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Nonlocal response with local optics
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For plasmonic systems too small for classical, local simulations to be valid, but too large for ab initio calculations
to be computationally feasible, we developed a practical approach—a nonlocal-to-local mapping that enables the
use of a modified local system to obtain the response due to nonlocal effects to lowest order, at the cost of
higher structural complexity. In this approach, the nonlocal surface region of a metallic structure is mapped
onto a local dielectric film, mathematically preserving the nonlocality of the entire system. The most significant
feature of this approach is its full compatibility with conventional, highly efficient finite difference time domain
(FDTD) simulation codes. Our optimized choice of mapping is based on the Feibelman’s d-function formalism,
and it produces an effective dielectric function of the local film that obeys all required sum rules, as well as
the Kramers-Kronig causality relations. We demonstrate the power of our approach combined with an FDTD
scheme, in a series of comparisons with experiments and ab initio density functional theory calculations from the
literature, for structures with dimensions from the subnanoscopic to microscopic range.
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I. INTRODUCTION

Conventional numerical methods of studying plasmonic
and nanophotonic systems, such as the finite difference time
domain (FDTD) method [1], are based on solving Maxwell’s
equations on a grid of points in real space. At each grid point,
two material parameters are defined: the electric permittivity ε

and the magnetic permeability μ. In the most efficient and
popular FDTD codes (MEEP, CST, and COMSOL) [2], these
are functions of the propagating wave frequency (ω) only,
and the important dependency on the wave vector q of the
propagating wave is typically neglected. This is equivalent to
the assumption of locality: The response of the medium at a
point r in space is assumed to depend only on the material
response at the same point r . However, nonlocal effects might
become important, in particular, in the highly nonuniform
regions of samples. Ways to treat them have been proposed,
beginning with the pioneering work of Pekar [3], as well as in
the follow-up works in the 1960′s [4] and the 1980′s [5], and
more recently [6–11].

There is no easy way to include nonlocality in the FDTD
numerical codes. The simplest is the phenomenological hy-
drodynamic model, which leads to a simple extension of the
local Drude formula, with ω(ω + iγ ) replaced by ω(ω + iγ ) −
βq2 [12]. The quantum mechanical d-function formalism of
Feibelman [13] also provides a simple, analytical extension
of local Fresnel optics (for small q). In addition to ε and
μ, it introduces two surface dielectric response functions
(d functions), which also depend only on ω [14]. Similar to
ε and μ, these functions can be calculated in an ab initio
manner for a given metal [15–17], and then used in simulating
the response of metal-containing structures via a Fresnel-like
strategy. However, while the d-function formalism was very
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useful in understanding the basic physics of surface plasmons
on simple metallic surfaces and simple large-scale metallic
structures, the treatment of more complex systems or ultrasmall
nanostructures cannot benefit directly from this approach. As
pointed out above, implementing this approach into highly
efficient FDTD codes is difficult. In principle, nonlocality
can be fully included in more fundamental treatments of the
material equations, such as density functional theory (DFT)
[18]. However, due to limitations on computer power, this
ab initio approach can handle only ultrasmall structures, of
hundreds of atoms at most (i.e., a few nm in diameter).
Therefore, there is a need for a theory capable of handling
nonlocal effects in nanostructures with intermediate sizes, at
least for small q.

In an attempt to respond to this need, a recent work [19]
proposed an idea of mapping the nonlocal surface region of
a metal into a fictitious local dielectric effective film. The
nonlocality of the surface region was modeled using the
hydrodynamic approximation. This mapping was shown to
be valid only for very small q and ω [20]. Recently, we
employed a similar mapping, instead using the d-function
formalism [21]. Both works produced mapping relations that
were not unique and, therefore, additional constraints were
needed. In Refs. [19–21] no effort was made to make the
local dielectric functions of the fictitious films physical; these
were just mapping functions. However, physicality (at least
causality) of the dielectric functions is implied by the FDTD
schemes. In this paper, we optimize the mapping process, and
require that the resulting dielectric functions are physical, i.e.,
they satisfy all the conditions required, including causality
and various sum rules. We show that our mapping works
quantitatively in a much larger region of phase space (q-ω)
than the earlier mapping [19,21]. We demonstrate that, with our
mapping, the conventional FDTD simulations acquire nonlocal
capability, sufficient for a quantitative description of various
nanoscopic systems.
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FIG. 1. (a) Diffusive character of electron density profile n(x) at a metal surface. (b) Gradient of the red color represents the diffusive profile
of electrons confined by the jellium (the uniform positive charge, extending below the jellium boundary). (c) Local model of the metal surface,
with a hypothetical film (orange color) of thickness D replacing the nonuniform electron density profile in the transition region.

II. NONLOCAL-TO-LOCAL MAPPING

Consider an interface between a metal and vacuum where
huge electron density gradients exist. While in the classical
description, metal electrons are sharply confined to the bulk,
quantum mechanics predicts the electron density near the metal
surface to have a smooth profile n(x), as shown schematically
in Figs. 1(a) and 1(b). The transition region thickness is of order
D. Such a smooth electron density profile can be calculated
self-consistently in the jellium model [22]. The electromag-
netic response for a metallic surface with such a profile has been
calculated [15–17], and allowed the determination of the d

functions for many metals. The d-function formalism provides
closed formulas for long-wavelength, nonlocal extensions of
local Fresnel formulas, thus, it is a perfect platform to develop
a nonlocal-to-local mapping. In our earlier work [21] we based
the mapping on the Feibelman formula [13] for the reflection
coefficient of a p-polarized light. By comparing this expression
to the corresponding small-D expansion of the local, Fresnel
reflection coefficient for the model shown in Fig. 1(c), we
obtained the effective dielectric function of the fictitious
film [21],

εs(ω) = Dε(ω)

[ε(ω) − 1]d(ω)
, (1)

where ε(ω) is the Drude dielectric function of the metal
and d(ω) is the d function. Even though εs obtained from
Eq. (1) follows from a correct, formal mapping procedure, it
is unphysical. This is due to an ad hoc choice, εs(ω) ∝ D,
employed in the derivation of Eq. (1). Clearly, εs diverges
for large ω, since ε(ω) → 1, and d(ω) ∝ ∫ ∞

−∞ xδρ(x)dx → 0
(the induced charge density δρ vanishes for sufficiently large
frequency). Moreover, εs violates causality. To see this, we
examine the corresponding susceptibility,

χs(ω) = εs(ω) − 1

4π
= D[1 + 4πχ (ω)]

4πχ (ω)d(ω)
. (2)

Causality requires that proper response functions (e.g., suscep-
tibility), when analytically continued into the upper complex
half plane of variable z = Re(ω) + iIm(ω), are analytic and
vanish for |z| → ∞ and Im(ω) > 0 [23]. Since the Drude
susceptibility χ (ω) and d(ω) are causal, they satisfy these

conditions, and so from Eq. (2) we have, for |z| → ∞ and
Im(ω) > 0,

χs(z) = D[1 + 4πχ (z)]

4πχ (z)d(z)
→ ∞. (3)

This is a clear violation of the causality condition.
To eliminate this problem, we have investigated several

alternative effective response functions within Feibelman’s
formalism, requiring that, in addition to the required nonlocal-
to-local mapping, they lead to causal εs . We identified only one,
physical εs , based on Liebsch’s formula for the generalized
reflection coefficient [24],

g(q,ω) ≈ ε(ω) − 1

ε(ω) + 1 − 2qε(ω)d(ω)
. (4)

The local Fresnel reflection coefficient for the model struc-
ture shown in Fig. 1(c) is [25,26]

g(q,ω) = ε′(q,ω) − 1

ε′(q,ω) + 1
, (5)

where

ε′(q,ω) = εs(ω)
ε(ω) + εs(ω) + [ε(ω) − εs(ω)]e−2qD

ε(ω) + εs(ω) − [ε(ω) − εs(ω)]e−2qD
. (6)

It can be shown [27] that for Dq � 1, and with

εs(ω) = ε(ω)

[
1 − d(ω)

D

]
, (7)

Eq. (5) reduces to Eq. (4). Another derivation of this result is
also provided in Ref. [27].

The effective dielectric function of the fictitious film, given
by Eq. (7), is causal. The corresponding expression for the
susceptibility is

χs(ω) = εs(ω) − 1

4π
= 1

4π

{
[1 + 4πχ (ω)]

[
1 − d(ω)

D

]
− 1

}
.

(8)

Clearly, χs(ω) vanishes for |z| → ∞ and Im(ω) > 0. In ad-
dition, since χ (ω) and d(ω) are causal, χs(ω) also is analytic
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FIG. 2. Effective dielectric function εs of the fictitious film shown
in Fig. 1(c), plotted vs ω/ωp , for potassium as an example. The
inset shows the analytical expression for εs , also listed as Eq. (7) in
text. Solid lines represent the analytical evaluation of this equation:
Re[εs] (blue) and Im[εs] (red). Symbols represent the corresponding
numerical results based on Kramers-Kronig relations: Re[εs] (blue
crosses) and Im[εs] (red circles). See text for details.

in the upper complex half plane of variable z. Thus, all the
conditions for the causality of χs(ω) are satisfied and Eq. (7)
represents a causal (i.e., physical) dielectric function.

To further illustrate that causality is satisfied, we checked
that the Kramers-Kronig (KK) relations are satisfied numeri-
cally [23]. These follow the causality condition and have the
following form,

Re[εs(ω)] = 1 + 2

π
P

∫ ∞

0
Im[εs(ω

′)]
ω′

ω′2 − ω2
dω′, (9)

Im[εs(ω)] = − 2

π
P

∫ ∞

0
Re[εs(ω

′)]
ω

ω′2 − ω2
dω′, (10)

where the integrals are evaluated along the real frequency
axis, and P indicates the principle value integral. To check
Eq. (9), we used Eq. (7) first to calculate Im[εs(ω′)]. Then,
we numerically evaluated the integral on the right-hand side
for a given ω, and thus obtained the numerical values of
Re[εs(ω)]. Here, we used the following explicit expression
for the Drude dielectric function, ε(ω) = 1 − ω2

p/ω(ω + iγ ),
with ωp the plasma frequency for potassium, the phonon-
impurity scattering rate set as γ = 0.05ωp, and d(ω) taken
from Ref. [15] for potassium, and then fitted to a Lorentzian
form

d(ω) =
2∑

s=1

As

ω2
s − ω(ω + iγs)

, (11)

where A1 = 0.367,A2 = 0.078, ω1 = 0.829, ω2 = 0.774,
γ1 = 0.063, and γ2 = 0.097. The numerically obtained values
of Re[εs(ω)] can be compared with the exact values of
Re[εs(ω)], obtained directly from Eq. (7). Figure 2 shows that,
as expected, the two values are essentially identical. The same

procedure was used to check the second KK relation [Eq. (10)],
confirming the validity of this condition as well. This confirms
that the dielectric function given by Eq. (7) is causal. Equation
(7) is the main result of this article.

In addition to satisfying KK relations, the dielectric function
given by Eq. (7) has the characteristic Drude-like form with
a reduced, effective plasma frequency ω̄p, as expected for a
metal film modeling the diffusive region, where the electron
density is reduced. Also, we have checked numerically that the
dielectric function satisfies the following sum rules [28],

∫ ∞

0
ωIm[εs(ω)]dω = π

2
ω̄2

p, (12)

∫ ∞

0
ωIm[εs(ω)]−1dω = −π

2
ω̄2

p, (13)

∫ ∞

0
Im[εs(ω)]−1 dω

ω
= −π

2
. (14)

While the last sum rule [Eq. (14)] is exactly and uncondi-
tionally satisfied, the first two [Eqs. (12) and (13)] yield an
identical, reduced effective plasma frequency equal to ω̄p =
0.7448ωp. This frequency is larger than the zero crossing of
Re[εs(ω)] in Fig. 2, which occurs at ω ≈ 0.5ωp. In interpreting
this discrepancy, one should keep in mind that, while the sum
rules are strictly valid only for a homogeneous electron gas, this
is not the case in the surface region described by the fictitious
film.

III. APPLICATIONS IN PLASMONIC SYSTEMS

To demonstrate the strength and robustness of the mapping
based on Eq. (7), in the remaining part of this paper we apply
it to a few prototypical plasmonic systems, and compare with
data available in the literature. First, we study the plasmonic
resonance of sodium spheres/particles, which is known to be
redshifted from its classical prediction, with the Mie resonance
given by ωMie = ωp/

√
3 [24]. In addition, this redshift in-

creases with decreasing particle size. The Mie resonance is
shown in Fig. 3(a) as the black solid line. The ab initio DFT
calculation for the same system [29] yields black squares in
Fig. 3(a)—a redshifted resonance. Implementing our effective
film approach, i.e., coating the (classical) sphere with the film
of a metal-like material having a dielectric function given by
Eq. (7), and performing the conventional FDTD simulation,
yields the colored lines in Fig. 3(a), in good agreement with the
DFT result for a range of the film thickness. This insensitivity
of our simulation outcome to the film thickness choice is an
important feature, since the film thickness is an adjustable
parameter, constrained loosely only by the size of the diffusive
region at the metal surface.

In Fig. 3(b), we plot the normalized plasmon resonance
frequencies for sodium spheres versus the inverse sphere
radius. We compare here our effective film scheme (for three
different film thicknesses) with experimental results and other
theoretical studies reported in Ref. [30]. The results for the
chosen film thickness of 0.3 nm agree best with those from
experiments and advanced theories. This is consistent with
the average thickness of the diffusive region D, as obtained
from microscopic models [22], and shows that it can be used
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FIG. 3. (a) Plasmonic response spectrum (absorption cross section in arbitrary units) of a sodium sphere of radius 1.4 nm. Classical Mie
resonance is shown as the black solid line. Open squares are ab initio DFT results adapted from Ref. [29]. Red/green/blue solid lines are from
our effective film scheme with film thickness equal to 0.3, 0.4, and 0.5 nm respectively. (b) Normalized frequencies of plasmon resonances (peak
positions) for sodium spheres vs the inverse sphere radius. Effective film approach results: Red/black/blue diamonds with the corresponding
film thickness 0.1, 0.3, and 0.9 nm, respectively. Open circles, triangles, and squares are experimental data adapted from Ref. [30]. Solid, dotted,
and dashed-dotted lines are advanced theoretical models discussed in Ref. [30].

as an appropriate choice of the fictitious film thickness. The
negative slope of the curve in Fig. 3(b) is identical to the
characteristic negative slope of surface plasmons on a planar
sodium surface. This is a universal property for all alkali metals
[31]; a one-to-one correlation between the slopes is facilitated
by the simple surface plasmon “whispering gallery” relation
2πR = λ [32], which reduces to q ≈ 1/R.

In the last test of our scheme, we applied it to a previously
studied case of the electric field enhancement in between two
closely spaced sodium spheres, tuned out of the plasmonic
(Mie) resonance. Each sphere has diameter 2R = 2.8 nm, and
thickness of the surface region (shown gray in the insets) d =
0.35 nm. The frequency of the driving field is h̄ω = 2.75 eV.
Figure 4 shows the electric field enhancement halfway between
the two sodium spheres versus the intersphere gap size. Our
scheme results are shown as red diamonds. The blue circles
represent calculations based on the hydrodynamic approxima-
tion (HDA) taken from Ref. [8]. These are valid only for gap
sizes much greater than the width of the surface regions. The
black circles represent ab initio DFT calculations taken from
Ref. [29], which, due to numerical difficulties, are possible
only for ultrasmall spheres and gaps. Thus, only our results
span the small to large gap sizes.

Our results show a sharp decrease in the field enhancement
for gap sizes less than 2d. This steplike decrease is physical,
and is the result of the presence of a surface region (of thickness
∼d) of reduced electron density, at metallic surfaces. As long as
the two spheres are farther than 2d apart, the midpoint (where
field is calculated) lies in vacuum, and thus the electric field
is only remotely (weakly) screened by the polarized spheres.
However, once the surface regions begin to overlap for gap
sizes <2d, the midpoint probes this overlap region of (on
average) high electron density, and thus a very strong shielding
takes place. In our simulations, as discussed above, the surface
region is represented by a constant, reduced electron density,
steplike region (marked gray in the insets). Consequently, the
steplike discontinuity of the electric field enhancement at gap
size of 2d is a result of this steplike model of the electron den-

sity. In more realistic calculations, in which the gradual surface
electron density can be accommodated, a more gradual (but still
quite sharp) transition of the field enhancement is expected.
The most important conclusion here is that our simulations,
valid everywhere, agree (to within an order of magnitude) with
the available calculation results from the literature (DFT and
HDA), in their respective regions of validity.

FIG. 4. Electric field enhancement halfway between two sodium
spheres vs the intersphere gap. Each sphere has diameter 2R =
2.8 nm, and thickness of the surface region (shown gray in the insets)
d = 0.35 nm. The frequency of the driving field is h̄ω = 2.75 eV.
Red diamonds represent our simulations, based on the effective
(fictitious) film scheme. Black circles represent the ab initio DFT
calculations [29], available only in the quantum regime. Blue circles
show results of the hydrodynamic approximation [8], valid only in
the classical regime. The insets show sketches of the spheres at an
overlap (left) and well-spaced (right) cases, with diffusive regions
marked gray.
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IV. CONCLUSION

In conclusion, we propose an effective film approach for
plasmonic and nanophotonic studies, which accounts for non-
local effects caused by the nonuniform region at metal surfaces.
The approach requires adding a fictitious, but physical, thin
film with a specified dielectric response. In our scheme, this
dielectric function is related to the d function. Adapted into
classical FDTD calculation schemes, this approach produces
a moderate q extension of all nonlocal response character-
istics while avoiding the burdensome computations that are
usually required by DFT for intermediate-size nanostructures.
Specifically, we demonstrated that our method produces a

quantitatively correct resonance shift and qualitatively correct
field enhancement for small sodium spheres. While these
examples have primarily focused on plasmonic systems with
highly symmetric (e.g., spherical) geometries, we stress that
our effective film approach may be applied to structures of
any shape—the method simply requires coating all metal
surfaces with a properly calculated thin film, and then per-
forming the usual local FDTD simulation. Thus, our effective
film method extends local FDTD calculations to a moderate
q nonlocal regime. Our scheme suggests further improve-
ments, for example, by increasing the number of fictitious
films.
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