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Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced
by internal charge transfer
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We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum
dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot
are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two
spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the
number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical
capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer
and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a
sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result
from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive
electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance
properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest
as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency
quantum electronics.
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I. INTRODUCTION

Recent experimental development in high-frequency ac
transport has enabled us to investigate the dynamics of a meso-
scopic capacitor [1–4]. The capacitor, similar to a standard
parallel-plate capacitor, consists of a submicrometer quantum
dot (QD) and a macroscopic metallic top gate, each acting
as one plate. The QD is linked to a wide two-dimensional
electron gas (2DEG) reservoir through a single-channel nar-
row constriction formed by a quantum point contact (QPC).
One remarkable difference, compared to a two-metallic-plate
capacitor, is that electric field can penetrate the 2DEG before
being completely screened due to low density of electron. Con-
sequently, quantum capacitance, closely related to the density
of states inside the dot, has to be introduced in addition to
the geometric capacitance. Capacitance measurements, hence,
provide a powerful tool to probe the internal device properties
[5] as well as anomalous Coulomb correlation effects [6–9].
One major advantage of this capacitor, compared to former
mesoscopic devices, is that the dynamic effects provide the
leading order of the system response, as the dc transport is
completely suppressed. It allows us to fast manipulate and read
off the electron states inside the dot, which is an important
requirement in any quantum information processing scheme.
Operated out of equilibrium by a fast voltage modulation, on-
demand single electron source [2], which emits the electrons
into a well-defined quantum state, has been realized, and new
generation devices based on this capacitor, in close analogy to
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quantum optic apparatuses, have been utilized to investigate
coherent ballistic electronic transport [4,10–12].

Of fundamental interest about this system is its low-
frequency linear response, which is well described [1,13] by a
series connection of a charge relaxation resistance Rq and an
electrochemical capacitance Cμ, and the ac impedance of the
system is

Z(ω) = Rq + 1

iωCμ

, (1)

where ω/2π is the radio-frequency (rf) excitation frequency.
The first term on the right is the charge relaxation resistance
Rq , i.e., the dissipative element, which was found by a recent
experiment [1] to be universal as a quantized value h/2e2. The
second term gives access to the electrochemical capacitance
Cμ, i.e., the reactive element, which is closely related to the
density of states but its properties have not been carefully
established in earlier experiments [1,3]. However, Cμ, together
with Rq , defines a characteristic timescale, i.e., the charge
relaxation time τRC = RqCμ, which plays a central role in
the dynamics of single electrons [3,14,15]. Moreover, for high
excitation frequency (ω/2π > 1/τRC), the electrochemical
capacitance was predicted to become negative due to slow
charge relaxation [16,17]. Therefore, the electrochemical ca-
pacitance not only serves as a sensitive detection method for
the internal properties of quantum conductors and controls
the charge relaxation process inside them, but also in itself is
a very significative quantity in quantum coherent electronics
and worth further experimental investigations, in particular, at
gigahertz frequencies.

On the other hand, most experiments [1,3,18] have mainly
focused on the weak interacting regime where the charging
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energy is negligibly small compared to the orbital level spac-
ing. However, small-sized QDs often exhibit strong Coulomb
blockade effects, and it is, therefore, desirable to ask what
would happen under this condition. Numerous theoretical
works [19–23] addressed the dynamic properties of this capac-
itor in the strong interaction regime. Remarkably, they found
that the charge relaxation resistance is not affected and is still
universal [19–21]. However, the electrochemical capacitance,
in contrast, was predicted to sensitively depend on the Coulomb
interaction [22], as the dot density of states at the Fermi energy
is tremendously modified by the charging energy. Furthermore,
self-consistent calculations [24,25] show that charges inside
the QD distribute in spatially separated compressible regions
and they can transfer between these regions by tunneling.
This internal charge redistribution can change the charging
energy of the dot and has been demonstrated experimentally
to modulate the dc conductance [24,26]. Several theoretical
works [27,28] also predicted that the capacitance is sensitive
to the charge redistribution as well, however, a systematic
experimental study of the electrochemical capacitance in this
strong interacting regime is still lacking.

Here, we report experimental measurements of the electro-
chemical capacitance on an interacting mesoscopic capacitor
in the quantum Hall regime. We focus on the weak tunneling
regime where only one spin-split channel is partly open and
quantization of electrons on the dot is well defined. We
manipulate the number of electrons and their distributions
inside the QD by the QPC voltage and the magnetic field.
We find that both the periodicity and amplitudes of the
electrochemical capacitance oscillations are modified by the
charging energy and the internal electron distribution when
VQPC is varied. Electrochemical capacitance Cμ displays a
sawtoothlike behavior when the magnetic field is employed to
rearrange the charge distribution in the QD. A two-dot model
calculation that considers the interactions between different
regions inside the quantum dot is employed to understand these
exotic electrochemical capacitance behaviors.

The paper is organized as follows. In Sec. II, we give
details about the device and the measurements. In Sec. III, we
present a model of the device and calculate the capacitance.
The experimental results are discussed in Sec. IV. Our results
are summarized in Sec. V.

II. DEVICES AND MEASUREMENTS

Figure 1(a) shows the schematic of the sample. Device was
defined using shallow etching technique on a two-dimensional
electron gas (2DEG) formed at a GaAs/Al0.3Ga0.7As het-
erointerface, with sheet density 2×1011 cm−2 and mobility
1.4×105 cm2/V s. The area of the dot can be estimated from
the lithographic size and the edge depletion lengths, yielding
S ∼ 1.15 μm2. The Coulomb charging energy EC ≈ 145 μeV
for the dot was extracted from the temperature dependence
of the width of the Coulomb resonance peak. Assuming a
parabolic confinement potential in the dot, we estimate the
energy level spacing �E ∼ 2πh̄2/m∗S ∼ 6 μeV, which is a
very small quantity compared to the charging energy. To work
in the integer quantum Hall regime, magnetic fields around
1.95 T were applied perpendicular to the 2DEG, which may
modify the energy level spacing but cannot change its order of
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FIG. 1. (a) Schematic of the device. The bold circle on the
right-hand side denotes the quantum dot and the blue strips in it
indicate the compressible regions of LL1 and LL2 (indicated by 1
and 2, respectively). A gold gate is put on top of the dot and is
connected to a small radio-frequency excitation voltage Vg(t). Only
LL1 in the quantum dot is tunneling coupled (indicated by the blue
dotted line) to the reservoir through the quantum point contact (QPC),
the transmission of which is controlled by a dc voltage VQPC. Cg1 (Cg2)
is the capacitance between LL1 (LL2) and the top gate, and CQPC1

(CQPC2) is the capacitance between LL1 (LL2) and the QPC gate. Cm

denotes the inter-Landau-level capacitance. (b) Simplified electrical
circuit used to calculate the electrostatic energy of the dot with charge
number N1e (N2e) in LL1 (LL2). These two compressible regions are
also referred to as the ring and the core.

magnitude. Devices were cooled down in a dilution refrigerator
with base temperature T = 20 mK. The effective electron
temperature Te, however, is around 96 mK. We applied a small
ac excitation signal Vg(t) with frequency ω/2π = 1.5 GHz
on the top gate and measured the linear response of the circuit
from the reservoir. Measurements were conducted based on the
homodyne technique, where the detected signal was amplified
and multiplied with the reference signal to achieve both the
in-phase and out-of-phase response of the circuit. We then used
an indirect, but absolute method, based on the ac characteristics
of the system and the Coulomb blockade spectroscopy [1,3],
to obtain the absolute value of Cμ.

III. MODEL AND THEORY

We focus in this work on the quantum Hall regime with the
dot filling factor 2 < ν < 3 (smaller than the filling factor of
the reservoir ν ≈ 4). Hence, only two spin-split levels (LL1 and
LL2) of the lowest Landau level (LL) remain in the dot. Due to
self-consistent arrangement of the charge [24], LL1 and LL2

form two compressible regions, along the edge (ring) and in the
center (core) of the dot [see Fig. 1(a)], respectively. They are
spatially separated by an incompressible region which acts as a
tunnel barrier, and electrons on these two compressible regions
can transfer between each other by tunneling. Note that we
are interested in the low transmission regime where only states
belonging to LL1 are coupled to the reservoir. Hence, electrons
in LL2 mainly influence the dot potential and can only tunnel
out to the reservoir indirectly through internal charge transfer
process. Therefore, it is reasonable to neglect the dynamic
effect of LL2 and only consider its electrostatic influence.
Consequently, the equivalent circuit with a series connection
of a charge relaxation resistance Rq and an electrochemical
capacitance Cμ is still valid.

Recent experiments [3] show that if the interactions are
not too strong, i.e., EC ≈ �E, the change of Cμ is small
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and the charging energy can still be taken into account, by
simply replacing �E with �E + EC . For strong interactions
(EC � �E), however, a recent theory predicted that electron-
electron interactions may affect the density of states and lead
to charge excitations [23], which may then strongly affect
the oscillations of Cμ. To comprehend how the charging
energy influences the electrochemical capacitance, we model
the capacitor as a two-coupled-dot system. The electron-
electron interactions are treated using a capacitive charging
model shown in Fig. 1(b). Here, we define C1 (2) as the sum
of all capacitance attached to LL1 (LL2): C1(2) = CQPC1(2) +
Cg1(2) + Cm. The electrostatic energy of the system is the sum
of the electrostatic energy stored on these two Landau levels
and can be conveniently expressed using the capacitance matrix
[29]. For the case with charge Q1 (2) = −N1 (2)|e| in LL1 (LL2)
and a QPC voltage VQPC, we denote the electrostatic energy as
U (N1,N2,VQPC) [see Eq. (A4) in the Appendix]. Then, the total
Hamiltonian of the system is

H = HL + HD +
∑
k,m

(tkmc
†
kdm + H.c.), (2)

where HL = ∑
k εkc

†
kck describes the electrons in the lead and

the third term describes the tunneling Hamiltonian between
the dot states and the lead states. The Hamiltonian of the dot
reads as HD = ∑N1

m=1 ε1,m(t)d†
mdm + U (N1,N2,VQPC), with

ε1,m(t) = ε1,m + eU (t). U (t) describes the time-dependent
effective potential inside the dot.

The transmission through the QPC channel is small, so it
is reasonable to consider the limit tkm � �ε1, e2/C, where
�ε1 and e2/C represent the mean energy level spacing and the
charging energy of LL1, respectively. Therefore, in the vicinity
of electron transfer resonance (N1,N2) → (N1 − 1,N2), we
only need to consider the hybridization of the N1th energy level
in LL1 |1,N1〉 (the highest occupied level in LL1) with states in
the lead. Neglecting spin effects, we rewrite the Hamiltonian
in Eq. (2) as

H =
∑

k

εkc
†
kck + [ε1,N1 + eU (t) + U1 − U2]d†

N1
dN1

+
∑

k

(tkN1c
†
kdN1 + H.c.) (3)

plus an additive constant E1 = ∑N1−1
m=1 ε1,m + U2, where

U1 = U (N1,N2,VQPC) and U2 = U (N1 − 1,N2,VQPC).
Following Ref. [19] where the Hartree-Fock approximation

was used to consider the interactions, we conducted a similar
calculation and find the electrochemical capacitance at zero
temperature

Cμ = C1e
2ν(μres)

C1 + e2ν(μres)
, (4)

where ν(μres) = GR
eq(μres)�GA

eq(μres)/2π is the interaction
density of states in LL1 at the energy of the electrochemical
potential of the reservoir μres. � describes the level-width
function of the QD due to the coupling to the reservoir.
GR

eq(μres) is the equilibrium retard Green’s function which is
given by

GR
eq(μres) = 1

μres − (εN1 + U1 − U2) + i�/2 + i0+ . (5)

The equilibrium advanced Green’s function GA
eq(μres) is the

complex conjugate of GR
eq(μres) and can be easily obtained

using Eq. (5). In Eq. (4), e2ν(μres) is also referred to as the
quantum capacitance Cq . Hence, the electrochemical capac-
itance Cμ is actually a series combination of the geometric
capacitance C1 and the quantum capacitance Cq .

To understand how the charging energy influences the
capacitance, we introduce the electrochemical potential of the
compressible region which is defined as the energy needed
to add one electron to it. Considering both the single-level
energy and the electrostatic energy, we find the electrochemical
potential to add the N1th electron to LL1: μ1(N1,N2) = εN1 +
U1 − U2. It describes the position of the N1th energy level
in LL1, which is modified by the charging energy. Therefore,
Eq. (5) can be rewritten as

GR
eq(μres) = 1

μres − μ1(N1,N2) + i�/2 + i0+ . (6)

In Eq. (6), we define δE = μres − μ1(N1,N2) which denotes
the energy difference between the highest occupied level in
LL1 and the electrochemical potential of the reservoir. When
δE = 0, one energy level in LL1 is in resonance with the
reservoir and the electrochemical capacitance Cμ reaches
maximum. When δE is large, the dot level is off resonance
and Cμ has a smaller value. In short, on changing the dot
potential, Cμ should still oscillate periodically. Moreover, we
demonstrate that, in this low transmission regime, the strong
electron-electron interactions are still reasonably considered
by simply modifying the oscillation periodicity with the charg-
ing energy. Therefore, we can still consider the density of states
of the energy level instead of that of the charge excitations.

Note that by far we have not considered the temperature
effects. For the fermion system at finite temperature, the
occupation probability of the energy levels is given by the
Fermi-Dirac distribution. To consider this temperature effect,
we have to replace ν(μres) in Eq. (4) with an effective density
of states ν̃(ε), which is given by the convolution between the
zero-temperature density of states ν(ε) and the derivative of
the Fermi-Dirac distribution with respect to energy (−df/dε):

ν̃(ε) =
∫

dε ν(ε)

(
−df

dε

)
. (7)

The shape of (−df/dε) as a function of energy ε is shown
in Fig. 3(b). It peaks at μres and has a thermal width that is
proportional to kBTe, where kB is the Boltzmann constant. It
indicates that only energy levels in this energy range may have
occupation probability variations and lead to the resonance
peak of Cμ.

To proceed further, we calculate the electrochemical poten-
tial using the electrostatic energy relation [see Eq. (A4) in the
Appendix], which gives

μ1(N1,N2) = ε1,N1 + (N1 − 1/2)EC1 + N2ECm

− VQPC

|e| (CQPC1EC1 + CQPC2ECm). (8)

Similarly, the electrochemical potential μ2(N1,N2) of LL2 can
also be obtained by replacing all the subscripts 1 (2) on the right
of Eq. (8) with 2 (1). Here, the energy ε1,N1 (ε2,N2 ) of a single-
particle energy level in LL1 (LL2) is a sensitive function of the
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magnetic field B. For a parabolic confinement, which is a good
approximation for the real dot confinement [24,26], the energy
spectrum is given by the Fock-Darwin spectrum [31]. For our
strong magnetic fields (ωc � ω0), the energy is simplified to
εi,Ni

= 1/2h̄ωc + Ni�εi (i = 1,2), where ωc = eB/m∗ is the
cyclotron frequency, m∗ is the effective mass in GaAs, ω0

characterizes the parabolic confinement, and �ε1 = �ε2 ≈
h̄ω2

0/ωc is the energy separation between adjacent states in the
same Landau level. �εi is actually a function of B, however, it
varies very slowly and can be treated as a constant in the small
field range we are interested in. The spin-splitting energy in
GaAs is very small compared to the cyclotron energy h̄ωc and is
neglected throughout this paper. The only spin effect that needs
to be considered is the formation of two spatially separated
compression regions. EC1 (2) represents the equivalent charging
energy of LL1 (LL2) when one extra electron is added to it
from the reservoir and ECm denotes the equivalent charging
energy of LL1 (LL2) when one extra electron is added to LL2

(LL1) from the reservoir [see Eq. (A7) in the Appendix]. An
interesting fact inferred from Eq. (8) is that the electrochemical
potential μ1 depends on both N1 and N2, due to internal
capacitive coupling. Moreover, both N1 and N2 can be tuned by
the QPC voltage VQPC and the magnetic field B. Considering
that the electrocapacitance Cμ depends sensitively on μ1 as
shown in Eqs. (4) and (6), we can then employ VQPC and B to
modulate Cμ.

The electrochemical potential change for different number
and distribution of electrons inside the QD can be easily
extracted from Eq. (8). To transfer one electron from LL1 to the
reservoir, the electrochemical potential of it changes by E1 =
μ1(N1,N2) − μ1(N1 − 1,N2), which gives E1 = EC1 + �ε1.
Similarly, to transfer one electron from LL2 to the reservoir,
μ2 changes by E2 = EC2 + �ε2. Meanwhile, when a electron
transfers from one LL to the reservoir, the electrochemical
potential in the other LL changes by Em = μ1(N1,N2) −
μ1(N1,N2 − 1) = μ2(N1,N2) − μ2(N1 − 1,N2) = ECm. For
the internal charging process, e.g., one electron transfers
from LL2 to LL1, the electrochemical potential difference of
LL1 is Ein = μ1(N1 + 1,N2 − 1) − μ1(N1,N2), which gives
us Ein = EC1 + �ε1 − Em.

IV. RESULTS AND DISCUSSION

A typical structure of the response for a two-coupled-dot
system is its charge stability diagram [29], which shows the
equilibrium charge number in each dot and allows us to
extract the characteristic energy scales of the double dot. Here,
we set up such a diagram by measuring the electrochemical
capacitance and employing the QPC voltage and the magnetic
field to modulate the electron number and their distribution
inside the dot. Figure 2(a) shows a color scale plot of the
electrochemical capacitance Cμ as a function of VQPC and B.
The Coulomb resonance peaks are indicated by dashed lines,
which show sawtoothlike manner along the magnetic field axis.
By connecting the adjacent turning points between different
Coulomb peaks, we obtain the charge stability diagram with
a characteristic honeycomb structure [Fig. 2(b)]. Within each
honeycomb cell, the electron numbers on both compressible
regions are well defined due to Coulomb blockade.

FIG. 2. (a) Electrochemical capacitance oscillations, measured
as a function of QPC voltage VQPC and magnetic field B. The red
dashed lines indicate the positions of the peaks. (b) The charge
stability diagrams are formed by connecting the adjacent turning
points between different Coulomb peaks. Each cell is given by
(N1,N2), where Ni (i = 1,2) denotes the number of electrons in LLi .
(c) One cell showing the voltage and magnetic field intervals due to
different energy spacings when the number or distribution of electrons
in the dot is changed. Their relations are given in Eqs. (9), (10), (11),
and (12).

Different from the experiments with two spin-degenerate
Landau levels [30,31], where a single-particle picture such as
the Fock-Darwin spectrum is enough to understand the struc-
ture of the charge stability program, in our experiment, extra
consideration must be taken in understanding this structure.
Since, as we discussed earlier in the single-particle picture, the
two spin-split states of the lowest Landau level both increase
with B, which does not lead to any frequent energy level cross-
ings. Instead, we have to consider the self-consistent distribu-
tion of charge density and the related electrostatic potential
modulation [24]. In the self-consistent model [24], increasing
B makes the edge of the compressible region move from dot
edge to center. Before internal electron redistribution, the elec-
tron density therefore rises in the center of the dot and decreases
at the edge, thereby increasing μ2 and decreasing μ1 [see
Fig. 3(a)]. This magnetic field dependence of the electrochem-
ical potential can be well characterized by adding a linear term
β1(2)B to the electrochemical potential μ1(2) in Eq. (8). Further
increasing B, when the occupied energy level μ2(N1,N2)
aligns with the unoccupied energy level μ1(N1 + 1,

N2 − 1) as shown in Fig. 3(a), the electron will transfer from
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FIG. 3. Energy level diagram showing how magnetic field B

modulates internal charge distribution when energy levels are (a) off
resonance [indicated by a short yellow line in Fig. 2(a)] and (b) on
resonance. μ1 and μ2 denote the electrochemical potentials of LL1 and
LL2, respectively. Numbers in the parentheses represent the electron
numbers in LL1 (former) and LL2 (later). Ein denotes the energy
change when internal charge transfer happens. The shadowed area
around μres in (b) represents the thermal broadening of the effective
density of states (∼kBTe ≈ 8 μeV).

the core to the ring. Continue to increase B, the next internal
charge transfer happens when μ2(N1 + 1,N2 − 1) aligns with
μ1(N1 + 2,N2 − 2). Therefore, between the two successive
internal charge transfer processes, the magnetic field change
�B1 + �B2 corresponds an energy variation 2Ein. We will
use this relation to extract the rate of electrochemical potential
change in the later calculation [see Eq. (12)].

The bright peaks in Fig. 2(a) correspond to the direct charge
tunneling from the on-resonance energy levels in LL1 to the
reservoir. The peak positions, therefore, reflect the positions
of energy levels in LL1, and we can use their magnetic field
dependence to extract the parameter β1 [see Eq. (11)]. The dark
peaks, on the other hand, reflect the indirect charge transfer
from the core to the reservoir via the ring levels. As shown in
Fig. 3(b), when the highest occupied energy level μ2(N1,N2)
and the lowest unoccupied energy level μ1(N1 + 1,N2 − 1)
enter the thermal broadening region (the shadowed area around
μres), the electron can move from LL2 to LL1 with thermal
excitation and then tunnel out into the reservoir. The dark
peak positions, therefore, do not reflect the exact positions of
energy levels in LL1 or LL2, but reflect the peak positions of
the combination of their effective density of states. Further
increasing B, the internal charge transfer continues until
the two energy levels move out of the thermal broadening
region, and the occupation probability of the earlier lowest
unoccupied energy level μ1(N1 + 1,N2 − 1) now equals to
one. Therefore, the small magnetic field range �B2 over
which the peak position increases steeply, is determined by
the thermal broadening energy range around μres as well as

μ1
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FIG. 4. The top and bottom parts: oscillations of the electro-
chemical capacitance Cμ as a function of magnetic field B for two
quantum point contact voltages [indicated by two vertical yellow
lines in Fig. 2(a)]. The middle parts: schematic of sawtooth-shaped
oscillations of μ1 on increasing B for two quantum point contact
voltages. The position of the reservoir electrochemical potential μres

relative to μ1 is indicated by two dotted black lines.

the rate of electrochemical potential change of both μ1 and
μ2 as a function of B. This process changes the electrostatic
potential due to internal charging effect, hence, changes the
bright peak positions. Therefore, we emphasize that it is more
appropriate to say that Fig. 2 reflects the charge addition
spectrum [24] instead of the energy level spectrum since it is the
self-consistent electrostatic potential and charging effects not
the single-particle energy level that dominates the structures.

Figure 4 shows the electrochemical capacitance Cμ as a
function of magnetic field for two QPC voltages [their positions
are indicated by two vertical lines in Fig. 2(a)], both of
which show sawtoothlike structures but with reversed sawtooth
directions: for VQPC = −0.9972 V, Cμ rises steeply and falls
gradually; for VQPC = −0.9974 V, Cμ rises gradually and falls
steeply. These sawtoothlike oscillations of Cμ can be easily
understood in terms of the electrochemical potential μ1 of LL1.
As inferred from the charge stability diagram in Fig. 2(a), μ1 is
modulated by B through two processes. First, before internal
charge transfer, μ1 decreases with B due to self-consistent
electrostatic potential change. Second, when internal charge
transfer happens, μ1 increases steeply due to the internal
charging effect. Therefore, μ1 varies in a sawtooth manner
when increasing the magnetic field. For VQPC = −0.9972 V,
μres intersects with the top half of the sawtooth structure of
μ1. On increasing the magnetic field, each time the internal
charge transfer happens, μ1 jumps towards μres, hence, Cμ
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FIG. 5. Oscillations of the electrochemical capacitance as a func-
tion of VQPC for B = 1.95 T [indicated by a horizontal yellow line in
Fig. 2(a)]. It shows modulation of the peak amplitude, as indicated by
different symbols (see more details in the text). Inset: AFM picture
of the device.

rises steeply. When the magnetic field is further increased, μ1

slowly drops away from μres due to self-consistent electrostatic
potential change, which leads to the slow Cμ decrease. For
VQPC = −0.9974 V, on the other hand, μres intersects with
the bottom half of μ1. On increasing B, μ1 jumps away from
μres and increases slowly towards μres, which, consequently,
reverses the orientation of the sawtooth structures of Cμ.

It is worth noting that, for some magnetic fields, μres may
intersect with the sawtooth structure of μ1 at approximately
its center. Hence, μ1 may move away and toward μres twice
for one tooth structure of μ1, which consequently leads to two
small peaks of Cμ in one tooth. This is actually observed in
Fig. 4 for both voltages at magnetic field around 1.765 T. On
the other hand, as the charge relaxation time τRC = RqCμ

is proportional Cμ, τRC also has a sawtooth structure when
the magnetic field is varied. In this respect, our experiment
demonstrates how the charge dynamics is modulated by the
magnetic field through internal charge transfer. Moreover, in an
earlier experiment [26], the time of the internal electron transfer
has been measured, which shows a macroscopic timescale and
cannot be well explained in their noninteracting picture. We
argue that this may due to long charge relaxation time since
electron staying on one energy level for a long time can block
subsequent electron transfer. Finally, for magnetic fields higher
than 2.2 T, the tooth structures of Cμ disappear, which results
from the fully depopulation of electrons in LL2. As in this case,
only one compressible region is left and no internal electron
redistribution can happen. Then, we estimate the electron
density inside the dot is reduced by ≈47%, compared to that
in the reservoir.

Figure 5 presents the Coulomb blockade oscillations of
the electrochemical capacitance as a function of VQPC at B =
1.95 T, the position of which is indicated by the horizontal
yellow line in Fig. 2(a). VQPC has two effects on the sample
parameters. First, it controls the transmission of the QPC. We
tuned VQPC to very negative values so as to work in the weak
tunneling regime. Second, it changes the static potential of
the dot linearly. By changing VQPC continuously, each time
one dot level aligns with the electrochemical potential in the
reservoir, there is a peak of the capacitance oscillations. The
Coulomb oscillation period only varies a little bit for this strong
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δ1 -df

FIG. 6. Left-hand side: the related oscillation peaks of electro-
chemical capacitance Cμ when the quantum point contact voltage
VQPC is varied. Right-hand side: energy level diagram showing the
electrochemical potentials μres, μ1 and μ2 of the reservoir LL1

and LL2, respectively. Numbers in the parentheses represent the
electron numbers in LL1 and LL2. Ei (i = 1,2) denotes the energy
change in LLi when one electron in it tunnels out and Em denotes
the energy change in one Landau level when one electron in the
other Landau level tunnels out. The shadowed area around μres

represents the thermal broadening of the effective density of states
(∼kBTe ≈ 8 μeV).

magnetic field compared to that in B = 0. It indicates that the
period is dominated by the the Coulomb charging energy for
our strong interacting devices, and supports our assumption
of a parabolic confinement. Since for strong confinement like
steep wall potentials, the period should vary enormously as the
single-particle energy is large and sensitive to magnetic fields
[31]. For the peak height, we find a nearly periodic amplitude
modulation, with every two similar high peaks (black squares)
separated by one low peak (red circle). But, there are some
exceptions: after five peaks of low amplitude and four pairs
of high amplitude, one peak of high amplitude (blue star)
appears. From Fig. 2(a), we immediately see that the large
peaks correspond to the variations of electrons in the ring,
whereas the small ones correspond to these in the core.

To further understand how the internal charge transfer
affects the amplitude modulation, we draw an energy diagram
in Fig. 6, which illustrates the energy variations when the
number of the electrons is tuned by VQPC. The left-hand side
of Fig. 6 shows the electrochemical capacitance Cμ as a
function of VQPC. We start with the topmost small peak of Cμ,
which corresponds to the region where the energy difference
δ1 between μ1(N1 + 1,N2 − 1) and μ2(N1,N2) is smaller than
the thermal width (∼kBTe ≈ 8 μeV). Therefore, electron in the
latter energy level can transfer to the former energy level with
thermal excitation, and finally tunnels into the reservoir. Conse-
quently, Cμ shows a resonance peak but with a small amplitude,
as it is limited by the small tunneling rate of electrons from the
core to the ring. This process removes an electron from the

165420-6



ELECTROCHEMICAL CAPACITANCE MODULATION IN AN … PHYSICAL REVIEW B 97, 165420 (2018)

core into the reservoir and lowers μ1 by the interaction energy
Em and μ2 by energy E2. In our experiment, the efficiency
of VQPC in tuning the potential is approximately the same for
the core and the ring, so energy levels in both regions move
with the same pace as VQPC is varied. We decrease VQPC to
align μ1(N1 + 1,N2 − 2) with μres. However, resonance does
not occur as this level is Coulomb blocked, and electron in
the core cannot transfer to this ring level because the energy
difference δ2 is too large compared to the thermal excitation.
The next resonance happens only when μ1(N1,N2 − 1) lines
up with μres, and the electron on this ring level can transfer
directly to the reservoir, which gives a large peak of Cμ and
lowers μ1 by E1 and μ2 by Em. Continuing to decrease VQPC,
similar process happens for the next resonance and another
high peak is observed. However, since E1 > Em, after this peak
the core level μ2(N1 − 2,N2 − 1) becomes higher than the ring
level μ1(N1 − 2,N2 − 1), and the energy difference δ4 between
μ2(N1 − 2,N2 − 1) and μ1(N1 − 1,N2 − 2) is comparable to
the thermal width again. Electron will transfer from the core to
the reservoir via the ring level and we will have another small
peak. All the above processes can be treated as one period
and electrochemical capacitance peaks show a nearly periodic
amplitude modulation.

The exceptions of the amplitude modulation can also be well
explained in our model. As shown in Fig. 6, for the second low
peak the energy difference δ4 is actually smaller than δ1, which
will decrease the energy differences, δi (i = 1,2,3,4), for the
next amplitude modulation period. Such decrease continues
for another two more amplitude modulation periods until δ3

becomes comparable to the thermal expansion width. Then,
indirect electron transfer will happen and the second large
peak will become a small one. In addition, this small peak
becomes the start of next regular amplitude modulation period.
Consequently, we see the exceptions in Fig. 5, where only one
large peak is observed between two small ones.

For a quantitative understanding of the experimental results,
we next try to obtain the various charging energy scales and
their parameter dependence employing our earlier theoretical
results. One honeycomb cell is shown in Fig. 2(c). The
magnetic field mainly redistributes electrons between the two
compressible regions and only slightly changes the tunneling
rate, while the QPC voltage mainly changes the total electron
population in the dot. Therefore, the almost horizontal lines
correspond to the transfer of electrons from the core to the
ring, whereas the almost vertical lines indicate changes in
the electron number on the QD. The period to add one extra
electron to the dot is �VQPC = 1.01 mV. To transfer one
electron from the core to the ring, the corresponding energy
change of μ1 is related to a small QPC voltage change �Vin =
0.163 mV. Using Eq. (8), we then find the relation between
the voltage (field) scales of the honeycomb and the charging
energy. From

μ1(N1,N2,VQPC,B) = μ1(N1 + 1,N2,VQPC + �VQPC,B)

we obtain

�VQPC = |e|E1

CQPC1EC1 + CQPC2ECm

. (9)

From

μ1(N1,N2,VQPC,B) = μ1(N1 + 1,N2 − 1,VQPC + �Vin,B)

we obtain

�Vin = |e|Ein

CQPC1EC1 + CQPC2ECm

. (10)

Using the temperature dependence of the width of the
Coulomb resonance peaks [1], we obtain the QPC gate volt-
age and dot electrochemical potential transferring parameter
α = 0.144 eV/V, which is defined by α�VQPC = E1. Com-
bining it with Eqs. (9) and (10), we find that the single-
particle charging energy E1 = EC1 + �ε1 ≈ 145 μeV, Ein ≈
23 μeV, and Em = E1 − Ein ≈ 122 μeV. From the nearly
periodic amplitude modulation and the related energy diagram
in Fig. 6(c), we have Em + 2E1 ≈ E2 + 2Em, which gives
E2 = EC2 + �ε2 ≈ 169 μeV.

For the magnetic field dependence of μ1, our earlier analysis
show that the slope dμ1/dB is composed of two contributions,
i.e., the single-particle energy level part h̄e/2m∗ and the
self-consistent potential part β1 (dμ2/dB has two similar
contributions). With the magnetic field range obtained in
Fig. 2(c), we have

�B1(β1 + h̄e/2m∗) = −Ein. (11)

We then obtain the linear coefficient between the field and
the potential μ1, β1 ≈ −6.6 meV T−1, which is much larger
than h̄ωc/B (1.76 meV T−1). It indicates that the internal
electrostatic potential in the dot is a very sensitive function
of magnetic field. In our earlier analysis, we also found that
between two successive internal charge transfer processes, the
magnetic field variation �B1 + �B2 corresponds an energy
variation 2Ein:

(�B1 + �B2)(dμ2/dB − dμ1/dB)

= (�B1 + �B2)(β2 − β1) = 2Ein. (12)

Using the value of β1 obtained from Eq. (11), we then
obtain the linear coefficient between the field and the potential
μ2, β2 ≈ 2.9 meV T−1, which is much smaller than β1. One
possible explanation is that the charge density varies slower
in the center than that in the edge when B is changed. In
Fig. 2(c), we also have a smaller magnetic field range �B2,
which corresponds to the internal charge transfer process. It is
determined by the thermal width as well as the slope of both
μ1 and μ2, i.e., �B2(β2 − β1) ∼ kBTe. Combining with the
obtained values of β1 and β2, we then estimate the effective
electron temperature Te ∼ 90 mK, which agrees remarkably
well with the value (96 mK) obtained from the Coulomb
blockade spectrum.

As the energy change of the electrochemical potential is
directly related to the geometric capacitance elements [see
Eq. (A7) in Appendix], we next use it to roughly estimate
these capacitance elements and the related spatial extent of
the compressible and incompressible regions. For simplicity,
we neglect the mean single-level spacing �εi ≈ h̄ω2

0/ωc,
which is appropriate as ω0 for our large dot is very small
compared to ωc. Using the charge energy obtained earlier
and the energy-capacitance relations [see Eq. (A7) in Ap-
pendix], we find that the internal capacitance Cm ≈ 2 fF, which
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is much larger compared to former experiments with two
spin-degenerate Landau levels [31]. This implies that the two
spin-split Landau levels have stronger capacitive coupling and
offers us a way to investigate the effects of strong electron inter-
actions between different Landau levels affecting the transport.
In addition, we find CG1 = Cg1 + CQPC1 ≈ 0.77 fF and CG2 =
Cg2 + CQPC2 ≈ 0.38 fF. Hence, the outer compressible region
is approximately twice the area of the inner compressible
region if we assume the capacitance is proportional to the
plate area. We denote the width of the incompressible region,
the outer compressible region, and the inner compressible
region by w0, w1, and w2, respectively. The radius of the outer
compressible region is assumed to be the same as that of the dot
which is r ∼ 0.6 μm. Then, we use the capacitance formula
for a coplanar capacitor [27,31] to estimate the ratio w1/w0 =
1
4 exp(Cm/4εrε0r) ≈ 335, with εr = 13 for GaAs and ε0 being
the vacuum permittivity. Considering the area ratio (∼2) of
the two compressible regions, we finally find w0 ≈ 1 nm,
w1 ≈ 267 nm, and w2 ≈ 332 nm. The incompressible region
is one order of magnitude smaller than former estimation with
two spin-degenerate Landau levels [31]. This indicates that the
spatial separation between the two compressible regions due
to the spin-split energy (∼gμBB) is much smaller than that
due to the cyclotron energy (∼h̄ωc). Therefore, one advantage
of this system, compared to the real double-dot devices, is
that the internal coupling is much stronger, and it enables
us to investigate how interactions influence the dynamics of
single electrons on a much smaller spatial scale. Moveover,
the two compressible regions in our case have comparable
widths as they are from the same Landau level, while for the
two spin-degenerate Landau levels, the inner region was found
to be much larger than the outer region [31,32]. This further
strengthens the internal capacitive coupling between Landau
levels. According to a previous theory [33], the width of the
outer compressible regime w1 is directly related to the potential
profile w1 ∝ [dn(x)/dx]−1, where n(x) is the total electron
density and x is the distance from the dot edge. Considering
that dn(x)/dx is proportional to the electric field at x, the
large w1 then corresponds to a small electric field, i.e., a
slow spatial variation rate of potential, which agrees with our
charge-density model with a parabolic confinement.

V. CONCLUSION

In conclusion, we have measured the electrochemical
capacitance of an interacting mesoscopic capacitor in the
quantum Hall regime. We focused on the weak tunneling
regime where electrons are quantized on two well-separated
compressible regions inside the dot and can transfer between
these two regions. We found that both the periodicity and
amplitudes of the electrochemical capacitance oscillations are
modified by the charging energy and the internal electron
distribution, when the voltage of the quantum point contact
and the magnetic field are swept. The charge stability dia-
gram of the electrochemical capacitance shows a honeycomb
shape, which, together with all other capacitance properties, is
well understood by including the interactions with a two-dot
charging model. Our measurements indicate that the internal
capacitive coupling between the two confined spin-split lev-
els is strong and their electrostatic potential is sensitive to

magnetic field. As the charge relaxation time is proportional
to the electrochemical capacitance, we further infer that the
dynamic of single electrons also depends sensitively on the
internal charge transfer. The demonstrated technique is of
interest as a tool for fast and sensitive charge state readout
and may have important application in fermion-based quantum
information processing [34,35]. Operated out of equilibrium by
a sudden voltage, capacitor with strong Coulomb interaction
was predicted to have different relaxation time of charge and
spin [36], and can emit a sequence of multiple charge pulses
[15]. Moreover, many new effects due to strong interaction
may emerge in quantum electron optic experiments [10–12].
We hope that this work will stimulate further research in these
fields as well as the research in the self-consistent calculations
of dot potential for the dynamic transport.
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APPENDIX

In this appendix, we derive the electrostatic energy of
double-quantum-dot system. The total charge Q1(2) on dot 1
(2) as the sum of the charges on all the capacitors connected
to dot 1 (2) can be written as

Q1 = Cg1V1 + Cm(V1 − V2) + CQPC1(V1 − VQPC),

Q2 = Cg2V2 + Cm(V2 − V1) + CQPC2(V2 − VQPC). (A1)

We can rewrite it as(
Q1 + CQPC1VQPC

Q2 + CQPC2VQPC

)
=

(
C1 −Cm

−Cm C2

)(
V1

V2

)
, (A2)

where C1 = Cm + Cg1 + CQPC1 and C2 = Cm + Cg2 +
CQPC2. Using the above expression, we can write voltages on
the quantum dots as(

V1

V2

)
= 1

C1C2 − C2
m

(
C2 Cm

Cm C1

)(
Q1 + CQPC1VQPC

Q2 + CQPC2VQPC

)
.

(A3)

The electrostatic energy of the double-dot system is the sum
of the electrostatic energy stored on the dots and can be
conveniently expressed using the capacitance matrix U =
1
2

−→
V · −→

Q . For the case Q1 (2) = −N1 (2)|e| this becomes

U (N1,N2,Vg,VQPC) = 1

2
N2

1 EC1 + 1

2
N2

2 EC2 + N1N2ECm

+ f1(VQPC)+f2(VQPC,N1,N2), (A4)

f1(VQPC) = + V 2
QPC

2e2
(C2

QPC1EC1 + C2
QPC2EC2

+ 2CQPC1CQPC2ECm), (A5)

f2(VQPC,N1,N2) = VQPC

−|e| [CQPC1(N1EC1 + N2ECm)

+ CQPC2(N1ECm + N2EC2)], (A6)
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where

EC1 = e2

C1

1

1 − C2
m

C1C2

, EC2 = e2

C2

1

1 − C2
m

C1C2

, ECm = e2

Cm

1
C1C2
C2

m
− 1

. (A7)
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