1

2

3∑
α=1

Kα(a1,α + a
†
1,α), (44a)

Hch
eff = i

2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδMβaj,α{αj (aj,δ + a
†
j,δ)

+βj−1(aj−1,δ + a
†
j−1,δ)

+βj (aj+1,δ + a
†
j+1,δ)}. (44b)

If we expand the above expression for Hch
eff, bilinear terms

in the annihilation operators appear which seem to violate the
hermiticity of the Hamiltonian. However, the antisymmetry
of the Levi-Civita tensor εαβδ ensures that all non-Hermitian
terms cancel out and that Hch

eff = Hch,†
eff holds,

Hch
eff = i

2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδMβ{αja
†
j,δaj,α

+βj (a†
j+1,δaj,α − a

†
j,αaj+1,δ)}. (45)

There is even another step towards diagonalization possible,
which is presented in Appendix E. We do not use it in the
present article, but it will be useful in future extensions of the
iEoM approach introduced here.

This completes the mapping of the equations of motion
for operators of the CSM with large spin bath onto an

effective Hamiltonian. This effective Hamiltonian acts on a
four-dimensional impurity described by the matrices Mk and
Kk and to a semi-infinite chain of bosons, see Fig. 1. The bosons
act on the polynomials of the generalized Overhauser fields,
while the operator space of the central spin is represented by the
impurity. Thus it is now possible to represent every observable
as a ket of this impurity model. For instance, an operator acting
solely on the central spin is a product state of the impurity state
and the boson vacuum. In the course of the time evolution of the
operator, contributions from the generalized Overhauser fields
will appear, which correspond to the creation, annihilation, or
the hopping of the bosons.

The first term of Heff, namely HCS
eff , creates and annihilates

bosons at the head of the chain. Its coupling constant is JQ = 1,
i.e., relatively large. The second term of Heff, namely, Hch

eff,
does not change the number of bosons, but lets them change
flavor (x,y,z or 1,2,3, respectively, depending on the notation)
on-site or combined with hops along the chain. Each change
of flavor also changes the state of the impurity at the head
of the chain. The scale of Hch

eff is given by
√

γ JQ. Hence the
corresponding rate is two to three orders of magnitude lower for
γ ≈ 10−5 to 10−6 than the one induced by HCS

eff . This implies
that Hch

eff is a perturbation to HCS
eff , i.e., Hch

eff is responsible for
the slow, long-term dynamics.

F. Effective Hamilton operators for external magnetic fields

In this section, we point out how magnetic fields can be
incorporated as well. First, we study the case where h is acting
on the central spin along theα direction. If the spin Hamiltonian
is amended by the Zeeman term

HZ = −hSα
0 , (46)

this translates straightforwardly to the amendment

HZ
eff = −hKα (47)

of the effective Hamiltonian because only the operators of
the central spins are relevant and the commutation of Pauli
matrices is represented by the matrices Kα . The Zeeman
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term for the central spin will be employed in the numerical
evaluation below.

Second, we consider the action of a magnetic field in α

direction on the spins of the bath. Motivated by the much lower
nuclear magnetic moments, we denote the magnetic field by
zh, where z ≈ 1/800 takes the much lower effect of a magnetic
field on the nuclear spins into account [69]. This means that
we deal with the additional term HnZ for the nuclear Zeeman
effect

HnZ = −zh

N∑
i=1

Sα
i . (48)

Computing the corresponding Liouville operator yields

LnZ �Pj = iz�h × �Pj , (49)

which translates to

LnZP α
j = iz

∑
β,δ

εαβδh
βP δ

j . (50)

Using again (as in the previous subsections) that the sequence
of bath operators does not matter in leading order in 1/Neff,
we obtain[

HnZ,Hnj,α

] = iz
√

nj,αHnj,α−1

∑
β,δ

εαβδh
βP δ

j (51)

and finally

LnZ(σmAn) = izσm

Ntr∑
j=1

∑
α,β,δ

εαβδ

√
nj,αhβP δ

j Aπ (n,j,α). (52)

This allows us to express the Liouvillean of the nuclear
Zeeman effect by annihilation and creation operators:

HnZ
eff = −iz

Ntr∑
j=1

3∑
α,β,δ=1

εαβδh
βaj,α(aj,δ + a

†
j,δ) (53a)

= −iz

Ntr∑
j=1

3∑
α,β,δ=1

εαβδh
βa

†
j,δaj,α. (53b)

In passing to the second line, we used the antisymmetry of
the Levi-Civita symbol. Note that the Hamiltonian HnZ

eff has
no effect on the central impurity so that no matrices Mβ

or Kβ occur. We will not use this term in the numerical
implementation below. For short times, it is not relevant due
to the small value of z, but for longer times it does have an
effect on higher correlations [61] and on quantum dots subject
to pulses [58,69]. Thus magnetic fields acting on the central
spin or on the bath spins can also be accounted for easily.

IV. COMPARISON TO OTHER DATA

To establish the validity of the derived effective model in the
limit Neff → ∞, we compare its results to quantitative results
obtained by various established approaches which capture the
temporal dependence up to a certain time and which can cope
only with relatively small baths. Still, this is sufficient to
see that the effective model reproduces the correct physics in
the limit Neff → ∞.

The effective model of a semi-infinite bosonic chain coupled
to a four-dimensional impurity can be simulated numerically.
The spin-spin correlation in the original model

S(t) := 〈
Sz

0(0)Sz
0(t)

〉
(54)

is obtained in the effective model from the time evolution of
the state |3; o〉〉 where o = (0,0,0, . . .) stands for the bosonic
vacuum and 3 stands for the third Pauli matrix, i.e., a particular
state of the four-dimensional central impurity. Hence we
compute

S(t) = 1
4 〈〈3; o| exp(−iHefft)|3; o〉〉. (55)

Note that S(t = 0) = 1/4 as it has to be for the spin-spin
autocorrelation in Eq. (54).

A. Numerical implementation

For the present proof-of-principle, we do not implement
a highly sophisticated code to compute the time dependence
induced byHeff. We use a finite, truncated basis comprising the
four states of the central impurity and a finite number of bosonic
states given by the occupation numbers in the 3Ntr-tuple n. The
resulting finite-dimensional Schrödinger equation for the kets
is an ordinary linear differential equation, which is solved by a
Runge-Kutta algorithm of fourth order. The starting vector is
|3; o〉〉. Finally, the scalar product is computed with respect to
the bra 〈〈3; o|.

The key approximation in the implementation is the trunca-
tion of the maximum bosonic occupation for each site j � Ntr.
We restrict the Hilbert space by means of the condition

3∑
α=1

nj,α < nj;max. (56)

Note that this restricts the total number of bosons at each site
j of the chain irrespective of their flavor α ∈ {1,2,3}. This has
turned out to be the most efficient way of local truncation.

The most important number is the threshold for the bosons
at j = 1 because it restricts how well the dominant HCS

eff is
represented. The other thresholds can be chosen significantly
lower, see below. In practice, we build the basis iteratively
by applying Heff again and again. States which do not fulfill
(56) for j > 1 are truncated and the repeated application of
Heff is continued. For j = 1, the recursive application of Heff

is stopped once (56) is violated. This procedure enhances the
performance without changing the results noticeably up to the
times for which the implementation provides reliable data.

First, we consider HCS
eff alone so that only n1;max matters.

Physically, this means that the Overhauser field �B is frozen,
i.e., static. Then, the result can be obtained analytically either
in a fully classical way [7] or based on correlated fluctuations
[31] as well. It reads

SfOver(t) = 1

12

[
1 + 2

(
1 − J 2

Q

4
t2

)
exp

(
−J 2

Q

8
t2

)]
(57)

and it is suitable to check our numerical approach on the
simplest level. In Fig. 2, the analytical result is compared
to S(t) obtained from HCS

eff alone for various cutoffs n1;max

in the occupation number. Clearly, the short-term behavior is
perfectly reproduced and the constant plateau as well up to
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FIG. 2. Comparison of the analytical solution SfOver(t) for the
frozen Overhauser field in Eq. (57) to the numerical result obtained
from HCS

eff alone for various cutoffs n1;max of the occupation number.

some threshold time tthresh at which a spurious revival of the
initial correlation appears. This spurious revival occurs the later
the larger the cutoff n1;max is chosen, which underlines that it
is a numerical effect due to the truncation of the Hilbert space.

We analyzed the scaling of the threshold time tthresh as
a function of n1;max and found that tthresh ∝ √

n1;max with
a prefactor between 3 and 4 for JQ = 1. This is actually
expected for the approximation of time dependencies on the
basis of Hermite polynomials. Hence we realize that the
implementation using the occupation number representation
is not very powerful for long times. But for the purposes of our
present goal of a proof-of-principle comparison to other data
this implementation is sufficient.

Next, we have to include the dynamics of the Overhauser
field by increasing Ntr. We aim at comparisons up to t = 50/JQ

so that it turns out that Ntr = 3 is sufficient. The corresponding
limits for the occupation numbers nj;max for j > 1 do not need
to be chosen large because the dynamics of the Overhauser
field is governed by the rate

√
γ JQ, which is significantly

smaller. These numbers can be determined self-consistently by
increasing nj;max step by step till the result no longer depends
on nj;max. In this way, we arrive at n1;max = 181,n2;max = 8, and
n3;max = 1. This triple will be used henceforth, if not denoted
otherwise.

In contrast to the solution for a frozen Overhauser field,
including the dynamics of the bath, i.e., of the Overhauser
field, leads to a further decay of the autocorrelation function
S(t) such that S(t → ∞) < S(t = 0)/3 holds. Describing this
dynamics of the bath quantum mechanically in the limit of very
large Neff is a central goal of the present approach.

B. Other approaches

We compare the data obtained from the effective Hamil-
tonian Heff in Eq. (43) derived from the iterated equations
of motion (iEoM) to data from three other techniques. The
first one is a fully classical simulation (classical) averaged
over random Gaussian initial configurations. Previously, it was
argued [53] and shown that this approach approximates the
quantum mechanical dynamics fairly well [31,32] and it can
be efficiently used for large spin baths and large times [56].
The spin baths studied below can easily be treated without

further approximations. The data are averaged over 108 initial
configurations so that no statistical error is discernible.

The second one is the Bethe ansatz (BA). Although it is
known since the early days of Gaudin [12,13] that the CSM is
integrable and exactly solvable by Bethe ansatz, it has taken
a long time till the tedious evaluation of the Bethe equations
for larger systems has become possible [25]. The treatment of
the fully disordered initial state poses an additional challenge
which has been solved by importance sampling [26]. Here, we
use data already computed for Ref. [35] to test rigorous bounds
for persisting correlations. The BA evaluated in the above cited
fashion is very powerful in determining the dynamics for long
times, but the bath sizes may not exceed 48 spins. Due to the
stochastic evaluation, the data have a relative error of about 5%
[35].

The third technique is the time-dependent density-matrix
renormalization group (DMRG). This approach is mostly used
for one-dimensional problems, but it is also perfectly suited to
treat starlike clusters as in the CSM [31]. On the one hand,
DMRG is powerful enough to deal with up to about 1000
spins in the bath. On the other hand, its caveat is that the
growth in entanglement is so fast that only times up to about
30 to 50J−1

Q can be reached reliably. The parameters for the
data shown below are the following. We keep 4096 states in
the DMRG sweeps and use the second-order Trotter-Suzuki
decomposition for the time propagation with a time step of
0.01J−1

Q . The dominant cause for the loss of accuracy is the
discarded weight in the course of the time propagation. We stop
the calculations if the accumulated discarded weight exceeds
0.001.

We emphasize that the iEoM approach is tailored to capture
quantum mechanical fluctuations of the central spin for a large
number of effectively coupled spins Neff. This is the relevant
case to describe experiments on semiconductor quantum dots.
But to gauge the introduced approach we use a rather small
number of bath spins (18 to 48), which are still tractable with
BA and DMRG in order to have exact results as reference.

C. Results without external magnetic field

First, we focus on the CSM without external field. The
motivation is twofold. Experimentally, spin noise has become
a focus of experimental studies [70–75] so that reliable theoret-
ical investigations are called for. Theoretically, it turns out that
the zero-field case represents a particular challenge because for
finite fields expansions around isolated precessing spins work
quite successfully [30,36–43,45,46,69].

In Fig. 3, we included the static, frozen Overhauser formula
(57) for comparison with the classical, the fully quantum
mechanical, and the iEoM approach. In the upper panel, it
appears that all approaches display the same long time behavior
close to S(t → ∞) = S(0)/3. However, in the lower panel,
it is obvious that the dynamics of the bath yields a lower
autocorrelation S(t → ∞) < S(0)/3. For a comprehensive
rigorous discussion of this aspect, we refer the reader to
Refs. [34,35], which deal with persisting autocorrelations in
the infinite time limit in the quantum CSM.

Figures 3–5 depict a series of three decreasing values of γ

because the derived approach (iEoM) resides on an expansion
in 1/Neff ∝ γ . In each figure, the upper panel shows the case
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FIG. 3. Comparison of results for the spin-spin correlation for
given values of γ = 1/18, cf. Eq. (3), in the zero-field CSM obtained
by various approaches explained in the main text, see Sec. IV B.
The dashed line is the analytical result for the frozen Overhauser
field (57) depicted for reference. The behavior for very short times is
indistinguishable in all approaches including the frozen Overhauser
field. The upper panel shows the curves for a smaller total number N

of spins while the lower panel refers to a larger number N .

of a lower value of the total number N of bath spins. The
lower panel shows data for a significantly larger N . At first
glance, it can be stated that all the curves agree quite well and
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FIG. 4. Comparison of results for the spin-spin correlation for
given values of γ = 1/24, cf. Eq. (3), in the zero-field CSM obtained
by various approaches. The upper panel shows the results for smaller
N , the lower panel for larger N .
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FIG. 5. Comparison of results for the spin-spin correlation for
given values of γ = 1/36, cf. Eq. (3), in the zero-field CSM obtained
by various approaches. The upper panel shows the results for smaller
N , the lower panel for larger N .

show the same qualitative behavior. The iEoM data show some
wiggles starting around t = 45J−1

Q , which can be attributed
to the truncation of the basis. They could be suppressed by
choosing larger nj;max, but this enhances the required memory
exponentially and the present calculation already used about
256 Gbytes of RAM. In addition, the wiggles tell us where the
truncation effects show up so that it is instructive to see them.

Since the initial dynamics leading to the dips around t ≈
3.5J−1

Q is very difficult to see in Figs. 3–5, we include Fig. 6
where zooms of the dips are shown. From top to bottom, the
parameter γ decreases while from left to right the total number
N of spins increases.

Comparing the data of the other approaches among them, we
see that the BA and the DMRG data almost coincide as it has to
be because both approaches are numerically exact. By this we
mean that in principle, using large enough resources, the results
can be made arbitrarily accurate. The persisting deviations can
be attributed to statistical errors in the BA evaluation which is
based on importance sampling. They occur at shorter times but
do not accumulate for longer times. The accuracy of the DMRG
data is very high for short times, but deteriorates for longer
times for three reasons. The first is the exponential growth
of entanglement which cannot be captured anymore by the
number of states kept beyond a certain time threshold. The
second is the accumulated discarded weight in the temporal
propagation of the state. The third is the accumulated errors
due to the Trotter-Suzuki discretization. The main issue in the
presented numerical data is discarded weight.

The classical simulation represents an approximate treat-
ment residing on very good arguments for the Overhauser
field for large spin baths [31,32,53], but not for the central
spin. Against this background, the proximity of the averaged

165431-10



QUANTUM MECHANICAL TREATMENT OF LARGE SPIN BATHS PHYSICAL REVIEW B 97, 165431 (2018)

0.00

0.05

S
(t

)

N = 18, γ = 1/18

iEoM
DMRG
BA
classical

N = 36, γ = 1/18

0.00

0.05

S
(t

)

N = 24, γ = 1/24 N = 48, γ = 1/24

2 4 6

t J−1
Q

0.00

0.05

S
(t

)

N = 36, γ = 1/36

2 4 6

t J−1
Q

N = 48, γ = 1/36

FIG. 6. Comparison of results for the spin-spin correlation for
various values of γ in the zero-field CSM obtained by various
approaches. Here we focus on the initial dip. The left panels show
the results for smaller N , the right panels for larger N . From top
to bottom, the sequence of panels depicts data for decreasing values
of γ .

classical result to the fully quantum mechanical calculations is
remarkable.

Turning to the comparison of the iEoM results with the other
data, one becomes aware that the effects are relatively small
because all data are already close to one another. Yet, two
trends catch the eye. First, the agreement of the iEoM curves
with the DMRG and BA data becomes slowly better if at fixed
γ the total number N of spins is increased. This effect can be
assessed by comparing the upper panel with lower N to the
lower panel with larger N in each of the three figures. This is
a nice observation bearing in mind that experimentally N is of
the order or the number of atoms in the sample (N ≈ 1021 for
a platelet with linear dimensions in the range of millimeters
and a weight of 0.1g), i.e., infinity for any practical purpose.

The second effect concerns the dependence on γ and it is
more pronounced. By inspecting the series of decreasing γ

from Fig. 3 via Figs. 4 to 5 or in Fig. 6 from top to bottom,
one notes that the agreement becomes better and better. This
was to be expected because the approach as derived above
resides on the leading behavior in an expansion in γ . Hence
the numerical data strongly corroborate the validity of the
introduced approach.

In order to underline this aspect further, Fig. 7 depicts the
result for a large value of N , but also a large value of γ . This
figure is to be compared to the upper panel of Fig. 5 which
shows data for the same N , but for a three times smaller γ .
Clearly, the results for smaller γ = 1/36 agree significantly
better than the results for γ = 1/12. We emphasize again that
the experimentally relevant values in quantum dots are of the

0 10 20 30 40 50

t J−1
Q

0.00

0.05

0.10

S
(t

)

N = 36, γ = 1/12

iEoM

DMRG

BA

classical

FIG. 7. Comparison of results for the spin-spin correlation for
given values of γ = 1/12, cf. Eq. (3), in the zero-field CSM obtained
by various approaches.

order of γ ≈ 10−5 or even smaller. Hence one can expect that
the mapping of the CSM to an impurity in a bosonic bath is
extremely accurate and captures all essential physics in the
CSM relevant for semiconductor quantum dots.

It is interesting that in the range around t ≈ 10J−1
Q the

deviations of the iEoM curves to the fully quantum mechanical
results are larger than for longer times where the agreement
is much better. We attribute this observation to the fact that
the neglected terms in the limit γ → 0 are of order γ relative
to the leading order. For γ = 0, only the frozen Overhauser
dynamics (57) remains, which is sizable up to t ≈ 10J−1

Q , but
completely flat and featureless beyond this time. Hence, in
the time regime up to t ≈ 10J−1

Q , the corrections are of order
γ . However, beyond this temporal regime, the dynamics is
governed by Hch

eff, which is of order
√

γ JQ. Hence, for longer
times, the neglected corrections are of order γ 3/2 and thus even
smaller.

Still, further support for the above promising conclusions
would be desirable, for instance, for higher order correlations
[59–61] and for CSMs subject to pulses [30,58,69,76,77].
In the present paper, we focused on the autocorrelation of
the central spin in order to establish the mapping. However,
calculating other quantities such as higher-order correlations
is possible and cannot be done by classical means since the
sequence of operators of the central spin matters.

D. Results with external magnetic field

In the previous section, we focused on the CSM without
external field for experimental and theoretical reasons. Yet
it is, of course, important to illustrate that the advocated
iEoM approach also works with finite fields. So we extend the
effective HamiltonianHeff in Eq. (43) by the dominant Zeeman
term for the central spin in x direction given in Eq. (47) and
solve the ensuing differential equations in time.

From numerical results [16], we expect that the Larmor
precessions are governed by a frequency which is altered from
the case of isolated spins where it is given by the magnetic field
h. Due to the coupling to the bath, the energy scale JQ enters
yielding a shifted Larmor frequency

ωL =
√

h2 + J 2
Q/2. (58)
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FIG. 8. Spin-spin correlation from iEoM for finite magnetic fields
along Sx . The spin bath is infinite (N = ∞) with parameter γ = 0.01
corresponding to Neff = 200 effectively coupled spins. The truncation
of the bosonic Hilbert space is characterized by n1;max = 51,n2;max =
2, and zero otherwise.

This implies that small fields h � JQ hardly show any effect.
Clearly, this is reproduced in Fig. 8 for h = 0.1JQ. Only
above h ≈ 0.5JQ a sizable effect sets in. True oscillations
set in only above h ≈ 5JQ in accordance with what was
observed previously [32]. For such large magnetic fields, one
discerns an oscillation bounded by an envelope function. This
envelope function results from the Gaussian fluctuations of the
Overhauser field �B along the direction of the external magnetic
field. Since the Fourier transform of a Gaussian distribution of
Larmor frequencies is again a Gaussian in time, the envelope
function is given by [7,16,32]

SH(t) = 1

4
exp

(
−J 2

Q

8
t2

)
. (59)

0 10 20 30 40 50
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FIG. 9. Spin-spin correlation from iEoM for a magnetic field
h = 10JQ along Sx . The spin bath is infinite (N = ∞) with parameter
γ = 0.01 corresponding to Neff = 200 effectively coupled spins.
The truncation of the bosonic Hilbert space is characterized by the
numbers given in the legend. The DMRG data shown for reference
are obtained for the same γ and N = 500. The envelope SH(t) is given
by (59). The inset zooms into the region of the Larmor oscillations
for clarity.

If the distribution of the Overhauser field is squeezed, it is
indeed possible to extend the coherence [33]. Alternatively,
projective measurements help to maintain the central spin
polarization [78].

The excellent description of the decay of the Larmor
precession by the envelope (59) is illustrated in Fig. 9. In
addition, this figure illustrates effects of the finite truncation
of the bosonic Hilbert space. The spurious revival can be
pushed to larger times for larger n1;max. Note that n2;max appears
to be rather unimportant. This is so because the signal has
vanished already on short time scales so that the dynamics of
the Overhauser bath barely plays a role.

We stress that prior to the spurious revival the data obtained
by the derived iEoM agrees perfectly well with the DMRG
data included for comparison. This underlines that the iEoM
approach not only works nicely in the zero-field case, but also at
finite magnetic fields. In contrast to DMRG, the iEoM approach
allows one to tackle much larger values of Neff ∝ 1/γ in the
limit N = ∞.

V. CONCLUSIONS AND OUTLOOK

Motivated by the importance of systems of a single spin
coupled to large baths of spins in quantum dots [3–11], but also
in NV centers in diamond [79] or in generic NMR studies [80],
we investigated the quantum mechanical central spin model in
the limit of large numbers Neff of bath spins. In quantum dots,
Neff can be as large as 105 to 106 and around NV centers and
in large organic molecules the number of effectively coupled
spins still ranges from 10 to 100. Theoretically, we posed
ourselves the question whether there is a well-defined limit
Neff → ∞ and if so, whether the system becomes classical in
this limit [31,32,53].

We started from the equations of motion for the spin
operators, employed a suitable scalar product for operators
[63], and used the observation that traces over infinite sums
of spin operators can be computed from classical Gaussian
correlations [35]. In this way, we mapped the operator dy-
namics in the central spin model in the limit Neff → ∞ to
the dynamics of states in an effective quantum model with a
four-dimensional central impurity coupled to a bosonic bath
without further interaction. The four-dimensional impurity
represents the possible operators for the central spin. The
bosons in the bosonic bath represent the collective spin degress
of freedom in the large spin bath. Hence a well-defined limit
Neff → ∞ has been established.

We find it very remarkable that the analytic treatment of the
limitNeff → ∞does not make the system completely classical,
but keeps its quantumness in the effective Hamiltonian Heff.
Yet, the numerical data obtained from the averaged classical
calculation, from the numerically exact approaches, and from
the iEoM approach are very close to one another. The treatment
of external magnetic fields is also possible. This holds for the
central spin, but also for the relevant nuclear Zeeman terms
[58,69].

The derived mapping has two fundamental advantages: (i) It
paves the way to the quantum mechanical treatment of very
large spin baths, which cannot be tackled otherwise at all. (ii) It
enables the treatment of the central spin model by techniques
which could so far not be used, for instance, any approach
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conceived to deal with impurities coupled to interaction-free
bosonic baths.

We tested the results obtained by the iEoM approach for
smaller spin baths with 18 to 48 spins where reliable results
obtained by established techniques are available. In this way,
we verified the validity of the analytic arguments used in the
derivation. The results are remarkably close to the numerically
exact reference data, although the relatively low numbers of
bath spins are disadvantageous for the introduced approach
to work perfectly. The agreement improved for larger spin
baths corroborating the derivation based on an expansion in
1/Neff. Moreover, the good agreement for baths of moderate
size suggests that the application of the iEoM approach is
already fruitful for smaller spin baths as they arise for NV
centers or in large molecules.

In cases of larger spin baths, the approach is expected to
yield highly accurate results where other methods can not
be applied at all. Thus the iEoM allows for investigations of
quantum effects beyond classical descriptions in the regime of
large spin baths. It has been the main goal of the present paper
to derive such a theoretical technique.

Furthermore, the present treatment can be extended in
a straightforward manner to larger bath spins, for instance,
S = 3/2, which is the relevant case in GaAs [69]. To this
end, only the variance of the Gaussian distributions has to be
adapted.

We point out that the numerical implementation of the
mapped model is not yet pushed to its limits. Further im-
provements are called for in order to reach longer times.
This is crucial to describe many experiments, for example,
for measurements of higher order correlations [59–61] or for
quantum dots prepared in nonequilibrium states by intricate
pulsing [30,58,69,76,77,81].

The route to follow to reach the necessary improvement is
to exploit the significant difference in dynamics induced by the
Hamiltonian part HCS

eff and by the Hamiltonian part Hch
eff where

the rate of changes induced by the latter is smaller by a factor
1/

√
Neff. Hence one should treat HCS

eff exactly by choosing a
representation in which it is diagonal. Such implementations
are left for future research.
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APPENDIX A: ORTHONORMALITY OF THE
GENERALIZED OVERHAUSER FIELDS

The fact that we orthonormalized the polynomials accord-
ing to (11a) allows us to conclude that the components of
the generalized Overhauser fields �Pj are pairwise orthonormal
with respect to the Frobenius scalar product (7) as well. For

j,k ∈ {1,2, . . . ,Ntr} and α,β ∈ {x,y,z}, we obtain

〈〈
P α

j

∣∣P β

k

〉〉 = 1

2N−1
Tr

(
N∑

n,m=1

pj (Jn)pk(Jm)Sα
n Sβ

m

)
(A1a)

= 1

2N−1

N∑
n,m=1

pj (Jn)pk(Jm) Tr
(
Sα

n Sβ
m

)︸ ︷︷ ︸
2N−1δnmδαβ

(A1b)

=
N∑

n=1

pj (Jn)pk(Jn)δαβ (A1c)

= δjkδαβ, (A1d)

which was to be proven.

APPENDIX B: IRRELEVANCE OF COMMUTATORS
IN THE LIMIT Neff → ∞

Here we provide an example that commutators represent
subleading corrections to the scalar products of the products
of generalized Overhauser fields. In order to keep the example
transparent, we consider the simplest commutator of two linear
fields:

[
P α

m,P
β

l

] =
N∑

k,j=1

pm(Jk)pl(Jj )4
[
Sα

k ,S
β

j

]
(B1a)

=
N∑

i=1

4pm(Jk)pl(Jk)i
∑

δ

εαβδS
δ
k (B1b)

= : I δ. (B1c)

Next, we consider the norms of the involved operators. The
generalized Overhauser fields P α

k , P
β

l are normalized to unity
by construction. However, the scalar product of I δ is of order
1/Neff because each factor pm(Jk) and pl(Ji) is of order
1/

√
Neff. Hence the summation over all bath spins in 〈〈I δ|I δ〉〉

sums Neff terms, each of which proportional to pm(Jk)2pl(Jk)2

and hence of order 1/N2
eff. So, the scalar product of Iδ is of

order 1/Neff and hence subleading relative to the contributions
resulting from products of the generalized Overhauser fields.
The above example illustrates the statement from the main text
that the sequence of the generalized Overhauser fields in the
terms of the operator basis does not matter for Neff → ∞.

APPENDIX C: CALCULATION OF T1 AND T2

In order to obtain T1 in Eq. (35), we compute

Lσm =
{

0 if m = 0,
i
2σm+1P

m−1
1 − i

2σm−1P
m+1
1 if m ∈ {1, 2, 3}, (C1)

where the indices for finite m must be understood in a cyclic
sense, i.e., for m = 1 the decremented m − 1 means m − 1 = 3
and for m = 3 the incremented m + 1 means m + 1 = 1. If we
use the result (C1) to compute the term T1 for L(σmAn), we
obtain

T1[L(σmAn)] = i

4

(
σm+1

{
P m−1

1 ,An} − σm−1
{
P m+1

1 ,An}).
(C2)
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The multiplication with P m±1
1 modifies the index of the Her-

mite polynomials Hn(P m±1
1 ) according to (27a). This can be

concisely expressed by creation and annihilation operators as
is common in the analytic treatment of the eigenwavefunctions
of the harmonic oscillator.

In order to address T2 in Eq. (38), we consider terms of the
type

LHnj,α

(
P α

j

) = [
H,Hnj,α

(
P α

j

)]
. (C3)

First, we compute the application of the Liouville operator
to the component of a generalized Overhauser field P α

j . A
straightforward calculation shows that (12) implies

L �Pj = −i �S0 × (βj
�Pj+1 + αj

�Pj + βj−1 �Pj−1) (C4)

with the coefficients αj and βj . The coefficients β0 := 0 and
βNtr := 0 are defined to vanish. If we use the definition of Rδ

j

in Eq. (36), we can express the outer product in Eq. (C4) using
the Levi-Civita symbol εαβδ:

LP α
j = −i

3∑
β,δ=1

εαβδS
β

0 Rδ
j . (C5)

In order to treat the general case in Eq. (C3), we combine
(C5) with the operator relation

[A,f (B)] = ∂f (B)

∂B
[A,B]. (C6)

The latter requires that [B,[A,B]] = 0, which does not hold
generally. But here we can safely assume commutativity
because the sequence of bath operators does not matter in
leading order in 1/Neff. In this way, we arrive at

[
H,Hnj,α

] = −iH ′
nj,α

3∑
β,δ=1

εαβδS
β

0 Rδ
j (C7a)

= −i
√

nj,αHnj,α−1

3∑
β,δ=1

εαβδS
β

0 Rδ
j . (C7b)

Hence we have to decrement the degree of the Hermite
polynomial Hnj,α

.
All other Hermite polynomials are not affected in this step

and remain unaltered. This is precisely what the decrementing
mapping π (n,j,α) defined in Eq. (37) expresses. In this
way, we arrive at the final result for the product of Hermite
polynomials as it appears in An,

[H,An] = −i

Ntr∑
j=1

3∑
α=1

√
nj,αAπ (n,j,α)

3∑
β,δ=1

εαβδS
β

0 Rδ
j . (C8)

Finally, we combine this finding with the Pauli matrices for the
central spin and obtain

T2[L(σmAn)] = −iσ0

2

Ntr∑
j=1

3∑
α,δ=1

εαmδ

√
nj,αRδ

jAπ (n,j,α)

(C9a)

for m ∈ {1,2,3} where we used that {σm,σβ} = 2δmβ if m,β ∈
{1,2,3}. For m = 0, we obtain

T2[L(σ0A
n)] = −i

2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδ

√
nj,ασβRδ

jAπ (n,j,α),

(C9b)
where we used {σ0,σβ} = 2σβ .

APPENDIX D: COMMUTATION AND
ANTICOMMUTATION MATRICES

The anticommutation of the operators of the central spin
with σk is described by the matrices Mk . Their matrix elements
are defined in Eq. (41). The matrices read

M1 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (D1a)

M2 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠, (D1b)

M3 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (D1c)

The commutation of the operators of the central spin with
σk is described by the matrices Kk . Their matrix elements are
defined in Eq. (42). The matrices read

K1 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 i

0 0 −i 0

⎞
⎟⎠, (D2a)

K2 =

⎛
⎜⎝

0 0 0 0
0 0 0 −i

0 0 0 0
0 i 0 0

⎞
⎟⎠, (D2b)

K3 =

⎛
⎜⎝

0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0

⎞
⎟⎠. (D2c)

APPENDIX E: DIAGONALIZATION OF Hch
eff

Instead of considering a semi-infinite chain with hopping
bosons as described by Hch

eff in Eq. (45), it can be advantageous
to restrict it to local processes only. Then the system resembles
a bath of bosons with flavor x,y,z connected to the central four-
dimensional impurity. This mapping is obtained by defining
vectors of the bosonic operators

aα := (a1,α, a2,α, . . . , aL,α)T, (E1a)

a†
α := (a†

1,α, a
†
2,α, . . . , a

†
L,α), (E1b)
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where aα is a column vector while a†
α is a row vector. With

these definitions and the tridiagonal matrix T from (17) the
chain Hamilton can be denoted concisely:

Hch
eff = i

2

∑
α,β,δ

εαβδMβ a†
δT aα. (E2)

The tridiagonal matrix T is real and symmetric so that it
can be diagonalized by a real orthogonal matrix Q,

D = Q†T Q, (E3)

yielding the diagonal matrix D, which has the eigenvalues εj

on its diagonal. Then the transformed vectors of annihilation
and creation operators dj,α and d

†
j,α are given by

dα := Q†aα, (E4a)

d†
α := a†

α Q. (E4b)

They allow us to express the Hamiltonian Hch
eff in an (almost)

diagonal form:

Hch
eff = i

2

∑
α,β,δ

εαβδMβ

Ntr∑
j=1

εj d
†
j,δdj,α. (E5)

The missing piece is the transformed Hamiltonian HCS
eff ,

which is obtained by inserting the inverses of Eqs. (E4)
into (44a):

HCS
eff = 1

2

∑
α

Kα

Ntr∑
j=1

Q1,j (dj,α + d
†
j,α), (E6)

where we used the fact that Q is real so that no complex
conjugation needs to be taken into account. For simplicity,
one may make all Q1,j � 0 by choosing the signs of the
dj,α appropriately. We highlight this fact because it allows
us to point out the relation to the spectral density approach
introduced in Ref. [56]. The exponential discretization of the
spectral densities relevant for the set of couplings Ji directly
provides energies εj and weights Wj . The square roots of the
weights determine the coefficients Q1,j = √

Wj .
Eventually, Eqs. (E5) and (E6) together define the complete

effective Hamiltonian for the central spin model with
large spin baths. This effective model comprises a central
four-dimensional impurity coupled to a surrounding bath of
bosonic sites j , where bosons of three flavors are exchanged
with one another.
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