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Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique
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Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including
harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze
the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional
crystals and show how to relate the quantities measured in such experiments with components of the third-order
conductivity tensor σ

(3)
αβγ δ(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum

theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge
carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare
our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and
experiment.
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I. INTRODUCTION

The nonlinear electrodynamics and optics of graphene
[1–3] have evolved into an active field of research in recent
years. It was predicted [4] in 2007 that, due to the linear
energy dispersion of graphene quasiparticles, this material
should demonstrate a strongly nonlinear electrodynamic re-
sponse. This prediction was confirmed in a number of ex-
periments in which the higher harmonics generation [5–9],
four-wave mixing [10–13], saturable absorption [14–19], the
Kerr effect [20–25], and other nonlinear phenomena [26–30]
in graphene have been observed. Theoretically, the higher
harmonics generation [31–40], nonlinear plasma-wave-related
effects [41–47], nonlinear cyclotron resonance [48,49], and
saturable absorption [50] have been studied. The influence
of the dielectric environment on the harmonics generation
from graphene has been discussed in Refs. [51] and [52],
the nonlinear effects in a gapped graphene in Ref. [53], a
nonlinear time-domain optical response has been considered in
Ref. [54], and other aspects of the nonlinear graphene response
have been discussed in Refs. [55–58]; see also review articles
[59,60]. Recently a quantum theory of all third-order nonlinear
effects [61–63] and a nonperturbative quasiclassical theory of
the nonlinear electrodynamic response of graphene [64] have
been developed.

The optical Kerr effect (OKE) is a nonlinear phenomenon
related to a change of the refractive index n(ω) = √

ε(ω) of a
bulk, three-dimensional (3D) material in the field of a strong
electromagnetic wave,

n(ω) = n0(ω) + n2(ω)I ; (1)

here ε(ω) is the dielectric function of the material, and ω

and I are the frequency and the intensity of the wave. The
nonlinear refractive index n2(ω) is related to the third-order
electric susceptibility χ (3)(ω,ω, − ω) of the three-dimensional
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(3D) medium,

[n0(ω) + n2(ω)I ]2 ≈ n2
0(ω) + 2n0(ω)n2(ω)I

= 1 + 4π

(
χ (1)(ω) + 3

4
χ (3)(ω,ω, − ω)|E|2

)
; (2)

here E is the electric field of the wave. The functions ε(ω),
n(ω), χ (ω) in Eqs. (1) and (2) are, in general, complex. In a
weakly absorbing medium the real part of n2(ω) is proportional
to the real part of χ (3)(ω,ω, − ω),

Re n2(ω) = 3π

n2
0c

Re χ (3)(ω,ω, − ω). (3)

The imaginary part of n2(ω) determines the nonlinear absorp-
tion and is related to the saturable absorption effect. In the more
general case of a nonvanishing absorption the relation between
the complex n2(ω) and χ (3)(ω,ω, − ω) is more complicated;
it can be found in Ref. [65]. Experimentally the nonlinear
refractive index n2 in 3D (bulk) materials (both its real and
imaginary parts) can be measured by the Z-scan technique
[66].

In graphene the optical Kerr and the saturable absorption
effects have been experimentally studied in several publi-
cations, see, e.g., Refs. [20–25] and [14–18], respectively.
Apart from the fundamental interest, these, as well as closely
related four-wave mixing phenomena, attract much attention
due to a number of their potential photonic and optoelectronic
applications, such as, for example, the mode locking of lasers
[15–17], frequency conversion [10–13], and all-optical signal
generation and processing [67–69].

To measure the OKE in graphene, different experimental
techniques have been used, including Z-scan [20–23] and the
optical heterodyne detection (OHD) scheme [23,25]. Results
of these works have been presented in terms of the effective
nonlinear refractive index n2 of graphene and are rather
contradictory. Not only does the absolute value of the measured
n2 differ by up to 3 orders of magnitude in different papers, but
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even about the sign of n2 there still exists no consensus; see a
discussion in Ref. [23].

This situation shows that a detailed analysis of experimental
methods of observing OKE in graphene and graphene-related
materials is highly desirable. Indeed, first of all it should be
emphasized that the nonlinear refractive index n2 and other
physical quantities [ε(ω),χ (ω)] introduced in Eqs. (1) and (2)
have a clear physical meaning only in bulk, 3D materials.
Their definition in the macroscopic electrodynamics [70]
implies a procedure of averaging electric fields over “phys-
ically infinitesimal” volume elements, which means that all
sample dimensions should substantially exceed the interatomic
distance. In graphene and other one- or few-atoms-thick “two-
dimensional” (2D) materials [71] the nonlinear refractive index
n2 cannot therefore be mathematically rigorously defined,
although it is commonly used in experimental papers. Instead,
the experimentally measured quantities should be related to
the surface (2D) third-order conductivity σ

(3)
αβγ δ(ω1,ω2,ω3),

which has a clear physical meaning and should therefore
be used in the nonlinear graphene (and other 2D crystals)
electrodynamics.

Second, the third conductivity σ
(3)
αβγ δ(ω1,ω2,ω3) is a fourth-

rank tensor which has several independent nonzero com-
ponents. It may happen that in different methods different
combinations of σ

(3)
αβγ δ components are measured. This addi-

tionally shows that the OKE in graphene cannot be adequately
described by a single scalar quantity n2.

Third, the measurements in Refs. [20–25] have been per-
formed at a few isolated frequencies (typically at the telecom-
munication wavelength λ � 1.55 μm) and in a nominally
undoped graphene, while the theory [62,63] predicts a rich
behavior of the third conductivity components as a function of
frequency ω and Fermi energy EF , with several resonances re-
lated to the one-, two-, and three-photon interband transitions.
Thus the question arises as to whether and how all the (nonzero)
components of σ

(3)
αβγ δ(ω1,ω2,ω3) can be extracted from the

OKE experiments and which dependencies (on the radiation
wavelength, doping, temperature, etc.) are to be expected to be
seen in experiments.

In this paper we perform a detailed theoretical analysis of
an OHD-OKE experiment in a 2D nonlinear material, derive
formulas relating the experimentally measured quantities to the
real and imaginary parts of its first- and third-order conductiv-
ities, and show how all the nonzero OKE-relevant components
of the tensor σ

(3)
αβγ δ(ω1,ω2,ω3) can be extracted from the OHD-

OKE measurements. Within the model of σ
(3)
αβγ δ(ω1,ω2,ω3)

of graphene derived in Refs. [62] and [63] we analyze its
theoretically expected OHD-OKE response in dependence of
frequency, Fermi energy, temperature, relaxation rate, and
ellipticity of the incident light.

II. ANALYSIS OF THE OHD-OKE EXPERIMENT:
GENERAL THEORY

For simplicity, we will consider a single graphene layer
lying in the plane z = 0, without any substrate. The influence
of different types of substrates on the Kerr response is briefly
discussed in Sec. IV.

A. Which σ
(3)
αβγ δ components are relevant for OKE?

In general, the third-order nonlinear response of graphene is
determined by the fourth-rank tensor σ

(3)
αβγ δ(ω1,ω2,ω3) which

has eight (out of sixteen) nonzero complex-valued components
depending on three input frequenciesω1,ω2, andω3. The tensor
σ

(3)
αβγ δ(ω1,ω2,ω3) satisfies certain symmetry relations [62,63],

in particular, simultaneous permutations of the indexes β, γ ,
δ, and the corresponding arguments ω1, ω2, ω3 do not change
it, e.g.,

σ
(3)
αβγ δ(ω1,ω2,ω3) = σ

(3)
αγβδ(ω2,ω1,ω3). (4)

Three of the eight nonzero components of the tensor σ
(3)
αβγ δ are

independent,

σ (3)
xxyy(ω1,ω2,ω3) = σ (3)

yyxx(ω1,ω2,ω3),

σ (3)
xyxy(ω1,ω2,ω3) = σ (3)

yxyx(ω1,ω2,ω3), (5)

σ (3)
xyyx(ω1,ω2,ω3) = σ (3)

yxxy(ω1,ω2,ω3),

and the component σ (3)
xxxx(ω1,ω2,ω3) = σ (3)

yyyy(ω1,ω2,ω3) is the
sum of the other three,

σ (3)
xxxx(ω1,ω2,ω3) = σ (3)

xxyy(ω1,ω2,ω3) + σ (3)
xyxy(ω1,ω2,ω3)

+ σ (3)
xyyx(ω1,ω2,ω3). (6)

The relations (4)–(6) are valid for all third-order nonlinear
effects. The OKE is a special case determined by the functions
σ

(3)
αβγ δ(ω,ω, − ω). In this case only two nonzero components

are independent, since according to (4),

σ (3)
xxyy(ω,ω, − ω) = σ (3)

xyxy(ω,ω, − ω). (7)

We will express all our results via two independent components
σ (3)

xxxx(ω,ω, − ω) and σ (3)
xxyy(ω,ω, − ω) of the σ (3) tensor. The

third nonzero component of the σ (3) tensor can then be found
from the relation

σ (3)
xyyx(ω,ω, − ω) = σ (3)

xxxx(ω,ω, − ω) − 2σ (3)
xxyy(ω,ω, − ω).

(8)

Below we aim to find the relations between the experimentally
measured quantities and the real and imaginary parts of the
complex functions σ (3)

xxxx(ω,ω, − ω) and σ (3)
xxyy(ω,ω, − ω).

B. Derivation of the main formulas

In a typical OHD-OKE experiment, see, e.g., Ref. [23],
two different waves, the pump wave (P ) and the probe wave
(which we will call “signal,” S, to designate the two waves by
short different subscripts), are incident on graphene lying in
the plane z = 0, Fig. 1(a). The pump (P ) wave is incident on
the graphene plane under the angle β and is linearly polarized
in the x direction,

Eext
P (y,z,t) = EP ei(ωP /c)y sin β

2

(
1

0

)
ei(ωP /c)z cos β−iωP t + c.c.

(9)
The probe (S) wave is normally incident on the graphene plane
and is linearly polarized under the angle φ to the polarization
of the P wave. The S wave can also be elliptically polarized
with the ratio of the short to long axes determined by tan θ ,
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FIG. 1. The geometry of the OHD measurements setup used in Ref. [23]: (a) The pump wave P is incident upon the graphene layer lying at
the plane z = 0 and is linearly polarized in the x-direction. The incidence angle is β. (b) The polarization plane of the probe signal S is rotated
by the angle φ relative to the x axis. The probe wave S can be elliptically polarized with the ellipticity determined by the parameter θ . The
dashed line in (b) shows the transmission axis of the analyzer placed between the graphene layer and the detector.

see Fig. 1(b). The field of the incident probe wave can thus be
written as

Eext
S (z,t) = ESe

iψ

2

(
cos φeiθ

sin φe−iθ

)
eiωSz/c−iωS t + c.c., (10)

where the amplitudes EP and ES are assumed to be real and the
phase angle ψ takes into account a possible phase shift between
the pump and probe waves. If θ > 0 the form (10) corresponds
to the ES vector rotating in the counterclockwise direction
if to look in the wave propagation (positive z) direction. The
frequencies of the pump and probe waves were the same in the
OKE experiment, ωP = ωS = ω.

The fields Eext
P and Eext

S in Eqs. (9) and (10) are the fields of
the external waves incident on the graphene layer. The fields
actually acting on graphene electrons at z = 0 differ from the
external fields and can be found by solving Maxwell equations
in the linear order. The result for the fields at z = 0 is

EP (y,0,t) = EP ei(ω/c)y sin β

2
(

1 + 2πσ
(1)
ω

c cos β

)(1

0

)
e−iωt + c.c., (11)

ES(0,t) = ESe
iψ

2
(

1 + 2πσ
(1)
ω

c

)( cos φeiθ

sin φe−iθ

)
e−iωt + c.c., (12)

where σ (1)
ω is the linear (first-order) conductivity of graphene

[72] and the factors (1 + 2πσ (1)
ω /c) in the denominators are due

to the self-consistent screening effect. The linear conductivity
σ (1)

ω is in general a complex function; its real part is responsible
for the linear absorption in graphene.

The fields (11)–(12) should then be substituted in the third-
order current j (3)

α (t),

j (3)
α (t) =

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3σ

(3)
αβγ δ(ω1,ω2,ω3)

×Eβ
ω1

Eγ
ω2

Eδ
ω3

e−i(ω1+ω2+ω3)t , (13)

where Eβ
ω1

, E
γ
ω2 , Eδ

ω3
are Fourier components of the fields

(11)–(12) and σ
(3)
αβγ δ(ω1,ω2,ω3) is the fourth-rank conductivity

tensor of graphene calculated in Refs. [62] and [63], see, e.g.,

Eqs. (59)–(78) in [63]. Notice that by ignoring the wave-vector
arguments q1, q2, etc., in the function σ

(3)
αβγ δ(ω1,ω2,ω3) we

assume that the external field is approximately uniform in the
plane of the 2D layer and the nonlocal effects in the third order
can be ignored. This implies that the angle β in Eqs. (9) and
(11) should be sufficiently small. The required smallness of β is
quantitatively determined by the condition (ω/ckF ) sin β � 1,
where kF is the Fermi wave vector. This condition is usually
satisfied in the experiments.

Substituting the Fourier components of the fields (11) and
(12) into the third-order current (13) we get a sum of a large
number of terms. Taking into account only those that lead to
the wave propagating in the z direction toward the detector
(i.e., only the y-independent contributions) we get

j (3)
unif (t) = 3

{
2

(
σ (3)

xxxx(ω,ω, − ω)ExS

σ (3)
yyxx(ω,ω, − ω)EyS

)
|ExP |2

+
(

σ (3)
xxxx(ω,ω, − ω)ExS

2σ (3)
yyxx(ω,ω, − ω)EyS

)
|ExS |2

+
(

σ (3)
xyyx(ω,ω, − ω)E�

xSE
2
yS

σ (3)
yxxy(ω,ω, − ω)E2

xSE
�
yS

)

+
(

2σ (3)
xxyy(ω,ω, − ω)ExS

σ (3)
yyyy(ω,ω, − ω)EyS

)
|EyS |2

}
e−iωt , (14)

where we have omitted the complex conjugate terms,ExP ,ExS ,
and EyS are the complex field components from Eqs. (11) and
(12), and the subscript “unif” reminds us that only the uniform
(y-independent) contributions to the third-order current are
included in (14). By calculating the electric field of the wave
emitted by the oscillating third-order current (14),

E(3)
unif (t) = − 2π/c

1 + 2πσ
(1)
ω /c

j (3)
unif (t), (15)

and adding it to the field (12) of the linear wave passing through
the graphene layer we obtain the total electric field of the
wave (including the first and third order) passing through the
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graphene layer and propagating towards the detector:

E(1)+(3)
unif (z,t) = ESe

iωz/c−iωt+iψ

2
(

1 + 2πσ
(1)
ω

c

)
⎧⎪⎨⎪⎩
(

cos φeiθ

sin φe−iθ

)
−

3π
2c

1 + 2πσ
(1)
ω

c

⎡⎢⎣2

(
σ (3)

xxxx(ω,ω, − ω) cos φeiθ

σ (3)
yyxx(ω,ω, − ω) sin φe−iθ

)
|EP |2∣∣∣1 + 2πσ

(1)
ω

c cos β

∣∣∣2
+
(

cos φeiθ
(
σ (3)

xxxx(ω,ω, − ω) + sin2 φσ (3)
xyyx(ω,ω, − ω)

(
e−i4θ − 1

))
sin φe−iθ

(
σ (3)

xxxx(ω,ω, − ω) + cos2 φσ (3)
xyyx(ω,ω, − ω)

(
ei4θ − 1

))) |ES |2∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2
⎤⎥⎦
⎫⎪⎬⎪⎭. (16)

Calculating now the projection of the field (16) on the transmission axis of the analyzer we get the field of the wave registered by
the detector:

Edetect(t) = ES sin φ cos φ(
1 + 2πσ

(1)
ω

c

) eiωz/c−iωt+iψ

⎧⎪⎨⎪⎩−i sin θ

∣∣∣∣∣∣∣term A + |EP |2 3π

2c

(
σ (3)

xxxx(ω,ω, − ω)eiθ − σ (3)
xxyy(ω,ω, − ω)e−iθ

)(
1 + 2πσ

(1)
ω

c

)∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
∣∣∣∣∣∣∣
term B

+
3π
4c

|ES |2(
1 + 2πσ

(1)
ω

c

)∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2
[(

σ (3)
xxxx(ω,ω, − ω)eiθ − 2σ (3)

xxyy(ω,ω, − ω)e−iθ − σ (3)
xyyx(ω,ω, − ω)ei3θ

)
cos2 φ

− (σ (3)
xxxx(ω,ω, − ω)e−iθ − 2σ (3)

xxyy(ω,ω, − ω)eiθ − σ (3)
xyyx(ω,ω, − ω)e−i3θ

)
sin2 φ

]∣∣
term C

⎫⎪⎬⎪⎭. (17)

It contains three terms, the linear one proportional to ES (the
term A) and two nonlinear terms proportional to ES |EP |2 and
ES |ES |2 (the terms B and C, respectively). The intensity of
the wave entering the detector then contains six contributions,

Idetect = c

8π
|Edetect(t)|2 =

VI∑
J=I

I J
detect, (18)

which we write down assuming that φ = π/4 (see Ref. [23]).
The first term,

I I
detect = IS

sin2 θ

4
∣∣∣1 + 2πσ

(1)
ω

c

∣∣∣2 , (19)

results from the squared term A in (17) and is the linear one.
It is just the probe (S) wave which reaches the detector if
the ellipticity of the wave θ is not zero. Here and below the
quantities

IP = c

8π
|EP |2, IS = c

8π
|ES |2 (20)

are the intensities of the incident pump and probe (signal)
waves.

All other terms contain components of the third-order
conductivity tensor. The second one,

I II
detect = 6π2

c2

ISIP sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2 Im

(
U (ω,θ )

1 + 2πσ
(1)
ω

c

)
,

(21)

is due to the interference of the A and B terms in Eq. (17)
and contains a certain linear combination of σ (3)

xxxx and σ (3)
xxyy

components, see Eq. (26). It is of the second order (proportional
to ISIP ) and is finite if the ellipticity θ is not zero. The third

term,

I III
detect = 6π2

c2

I 2
S sin2 θ∣∣∣1 + 2πσ

(1)
ω

c

∣∣∣4 Re

(
V(ω,θ )

1 + 2πσ
(1)
ω

c

)
, (22)

is due to the interference of the A and C terms in Eq. (17). It
is also of the second order (proportional to I 2

S ) and disappears
at θ = 0. It contains a different linear combination of the same
components of the σ (3) tensor, see Eq. (27).

The remaining three terms are of the third order. The fourth
and fifth ones are determined by the squared terms B and C in
Eq. (17):

I IV
detect = 36π4

c4
ISI

2
P

|U (ω,θ )|2∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣4∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣4 , (23)

IV
detect = 36π4

c4
I 3
S sin2 θ

|V(ω,θ )|2∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣8 ; (24)

the term IV remains finite in the limit θ = 0 (at the linear
polarization of the probe wave). The last, sixth term is due to
the interference of the B and C terms in Eq. (17),

IVI
detect = 72π4

c4

I 2
S IP sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣6∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2 Im(U (ω,θ )V�(ω,θ ));

(25)

the star means the complex conjugate.
The analytical formulas (21)–(25) representing five nonlin-

ear contributions II–VI is the main result of this work valid for
any 2D material. Apart from the parameter 2πσ (1)

ω /c which
can be determined from the linear graphene response, two
combinations of the components of σ

(3)
αβγ δ ,

U (ω,θ ) = −[σ (3)
xxxx(ω,ω, − ω)eiθ − σ (3)

xxyy(ω,ω, − ω)e−iθ
]

(26)
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TABLE I. Modulation frequencies for different intensity contributions to the detected signal. The last column shows numerical values of
the frequencies for the data from Ref. [23] (fP = 5fw = 205 Hz and fS = 6fw = 246 Hz with fw = 41 Hz). Underlined are the frequencies
which occur only once in the table.

Contribution Proportional to Modulation frequency In Ref. [23] (in Hz)

I IS fS 246
II ISIP fS , fP , fS ± fP 246, 205, 451, 41
III I 2

S fS , 2fS 246, 492
IV ISI

2
P fS , fP , fS ± fP , 2fP , fS ± 2fP 246, 205, 451, 41, 410, 656, 164

V I 3
S fS , 2fS , 3fS 246, 492, 738

VI I 2
S IP fS , fP , 2fS , fS ± fP , 2fS ± fP 246, 205, 492, 451, 41, 697, 287

and

V(ω,θ ) = σ (3)
xxxx(ω,ω, − ω) cos 2θ

−2σ (3)
xxyy(ω,ω, − ω)(1 + cos 2θ ), (27)

enter these formulas. Independently measuring the contri-
butions II–VI, one can determine the real and imaginary
parts of U and V , and hence, the real and imaginary parts
of σ (3)

xxxx(ω,ω, − ω) and σ (3)
xxyy(ω,ω, − ω). The components

σ (3)
xyyx(ω,ω, − ω) and σ (3)

xyxy(ω,ω, − ω) can then be found using
Eqs. (8) and (7).

C. Measurements at different modulation frequencies

In order to independently measure contributions II–VI to
the detected signal, one can use an elegant method employed
in Ref. [23]. In that experiment the intensities of the inci-
dent pump and probe waves were modulated with different
frequencies, fP and fS (in Ref. [23] fP = 5fw = 205 Hz
and fS = 6fw = 246 Hz with fw = 41 Hz). Assuming for
simplicity that the modulation was (or can be made) sinusoidal,
we write the pump and probe signal amplitudes as

IP = I 0
P [1 + αP cos(2πfP t)], IS = I 0

S [1 + αS cos(2πfSt)],
(28)

where αP,S are the modulation depths. The output signal
registered by the detector then contains a number of different
harmonics listed in Table I. One sees that all third-order terms,
IV, V, and VI, can be uniquely measured at one of the output
modulation frequencies, i.e., term IV at one of the frequencies
2fP , fS + 2fP , or fS − 2fP , term V at frequency 3fS , and
term VI at one of the frequencies 2fS + fP or 2fS − fP .

For other contributions the measurements are not so un-
ambiguous. For example, by measuring the output signal
at the sum or difference frequency fS ± fP one gets the
contributions from terms II, IV, and VI. The signal measured
at the modulation frequency 2fS contains contributions from
terms III, V, and VI. In these cases one should use additional
dependencies, e.g., on the ellipticity θ or on the intensities IP

or IS , in order to unambiguously extract terms II–VI from the
output signal.

D. What was measured in Ref. [23]?

A detailed study of the OKE using the OHD technique was
performed in Ref. [23]. In that paper the output signal was
detected at the sum of the modulation frequencies fS + fP ,
and the authors presented the experimentally measured wave
intensity as a sum of two contributions,

I
fS+fP

det,exp (θ ) =
∣∣∣∣2π

λ

(
neff

2 + iκeff
2

)
Leff

∣∣∣∣2I 2
P IS

+ sin θ
2π

λ
neff

2 LeffIP IS, (29)

where the first (designated as “homo” in [23]) term is pro-
portional to I 2

P IS and was assumed to be θ independent and
the second (designated as “hetero”) term is proportional to
θIP IS at θ � 1; here λ = 1600 nm is the radiation wavelength,
Leff � 0.33 nm is the effective graphene thickness, and we have
supplied quantities which are poorly defined in 2D systems (see
Sec. I) by the superscript “eff.” Now, combining all our terms
(II, IV, and VI) which contribute to the output signal at the
modulation frequency fS + fP we obtain

I
fS+fP

det,th (ω,θ ) = I 0
S I 0

P αP αS

⎛⎜⎝1

2

6π2

c2

sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
(

U (ω,θ )

1 + 2πσ
(1)
ω

c

)′′
+ 36π4

c4
I 0
P

|U (ω,θ )|2∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣4∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣4
+ 72π4

c4
I 0
S

sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣6∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2 (U (ω,θ )V�(ω,θ ))′′

⎞⎟⎠. (30)

The first term in brackets here evidently corresponds to the “hetero” contribution in (29), the second term to the “homo”
contribution, and the third one was ignored in Ref. [23] (in the experiment IS � IP ). Notice also that in the theory the “homo”
term is θ dependent and the θ dependence of the “hetero” term is more complicated than just � sin θ , due to the function U (ω,θ );
see further discussion of this issue in Sec. III B.

165424-5



N. A. SAVOSTIANOVA AND S. A. MIKHAILOV PHYSICAL REVIEW B 97, 165424 (2018)

Further, in Ref. [23] the authors calculated the difference of the measured intensity (29) at +θ and −θ and got the quantity
proportional to neff

2 :

�θI
fS+fP

det,exp = sin θ
4π

λ
neff

2 LeffIP IS. (31)

Taking the same difference of the theoretically found intensity (30) we obtain

�θI
fS+fP

det,th (ω,θ ) = [�θI
fS+fP

det,th (ω,θ )
]

II + [�θI
fS+fP

det,th (ω,θ )
]

IV+VI, (32)

where [
�θI

fS+fP

det,th (ω,θ )
]

II = −6π2

c2

αP αSI
0
P I 0

S sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
(

σ (3)
xxxx(ω,ω, − ω) − σ (3)

xxyy(ω,ω, − ω)

1 + 2πσ
(1)
ω

c

)′′
, (33)

and

[
�θI

fS+fP

det,th (ω,θ )
]

IV+VI
= −

(
12π2

c2

)2
αP αSI

0
P I 0

S sin θ∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣4∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
⎛⎜⎝ 2I 0

P∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2 + 3I 0
S∣∣∣1 + 2πσ

(1)
ω

c

∣∣∣2
⎞⎟⎠

× [(σ (3)
xxxx(ω,ω, − ω)

)′(
σ (3)

xxyy(ω,ω, − ω)
)′′ − (σ (3)

xxxx(ω,ω, − ω)
)′′(

σ (3)
xxyy(ω,ω, − ω)

)′]
. (34)

The quantity measured in Ref. [23] thus consists of the term (33) resulting from the contribution II and two terms (34) resulting
from contributions IV and VI. All three terms are proportional to sin θ ≈ θ at small values of the ellipticity θ . As will be seen
below (Sec. III C), in different frequency ranges and at different wave intensities the contributions (34) can be both smaller than
(33), as was assumed in Ref. [23], and comparable with or even larger than (33). Therefore in general the full result (32) should
be used when the theory is compared with experiment.

If we assume now that the terms IV and VI [Eq. (34)] are small as compared to term II [Eq. (33)] (exact conditions for this will
be established below), then the right-hand sides of Eqs. (31) and (33) should correspond to each other. Then we get the relation
between effective quantities neff

2 and Leff and the components of the third-order conductivity tensor:

neff
2 Leff ⇔ −6π2

ωc

1∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
(

σ (3)
xxxx(ω,ω, − ω) − σ (3)

xxyy(ω,ω, − ω)

1 + 2πσ
(1)
ω

c

)′′
; (35)

we have put here αP = αS � 1. The real part of the same quantity determines the effective nonlinear absorption coefficient κeff
2 :

κeff
2 Leff ⇔ 6π2

ωc

1∣∣∣1 + 2πσ
(1)
ω

c

∣∣∣2∣∣∣1 + 2πσ
(1)
ω

c cos β

∣∣∣2
(

σ (3)
xxxx(ω,ω, − ω) − σ (3)

xxyy(ω,ω, − ω)

1 + 2πσ
(1)
ω

c

)′
. (36)

The squared modulus |neff
2 + iκeff

2 |2 can be obtained by mea-
suring the intensity of the “homo” term at the linear polariza-
tion of the incident probe wave; compare Eqs. (29) and (30) at
θ = 0.

The factors |2πσ (1)
ω /c| � 1 in the denominators of formulas

(35)–(36) are often small as compared to unity, e.g., at high
(IR, optical) frequencies. One sees that, if to neglect them,
the complex effective nonlinear refractive index is determined
by the difference σ (3)

xxxx(ω,ω, − ω) − σ (3)
xxyy(ω,ω, − ω). It is

important to understand that this statement is valid only for the
OHD-OKE experiment. The quantities neff

2 and κeff
2 extracted

from a different, e.g., Z-scan experiment, will be proportional
to a different combination of the σ

(3)
αβγ δ components [in the

simplest case to σ (3)
xxxx(ω,ω, − ω)]; therefore a direct compar-

ison of results of the Z-scan and OHD-OKE measurements is
inapplicable.

III. ANALYSIS OF RESULTS USING MODEL
EXPRESSIONS FOR THE THIRD CONDUCTIVITY

The relations derived in Sec. II are general and do not
use any specific model of the third conductivity tensor. Now
we analyze some of the key formulas obtained above as a
function of frequency, doping, temperature, etc. using the
model of σ

(3)
αβγ δ(ω,ω, − ω) developed in Refs. [62] and [63].

For the linear and third-order conductivities at temperature
T = 0 we use formulas of Ref. [63] [Eqs. (44)–(48) and (59)–
(78), respectively]. For the finite temperature conductivities
σ (1)

ω (μ,T ) and σ
(3)
αβγ δ(ω1,ω2,ω3; μ,T ) we use the relation [73]

σ (1)
ω (μ,T ) = 1

4T

∫ ∞

−∞

σ (1)
ω (EF ,0)

cosh2
(

μ−EF

2T

)dEF , (37)
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FIG. 2. The function ηIV(ω) defined in Eq. (38) at (a) EF = 0.2 eV, � = h̄γ = 2 meV, θ = 0◦ and different temperatures, (b) EF = 0.2
eV, θ = 0◦, T = 0 K (thin curves), and T = 300 K (thick curves), and different values of �, (c) � = 2 meV, θ = 0◦, T = 0 K (thin curves),
and T = 300 K (thick curves), and different values of Fermi energy, (d) EF = 0.2 eV, � = 2 meV, T = 300 K, and different ellipticity
parameters θ .

and similarly for σ
(3)
αβγ δ(ω1,ω2,ω3; μ,T ); here μ is the chemical

potential at T 
= 0.

A. Linear polarization, contribution IV

First we analyze the different contributions to the output
wave intensity (21)–(25) at the ellipticity parameter θ = 0,
i.e., when the incident probe (S) wave is linearly polarized. In
this case all terms except one disappear and we have for the
contribution IV (at θ = 0)

I IV
detect ≡ ηIV(ω)ISI

2
P

= 36π4

c4
ISI

2
P

∣∣σ (3)
xxxx(ω,ω, − ω) − σ (3)

xxyy(ω,ω, − ω)
∣∣2∣∣1 + 2πσ

(1)
ω

c

∣∣4∣∣1 + 2πσ
(1)
ω

c cos β

∣∣4 .

(38)

Figures 2(a)–2(c) illustrate the frequency, Fermi energy, re-
laxation rate, and temperature dependencies of the efficiency
parameter ηIV(ω) defined by the first equality in Eq. (38). At
low temperatures it is very small at h̄ω � 2EF , has a sharp
peak at h̄ω = 2EF , and then decreases with frequency. When
temperature grows [Fig. 2(a)], the peak becomes smoother and
broader and the response function ηIV(ω) strongly increases in
the low-frequency regime h̄ω � 2EF . At higher frequencies,
h̄ω � 2EF , in particular at the telecommunication wavelength
λ � 1550–1600 nm (h̄ω � 0.75 eV) used in [23], the function

ηIV(ω) weakly depends on temperature and Fermi energy
[Figs. 2(a) and 2(c)] but is very strongly influenced by the
scattering rate parameter � [Fig. 2(b)]. When � changes
from 5 meV down to 1 meV the value of ηIV(ω) increases
(at h̄ω � 0.75 eV) by almost 3 orders of magnitude, from
∼10−19 (cm2/W)2 up to ∼6.2×10−17 (cm2/W)2. The absolute
value of the intensity of the contribution IV is rather high.
If we assume that IP � 2×108 W/cm2, IS � 107 W/cm2

(typical values in Ref. [23]), and ηIV(ω) � 4×10−18 (cm2/W)2

(corresponding to h̄ω � 0.75 eV and � = 2 meV), we obtain
I IV

detect � 1.6×106 W/cm2, i.e., about 0.8% of the pump power
density and �16% of the probe signal power density.

B. Elliptic polarization, contributions II–VI

Now we consider the contributions II–VI at a finite ellip-
ticity θ 
= 0. Figure 2(d) illustrates the growth of ηIV(ω) with
θ . Notice that this growth is faster than linear; this will be
additionally discussed below. Figures 3(a) and 3(b) exhibit the
second-order response functions

ηII(ω,θ ) ≡ I II
detect

ISIP

and ηIII(ω,θ ) ≡ I III
detect

I 2
S

, (39)

defined using Eqs. (21) and (22), at EF = 0.2 eV, � = 2 meV,
T = 300 K, and different values of the ellipticity parameter θ .
Both functions have a shape similar to each other and to ηIV at
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FIG. 3. The functions (a) ηII and (b) ηIII, defined in Eq. (39), at EF = 0.2 eV, h̄γ = 2 meV, T = 300 K, and different values of the ellipticity
parameter θ .

θ = 0, see Fig. 2(d). The absolute values of ηII and ηIII are also
quite close: the former function is only about 3.5 times larger
than the latter (compare the values at θ = 10◦). At first glance
this seems to be rather unexpected, since the formulas (21) and
(22) show that ηII is proportional to sin θ while ηIII to sin2 θ ;
therefore one had to expect ηII � ηIII at small θ . Moreover, as
seen from Eqs. (21) and (22), ηIII is an even function of θ , while
ηII should be odd or at least should contain an essential odd
contribution. Figure 3(a), however, shows very close curves
for positive and negative θ ’s, especially at h̄ω > 2EF . How do
we explain this weak sensitivity of ηII to the polarization sense
of the probe wave?

Let us take a closer look at the functions ηII and ηIII.
At large frequencies, h̄ω � 2EF , the factor 2πσ (1)

ω /c is real
and small as compared to unity, 2πσ (1)

ω /c = πα/2 ≈ 0.011,
where α ≈ 1/137 is the fine-structure constant. The frequency
dependencies of ηII and ηIII are therefore mainly determined
by Im U (ω,θ ) and Re V(ω,θ ), respectively, where U (ω,θ ) and
V(ω,θ ) are defined in Eqs. (26) and (27). For these functions
we have

Im U (ω,θ ) =
− cos θ Im

[
σ (3)

xxxx(ω,ω, − ω) − σ (3)
xxyy(ω,ω, − ω)

]
− sin θ Re

[
σ (3)

xxxx(ω,ω, − ω) + σ (3)
xxyy(ω,ω, − ω)

]
, (40)

Re V(ω,θ ) = cos 2θ Re
[
σ (3)

xxxx(ω,ω, − ω)
]

− 2(1 + cos 2θ ) Re
[
σ (3)

xxyy(ω,ω, − ω)
]
. (41)

Figures 4(a) and 4(b) show the real and imaginary
parts of the functions σ (3)

xxxx(ω,ω, − ω) and σ (3)
xxyy(ω,ω, −

ω) which enter Re V(ω,θ ), Eq. (41). At high frequen-
cies h̄ω > 2EF the imaginary parts of these functions are
negligibly small as compared to their real parts, and their
real parts differ approximately by a factor of 3. Simi-
larly, Figs 4(c) and 4(d) exhibit the real part of the sum
(σ (3)

xxxx(ω,ω, − ω) + σ (3)
xxyy(ω,ω, − ω)) and the imaginary part

of the difference (σ (3)
xxxx(ω,ω, − ω) − σ (3)

xxyy(ω,ω, − ω)) which
determine Im U (ω,θ ), see Eq. (40). Again, at high frequencies
the real part of the sum is orders of magnitude larger than
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FIG. 5. The functions (a) ηV and (b) ηVI defined in Eq. (42), at EF = 0.2 eV, h̄γ = 2 meV, T = 300 K, and different values of the ellipticity
parameter θ .

the imaginary part of the difference. That is, the term in Im
U (ω,θ ) proportional to cos θ is negligibly small as compared
to the term proportional to sin θ , even at θ � 1 − 5◦. Since
ηII is proportional to sin θ [U (ω,θ )]′′, this explains the weak
sensitivity of ηII to the sign of θ and a similar order of
magnitude of ηII and ηIII. This also explains the faster than
linear (approximately quadratic) θ dependence of ηIV(ω,θ ) �
|U (ω,θ )|2 shown in Fig. 2(d).

Let us compare the absolute values of the intensities of the
contributions II, III with that of the contribution IV. Assume
again that IP � 2×108 W/cm2, IS � 107 W/cm2, and take
for ηII,III(ω) the values corresponding to h̄ω � 0.75 eV, EF =
0.2 eV, � = 2 meV, T = 300 K, and θ = 5◦. We obtain ηII �
3×10−11 cm2/W and ηIII � 7.5×10−12 cm2/W. This gives
I II

detect � 6×104 W/cm2 and I III
detect � 7.5×102 W/cm2, as

compared to I IV
detect � 1.6×106 W/cm2 estimated in Sec. III A.

These numbers are still sufficiently high to be experimentally
observed, but the “second-order” terms II and III turn out
to be smaller than the “third-order” term IV under the same
conditions.

Figures 5(a) and 5(b) exhibit the third-order response
functions

ηV(ω,θ ) ≡ IV
detect

I 3
S

and ηVI(ω,θ ) ≡ IVI
detect

I 2
S IP

, (42)

defined according to Eqs. (24) and (25). Their frequency
dependencies are similar to other contributions. Their absolute
values at h̄ω � 0.75 eV, EF = 0.2 eV, � = 2 meV, T =
300 K, and θ = 5◦ are ηV(ω,θ ) � 7.8×10−21 (cm2/W)2 and
ηVI(ω,θ ) � 6×10−20 (cm2/W)2, which gives (again at IP �
2×108 W/cm2 and IS � 107 W/cm2) IV

detect � 7.8 W/cm2 and
IVI

detect � 1.2×103 W/cm2.
In Table II we summarize the estimates obtained for dif-

ferent contributions to Idetect on the basis of the σ (3) model
of Refs. [62] and [63]. The contribution IV remains the
largest, followed by terms II and VI. The smallest contribution
is V, since it is proportional to I 3

S . By varying the input
intensities, e.g., making IS stronger than IP , one could modify
the mutual relations between terms II–VI. Notice that the
calculated intensities of all five nonlinear contributions II–VI,
Table II, remain much smaller than the intensity of the incident

pump wave. This shows that the third-order response theory
described by the tensor σ

(3)
αβγ δ(ω1,ω2,ω3) is still valid at the

relatively large intensity of radiation ∼200 MW/cm2 which
was used in Ref. [23].

C. Comparison with experiment

Now consider the quantities that have been measured in
Ref. [23] and discussed in Sec. II D, Eqs. (32)–(34), and quan-
titatively compare our results with the experimental data. First,
we check under which conditions the contributions IV and VI,
Eq. (34), are small as compared to the term II, Eq. (33). Figure 6
shows the ratios IV/II and VI/II as a function of frequency at
a typical set of input parameters. One sees that at h̄ω � 0.6
eV (h̄ω � 3EF ) contributions IV and VI are small indeed
as compared to II (in the experiment [23] h̄ω � 0.75 eV).
Around photon energy h̄ω � 0.4 eV, which corresponds to the
interband resonance at h̄ω = 2EF , and at IP � 500 MW/cm2

(the power density used in Ref. [23]), contributions IV and
VI may achieve 50% and 10% of II, respectively, but at lower
intensities IP � 100 MW/cm2 they still can be neglected. At
even lower photon energies (� EF = 0.2 eV) contributions
IV and VI become dominant. The analysis of Ref. [23] which
led to the simple expression (31), although valid at near-IR
frequencies, would not be correct at frequencies h̄ω � 2EF .

Now assume that the conditions under which the contribu-
tions IV and VI can be neglected are satisfied. Then the effective
nonlinear refractive index neff

2 and the effective nonlinear
absorption coefficient κeff

2 are determined by formulas (35) and
(36), respectively. These formulas can be simplified further
if we neglect the factors ∼2πσ (1)

ω /c in the denominators of

TABLE II. Estimates of different contributions I
II,III,IV,V,VI
detect (in

W/cm2) to the electromagnetic wave intensity registered by the
detector at h̄ω � 0.75 eV, EF = 0.2 eV, � = 2 meV, θ = 5◦,
IP � 2×108 W/cm2, and IS � 107 W/cm2.

II III IV V VI

6×104 7.5×102 1.6×106 7.8 1.2×103
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and IP = 100 MW/cm2. For the modulation depths in (33) and (34)
the numbers αP = αS = 1 are taken.

Eqs. (35) and (36). Then one gets

neff
2 + iκeff

2

⇔̃ i
6π2

ωcLeff

[
σ (3)

xxxx(ω,ω,− ω) − σ (3)
xxyy(ω,ω,− ω)

]
. (43)

Figure 7(a) shows the frequency dependence of neff
2 and κeff

2 at
a typical set of input parameters. Both quantities are negative
in the shown interval of photon energies, therefore plotted are
−neff

2 and −κeff
2 , and exhibited are curves calculated according

to Eqs. (35) and (36) (the full formulas) and according to
Eq. (43) (the simplified formula). The difference between the
full and simplified formulas for κeff

2 is small. For neff
2 the

difference is quite noticeable, for example, at h̄ω � 0.77 eV

the full and simplified formulas give neff
2 ≈ −3×10−9 cm2/W

and neff
2 ≈ −4×10−9 cm2/W, respectively.

The absolute value of effective κeff
2 is several orders

of magnitude larger than that of neff
2 , e.g., |κeff

2 | ≈
1.43×10−6 cm2/W and |neff

2 | ≈ 3×10−9 cm2/W at 0.77 eV,
|κeff

2 |/|neff
2 | ≈ 477. At lower frequencies corresponding

to the interband resonance at h̄ω � 2EF = 0.4 eV the
absolute value of neff

2 is 2 orders of magnitude larger than
at the telecommunication frequency ∼0.77 eV. (One should
remember, however, that around the interband resonance the
terms IV and VI may become essential and should in general
be taken into account.) The negative sign of κeff

2 corresponds to
the absorption saturation which was experimentally observed
in graphene [14,16,17,19] and topological insulators [69]. The
negative sign of neff

2 implies a self-defocusing nonlinearity
and was observed in Refs. [23] and [24].

In Ref. [23] the value of neff
2 = −1.1×10−9 cm2/W was

extracted from the OHD-OKE experiment at λ = 1600 nm for
monolayer graphene. The quantity neff

2 ≈ −3×10−9 cm2/W
which one gets from Fig. 7(a) at EF = 0.2 eV, T = 300 K, and
� = 2 meV is a bit larger in absolute value. In Fig. 7(b) we plot
several theoretical curves for neff

2 varying the Fermi energy,
temperature, and the relaxation rate. One sees that changing
the Fermi energy (green dashed curve) or temperature (blue
dot-dashed curve) does not influence this number substantially,
in accordance with our discussion in Sec. III A. But by slightly
changing the effective relaxation rate � → 5 meV one can
get better agreement with the experiment, neff

2 → −1.37×
10−9 cm2/W. Thus the theory and experiment [23] agree quite
well with each other, both in terms of the sign and the absolute
values of the measured nonlinear parameters of graphene.

The value of neff
2 extracted from the Z-scan measurement

in Ref. [23] (neff
2 = −2×10−8 cm2/W) quite substantially

differed from the one found from the OHD-OKE measure-
ments. As we mentioned above (Sec. II D), the effective neff

2
and κeff

2 extracted from the Z-scan experiment are essentially
different quantities since they are determined by a different
combination of the third conductivity tensor components. This
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FIG. 7. (a) The negative effective nonlinear refractive index −neff
2 and absorption coefficient −κeff

2 calculated using the full formulas (35),
(36) and the simplified one (43), at EF = 0.2 eV, T = 300 K, and � = h̄γ = 2 meV. (b) The negative effective nonlinear refractive index −neff

2

(full formula) for a few different values of EF , T , and h̄γ . The thin vertical line corresponds to the wavelength λ = 1600 nm (h̄ω = 0.773 eV)
used in Ref. [23].
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confirms, once again, the inappropriateness of using essentially
3D quantities n2 and κ2 for a description of 2D crystals. A
further discussion of the Z-scan technique for graphene is
beyond the scope of this paper.

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed theoretical analysis of the
OHD-OKE technique of measuring nonlinear properties of
graphene and other 2D materials. Let us summarize the results
obtained. In Sec. II we have derived analytical formulas
(21)–(25) which allow one to experimentally study all com-
ponents of the third-order conductivity tensor measuring the
intensity of five different nonlinear output signal contributions
to the OHD-OKE signal. These formulas are not related to any
model of σ

(3)
αβγ δ and can be used for analysis of the nonlinear

response of any material which is much thinner than the
radiation wavelength, especially of 2D materials, with one or
a few atomic layers.

In Sec. III we have specified our general results, having
used the model of σ

(3)
αβγ δ developed in Refs. [62] and [63] and

studied the frequency, doping, temperature, and relaxation rate
dependencies of different contributions to the output signal. We
have predicted a rich behavior of the Kerr response as a function
of all these factors, including a rather strong growth of the effect
near the interband resonance transition at h̄ω � 2EF , as well
as in the low-frequency region h̄ω � EF . We have compared
our results with the experimental findings of Dremetsika et al.
[23] and found good agreement with their data.

All results of this paper have been obtained for an isolated
graphene layer. In experiments graphene typically lies on

a dielectric substrate. If the substrate thickness is small as
compared to the radiation wavelength our results remain
quantitatively valid. If graphene lies on a substrate with a
rough back side which does not reflect radiation the denom-
inators [1 + 2πσ (1)

ω /c] in the above-derived formulas should
be replaced by [(n + 1)/2 + 2πσ (1)

ω /c], where n is the (linear)
refractive index of the substrate. The analysis of more complex
cases is beyond the scope of the present work. The influence
of different types of substrate resonances (Fabry-Pérot, optical
phonon resonances) on the third harmonic generation effect
was comprehensively studied in Refs. [51] and [52]; the role
of these resonances in the Kerr response can be understood
similarly.

Most of experiments on the nonlinear optical response of
graphene have been performed so far at a single or a few
frequencies, single or a few values of the Fermi energy, and
at unknown or uncontrolled values of the effective relaxation
rate. The theory predicts very interesting dependencies of the
nonlinear graphene response on all these parameters. There-
fore further extensive experimental studies of Kerr and other
nonlinear effects in graphene are highly desirable, promising
important fundamental discoveries and useful optoelectronic
and photonic applications.
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