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Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures
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We discuss neutral and charged complexes (biexcitons and trions) formed by indirect excitons in layered quasi-
two-dimensional semiconductor heterostructures. Indirect excitons—long-lived neutral Coulomb-bound pairs of
electrons and holes of different layers—have been known for semiconductor coupled quantum wells and have
recently been reported for van der Waals heterostructures such as double bilayer graphene and transition-metal
dichalcogenides. Using the configuration space approach, we derive the analytical expressions for the trion and
biexciton binding energies as a function of interlayer distance. The method captures essential kinematics of
complex formation to reveal significant binding energies, up to a few tens of meV for typical interlayer distances
∼3–5 Å, with the trion binding energy always being greater than that of the biexciton. Our results can contribute
to the understanding of more complex many-body phenomena such as exciton Bose–Einstein condensation and
Wigner-like electron-hole crystallization in layered semiconductor heterostructures.
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I. INTRODUCTION

Assemblies of particles featuring permanent electric-dipole
moments are interesting due to their inherent anisotropic
many-body effects resulted from the interparticle interaction
anisotropy in the assembly. Dipolar many-body systems have
been realized both in atomic physics and in solid-state physics
[1–3]. For layered solid-state heterostructures, in particular,
dipolar (or indirect) excitons—Coulomb-bound electron-hole
pairs in coupled semiconductor quantum wells (CQWs) where
the electrons and holes are confined to different quasimonolay-
ers of one semiconductor separated by the quasimonolayer of
another semiconductor—have been known for several decades
[4–35]. Indirect excitons in such systems can be coupled to
the light modes of properly designed photonic microcavities to
form dipolar exciton-polaritons (dipolaritons), offering control
over quantum phenomena such as electromagnetically induced
transparency, room-temperature Bose–Einstein condensation
(BEC), and adiabatic photon-to-electron transfer [36–40].

Very recently, indirect excitons have been observed in
double bilayer graphene systems [41] and in layered quasi-
two-dimensional (quasi-2D) transition-metal dichalcogenide
(TMD) heterostructures [42–50]. Here, the electron and hole
reside on neighboring monolayers, with their wave-function
overlap and associated exciton recombination rate greatly
reduced. Such indirect excitons have long lifetimes and so
are able to completely thermalize after the excitation to reveal
a variety of fundamental collective many-particle effects of
equilibrium quantum statistics, including BEC, superfluidity,
and Wigner crystallization earlier predicted theoretically but
only observed experimentally in part by now. Recent reviews
on physics and applications of cold dipolar excitons can be
found in Refs. [33–35].
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In most solid-state semiconductor nanostructures, excitons
(direct or indirect) coexist with free charge carriers [27–
37,40–50]. At high carrier densities, strong charge screening
greatly reduces the probability of the bound electron-hole
state formation [51,52]. At intermediate career densities, the
scattering of formed excitons by free carriers and lattice
vibrations affects the collective properties of excitonic systems
through their energy, momentum, phase, electrical and spin
polarization relaxation [27–30,53–55], resulting in the spectral
broadening and temperature lineshape variations of the exciton
resonances in the optical excitation spectra [56–60]. In the
process of inelastic scattering, an exciton can capture an extra
charge to form a charged bound three-particle complex—the
trion [61–65]. Such states were first predicted by Lampert
for bulk semiconductors [66]. Similarly, when the density of
excitons is high enough, their inelastic scattering can result
in the formation of the neutral complex of two excitons—
the biexciton [67–71]. Formation of biexcitons and trions,
although not detectable in bulk materials at room temperature,
plays a significant role in quantum confined systems of reduced
dimensionality such as quantum wells [69–73], nanowires
[67,68], nanotubes [74–77], and quantum dots [78–80]. Biex-
citon and trion excitations open up routes for controllable
nonlinear optics and spinoptronics applications, respectively.
The trion, in particular, has both net charge and spin, and
therefore can be controlled by electrical gates while being
used for optical spin manipulation, or to investigate correlated
carrier dynamics in low-dimensional materials.

A rigorous theoretical description of compound quantum
exciton systems such as biexciton and trion is a challenging
problem. A good number of works can be found in the literature
for exciton complexes in semiconductor nanostructures of
reduced dimensionality [81–104]. Most of them rely on brute
force computational techniques to study the complexes of
conventional (direct, zero permanent dipole moment) excitons
predominantly, with only a few theoretical and computational
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FIG. 1. Sketch of trion complex formed by an electron and a direct
exciton (a) and that formed by an electron and an indirect exciton (b)
in a bilayered structure with the interlayer distance d . In panel (a),
exciton configurations (h-e1) and (h-e2) are inequivalent. In panel (b),
they are equivalent (and can be viewed as two indirect excitons sharing
the same hole to form a negatively charged trion state) and so the
configuration space method can be used to evaluate the lowest ground-
state binding energy of the trion complex. (c) Sketch of biexciton
complex of two indirect excitons.

treatments addressing peculiar features of the biexciton com-
plexes formed by indirect excitons [90,91,100]. Here, we
consider both trion and biexciton states that are formed by
the indirect dipolar excitons in layered quasi-2D semicon-
ductor heterostructures, whose binding energies we derive
analytically as functions of the interlayer separation distance
and other parameters of the system. Figures 1(a) and 1(b)
show the difference between the trion complexes formed by
the direct and indirect excitons, respectively. The trion we
study is the charged indirect exciton—a charged three-particle
Coulomb-bound state formed by a pair of electrons (holes)
and a hole (electron) in which two like-charge particles are
confined to the same layer and the (third) opposite-charge
particle is confined to another layer separated by the interlayer
distance d. The neutral Coulomb-bound four-particle biexciton
complex we deal with has an interesting charge separation
feature where a pair of like-charge particles is confined to
one layer and another pair of the like-charge particles of
an opposite sign is confined to another layer, as shown
in Fig. 1(c).

We use the configuration space method [102] to derive
the binding-energy expressions for the trion and biexciton
complexes in Figs. 1(b) and 1(c). The configuration space
approach was originally pioneered by Landau [105], Gor’kov

and Pitaevski [106], Holstein and Herring [107] in their studies
of molecular binding and magnetism. The method has been
recently shown by one of us to be especially advantageous in
the case of quasi-one-dimensional (quasi-1D) semiconductors
[92,97], where it offers easily tractable, complete analytical
solutions to reveal universal asymptotic relations between the
binding energy of the complex of interest and the binding
energy of the exciton in the same nanostructure.

In the configuration space approach, the trion or biexciton
bound state forms due to the exchange under-barrier tunneling
between the equivalent configurations of the electron-hole
system in the configuration space of the relative electron-hole
motion coordinates. As an example, in the trion complex
of an electron and a direct exciton in Fig. 1(a), the exciton
configurations (h-e1) and (h-e2) are inequivalent, whereas they
are obviously equivalent (can be viewed as two equivalent
excitons sharing the same hole) in the trion complex of an
electron and an indirect exciton in Fig. 1(b). For such exciton
complexes the strength of the binding is controlled by the
exchange tunneling rate between the equivalent configurations
of the electron-hole system [102]. The binding energy is then
given by the tunnel exchange integral determined by means
of an appropriate variational procedure. As any variational
approach, the method gives an upper bound for the (negative)
ground-state binding energy of the exciton complex of interest.
It works both for semiconductor CQWs and for quasi-2D
layered van der Waals heterostructures such as TMD, double
bilayer, and gapped graphene systems. The method captures
the essential kinematics of the formation of the complex
and helps understand in simple terms the general physical
principles to underlie its stability.

The article is structured as follows. Section II formulates
the Hamiltonian, derives the tunnel exchange integral, and
obtains the binding-energy expression for the biexciton com-
plex formed by two indirect excitons as shown in Fig. 1(c).
Section III uses the results of Sec. II to address the simpler case
of the trion complex shown in Fig. 1(b). Section IV compares
and discusses the results of the previous two sections. Section V
summarizes and concludes the article.

II. BIEXCITON COMPLEX FORMED BY TWO
INDIRECT EXCITONS

This four-particle problem is initially formulated for the
two interacting ground-state indirect excitons as sketched in
Fig. 1(c). The problem can be seen to be effectively one
dimensional. Indeed, the lowest total energy of the four-particle
system of the two indirect excitons is obviously achieved
when the in-plane projections ρ1 and ρ2 of the relative
electron-hole coordinates r1 = re1 − rh1 and r2 = re2 − rh2

fall on the straight line connecting the centers of mass of
the excitons separated by the distance �ρ. Therefore, we are
going to build our solution strategy here along the lines earlier
reported by one of us for the biexciton and trion complexes in
quasi-1D semiconductor systems [102]—carbon nanotubes, in
particular [92,97].

The intraexciton motion can be legitimately treated as
being much faster than the interexciton center-of-mass relative
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motion since the exciton itself is normally more stable than
any of its compound complexes. Therefore, the adiabatic
approximation can be used to simplify the formulation of
the problem by separating out intra- and interexciton motion
coordinates. With no substantial loss of generality one can also
treat the parallel layers of semiconductor material as having
zero thickness. Such a model assumption can be justified by the
obvious fact that, due to the electron-hole Coulomb attraction
in indirect excitons, their ground-state energy can only be

the lowest when the electron and hole single-particle wave
functions are centered on the inner walls of the bilayer system,
regardless of how thick the actual material layers are (CQWs,
TMDs, or double bilayer graphene). With this in mind, one can
assign the two independent in-plane projections ρ1 and ρ2 of
the relative electron-hole coordinates r1 and r2 to represent the
effective configuration space (ρ1,ρ2), in which the ground-state
Hamiltonian of the two equivalent interacting indirect excitons
[sketched in Fig. 1(c)] takes the following form:

Ĥ (ρ1,ρ2,�ρ,d) = − 1

ρ1

∂

∂ρ1
ρ1

∂

∂ρ1
− 1

ρ2

∂

∂ρ2
ρ2

∂

∂ρ2

− 1√
ρ2

1 + d2
− 1√

ρ2
2 + d2

− 1√
(ρ1 − �ρ)2 + d2

− 1√
(ρ2 + �ρ)2 + d2

− 2√
[(σρ1 + ρ2)/λ + �ρ]2 + d2

− 2√
[(ρ1 + σρ2)/λ − �ρ]2 + d2

+ 2

|σ (ρ1 − ρ2)/λ + �ρ| + 2

|(ρ1 − ρ2)/λ − �ρ| . (1)

Here, “atomic units” are used [102,105–108], whereby the
distance and the energy are measured in units of the exciton
Bohr radius a∗

B = 0.529 Åε/μ and the exciton Rydberg energy
Ry∗ = h̄2/(2μm0a

∗2
B ) = 13.6 eVμ/ε2, respectively. The pa-

rameters μ = me/(λm0) and σ = me/mh stand for the exciton
reduced effective mass (in units of the free electron mass
m0) and the electron-to-hole effective mass ratio, respectively,
λ = 1 + σ , the constant ε represents the effective average
dielectric constant for the bilayer structure, and the image-
charge effects are neglected [108]. The first two lines in Eq. (1)
describe the two noninteracting 1D indirect excitons. Their
individual Coulomb potentials are symmetrized to account
for the presence of the neighbor a distance �ρ away as
seen from the ρ1- and ρ2-coordinate systems placed at their
respective exciton centers of mass and treated independently
[see Fig. 1(c)]. The last two lines are the interexciton exchange
Coulomb interactions—electron-hole (line next to last) and
hole-hole + electron-electron (last line), respectively.

The strong transverse confinement in reduced dimensional-
ity semiconductors is known to result in the mass reversal effect
[52,109], whereby the bulk heavy hole state (the one that forms
the lowest excitation energy exciton) acquires a longitudinal
mass comparable to the bulk light hole mass (≈me), to result
in mh ≈ me in our case. So, we keep σ = 1 in Eq. (1) in
what follows for simplicity, which thereby provides the upper
bounds for the (negative) ground-state binding energies of the
exciton complexes of interest, so that the experimental binding
energies in systems of relevance can possibly exceed but cannot
be less than those we are about to derive.

The biexciton binding energy EXX as a function of the
interlayer distance d is given by EXX(d) = Eg − 2EIX(d),
where Eg is the lowest eigenvalue of the Hamiltonian (1) and
EIX is the binding energy of the ground-state indirect exciton.
Negative EXX indicates that the biexciton is stable with respect
to the dissociation into two isolated indirect excitons. The
eigenvalue problem for the indirect exciton was earlier studied
by Leavitt and Little [108]. Their results we use here are as

follows (atomic units):

EIX(d) = α2 − 4α + 4α4d2E1(2αd) exp (2αd)

1 + 2αd
. (2)

Here, E1(x) = ∫ ∞
x

dte−t /t is the exponential integral and

α = 2

1 + 2
√

d
. (3)

The corresponding wave function of the in-plane relative
electron-hole motion in the ground-state indirect exciton is of
the following form:

ψIX(ρ,d) = N exp[−α(
√

ρ2 + d2 − d)], (4)

with the normalization constant

N = 4√
1 + 4

√
d + 8d(1 + √

d)
(5)

determined by the condition∫ ∞

0
dρρ|ψIX(ρ,d)|2 = 1.

The equivalency of the two indirect excitons implies their
identity and, since electrons and holes are fermions, the
fact that the total wave function of the complex of the
two noninteracting (or weakly interacting at large finite �ρ)
excitons—two composite bosons—must be symmetric with
respect to their interchange. This can only be achieved with
its spin and coordinate functions being either symmetric or
antisymmetric simultaneously—both for the biexciton and for
the trion sketched in Figs. 1(c) and 1(b), respectively—with
the coordinate function of the following explicit form


g,u ∼ 1√
2

[φIX(ρ1,ρ2) ± φIX(ρ2,ρ1)]

= 1√
2

[φIX(ρ1,ρ2) ± φIX(ρ1 − �ρ,ρ2 + �ρ)]. (6)
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FIG. 2. Schematic of the tunnel exchange coupling configuration
for the two ground-state indirect excitons to form the biexciton (or the
trion) complex. The coupling occurs in the configuration space of the
two independent in-plane relative electron-hole motion coordinates,
ρ1 and ρ2, of each of the excitons (separated by the center-of-mass–
to–center-of-mass distance �ρ—cf. Fig. 1). The coupling is due to the
tunneling of the system through the potential barriers formed by the
two single-exciton Coulomb interaction potentials (bottom) given by
the second line in Eq. (1), between the equivalent states represented
by the isolated two-exciton wave functions given by Eqs. (11), (4),
and (7) and shown on the top.

Here, φIX(ρ1,ρ2) = ψIX(ρ1,d)ψIX(ρ2,d) with ψIX given by
Eq. (4), and the two terms are localized at ρ1 = ρ2 = 0 and
ρ1 = −ρ2 = �ρ, respectively, to represent the two equivalent
configurations for the two noninteracting indirect excitons in
Figs. 1(c) and 1(b). Since the coordinate wave function of the
quantum ground state must be nodeless [105], the total ground-
state wave function of the complex must be symmetric in
coordinates to hold with 
g in Eq. (6) for large �ρ � 1, and it
can be multiplied by an unknown even function of coordinates
to be found from the Hamiltonian (1) in order to account for
the interexciton interaction at shorter �ρ � 1 in the manner
developed earlier for the hydrogen molecule and molecular
ion in seminal works by Landau, Gor’kov, Pitaevski, Holstein,
and Herring [105–107], and recently adapted by one of us for
the biexciton and trion complexes in quasi-1D semiconductors
[92,97,102]. Assuming further that both indirect excitons are in
their spin-singlet states as dictated by the hyperfine interactions
of their nonidentical oppositely charged fermionic constituents
(electron and hole) [110], one arrives at the exciton complex
featuring the ground state with identical like-charge fermions
having collinear spins while being charge separated in different
parallel layers. In such a complex, the identical fermions avoid
each other at short interexciton distances �ρ < 1 because
of the Pauli exclusion principle, and so the formation of the
complex is only possible due to the asymptotic Coulomb
exchange coupling at �ρ � 1. This is the domain of �ρ for
which we are going to develop our theory in what follows.

Figure 2, bottom, shows schematically the potential-energy
surface of the two closely spaced noninteracting indirect exci-
tons [second line in Eq. (1)] in the configuration space (ρ1,ρ2).
The surface has four symmetrical minima to represent isolated
equivalent two-exciton states (shown in Fig. 2, top). These

minima are separated by the potential barriers responsible for
the tunnel exchange coupling between the equivalent states
of the system in the configuration space. The coordinate
transformation

x = ρ1 − ρ2 − �ρ√
2

, y = ρ1 + ρ2√
2

(7)

places the origin of the new coordinate system (x,y) into the
intersection of the two tunnel channels between the respective
potential minima in Fig. 2, whereby the exchange-splitting
formula of Refs. [105–107] takes the form

Eg,u(�ρ) − 2EIX = ∓J (�ρ). (8)

Here, Eg,u(�ρ) are the ground-state and excited-state
energies—the eigenvalues of the Hamiltonian (1) correspond-
ing to 
g,u in Eq. (6)—of the two coupled excitons as functions
of their center-of-mass–to–center-of-mass separation distance
�ρ, and J (�ρ) is the tunnel exchange coupling integral
responsible for the bound state formation of the two excitons.
For the biexciton complex, this takes the form [92,102]

JXX(�ρ) = 2

3!

∫ �ρ/
√

2

−�ρ/
√

2
dy

∣∣∣∣ψXX(x,y)
∂ψXX(x,y)

∂x

∣∣∣∣
x=0

, (9)

with ψXX(x,y) being the solution to the Schrödinger equation
with the Hamiltonian (1) transformed to the (x,y) coordinates
according to Eq. (7). The factor 2/3! comes from the two
equivalent tunnel channels being present in the biexciton
problem as one can see in Fig. 2, to mix up the three equiv-
alent indistinguishable two-exciton states in the configuration
space—one state is given by the two minima on the x axis and
two more states are represented by each of the minima on the
y axis.

The function ψXX(x,y) in Eq. (9) is sought in the form

ψXX(x,y) = φIX(x,y) exp [−SXX(x,y)], (10)

where

φIX(x,y) = ψIX[ρ1(x,y),d]ψIX[ρ2(x,y),d] (11)

is the product of the two single-exciton wave functions (shown
in Fig. 2, top) given by Eq. (4) in which ρ1 and ρ2 are expressed
in terms of x and y by using Eq. (7). The function φIX(x,y) rep-
resents the isolated two-exciton state centered at the minimum
ρ1 = ρ2 = 0 (or x = −�ρ/

√
2, y = 0) of the configuration

space potential in Fig. 2. This is the approximate solution to
the Schrödinger equation with the Hamiltonian given by the
first two lines in Eq. (1). The unknown function SXX(x,y) in
Eq. (10) is assumed to be smooth and slowly varying in the
domain of interest—the square |x|, |y| � �ρ/

√
2 in Fig. 2—to

account for the major deviation of ψXX(x,y) from φIX(x,y) in
its “tail area” x ∼ y ∼ 0 due to the tunnel exchange coupling
to another equivalent isolated two-exciton state centered at
ρ1 = �ρ,ρ2 = −�ρ (or x = �ρ/

√
2, y = 0).

Substituting Eq. (10) into the Schrödinger equation with the
Hamiltonian (1) pretransformed to the (x,y) coordinates, one
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obtains [
1

φIX

∂φIX

∂x
− x + �ρ/

√
2

y2 − (x + �ρ/
√

2 )2

]
∂SXX

∂x
+

[
1

φIX

∂φIX

∂y
+ y

y2 − (x + �ρ/
√

2 )2

]
∂SXX

∂y

= 1√
(y/

√
2 + �ρ)2 + d2

+ 1√
(y/

√
2 − �ρ)2 + d2

− 1

|x/
√

2 + 3�ρ/2| − 1

|x/
√

2 − �ρ/2| , (12)

where the right-hand side is half of the interexciton exchange Coulomb interaction energy given by the last two lines in the
Hamiltonian (1). This is valid up to negligible terms of the order of the interexciton van der Waals energy (∼1/�ρ6) and up to
the second-order derivatives of SXX (a slowly varying function) [105–107]. This can be further simplified in view of the fact
that we only need SXX(x,y) in the neighborhood of the origin of the (x,y) coordinate system to be able to evaluate the tunnel
exchange coupling integral (9) to an acceptable accuracy. Bearing in mind that �ρ > 1 since, in view of the reasons above, in
the stable complex of two excitons the interexciton center-of-mass–to–center-of-mass distance should be greater than the exciton
Bohr radius, one has the following series expansions:

1

φIX

∂φIX

∂x
− x + �ρ/

√
2

y2 − (x + �ρ/
√

2 )2
≈

√
2

(
−α + 1

�ρ

)
,

1

φIX

∂φIX

∂y
+ y

y2 − (x + �ρ/
√

2 )2
≈ − 2y

�ρ2
, (13)

1√
(y/

√
2 + �ρ)2 + d2

+ 1√
(y/

√
2 − �ρ)2 + d2

≈ 2

�ρ
+ y2 − d2

�ρ3
+ 2y4 − 12y2d2 + 3d4

4�ρ5
,

to the first few orders in small parameter 1/�ρ, whereby Eq. (12) simplifies to take the form as follows:

√
2

(
−α + 1

�ρ

)
∂SXX

∂x
≈ 2

�ρ
− 1

|x/
√

2 + 3�ρ/2| − 1

|x/
√

2 − �ρ/2| , (14)

to leading order in 1/�ρ. This is to be solved with the boundary
condition SXX(−�ρ/

√
2,y) = 0 coming from the fact that

ψXX(−�ρ/
√

2,y) = φIX(−�ρ/
√

2,y). In the domain where
|x|, |y| � �ρ/

√
2 we are interested in (see Fig. 2), one obtains

SXX(x,y) = �ρ

α�ρ − 1

(
ln

∣∣∣∣∣x + 3�ρ/
√

2

x − �ρ/
√

2

∣∣∣∣∣ −
√

2x

�ρ
− 1

)
.

(15)

This function is only an approximation of the actual function
SXX(x,y) defined by the partial differential equation (12).
However, this approximation is good enough in the main
domain of interest here—in the neighborhood of the origin
of the (x,y) coordinate system in Fig. 2 where the main tunnel
probability flow occurs.

The function one obtains by plugging Eq. (15) into Eq. (10)
can be used to evaluate the tunnel exchange coupling integral
in Eq. (9). In so doing, it is legitimate to neglect a very weak y

dependence of the integrand because it was already neglected
in Eqs. (14) and (15). With this one has

JXX(�ρ) = 2N4

3
�ρ

(
α�ρ√

�ρ2 + 4d2
+ 1

3(α�ρ − 1)

)

×
(
e

3

)2�ρ/(α�ρ−1)

exp[−2α(
√

�ρ2 + 4d2 − 2d)].

(16)

The structure of this expression suggests that it has the maxi-
mum at some �ρ = �ρ0. Indeed, it tends to become a negative

when α�ρ < 1 in the second term in the parentheses in front
of the exponential factor. This will always be the case when d is
large enough to make this term−1/3 withα = 2/(1 + 2

√
d) ≈

1/
√

d ∼ 0, whereby the first term in the parentheses becomes
negligible. For α�ρ > 1, on the other hand, this expression
is seen to be manifestly positive, approaching zero as �ρ

increases. Consequently, the energy Eg(�ρ) in Eq. (8) will
have the negative minimum (biexcitonic state) at �ρ = �ρ0.
Extremum seeking for the function JXX(�ρ) in Eq. (16),
subject to the condition �ρ > 1 in order to only include the
leading terms in 1/�ρ for consistency with Eqs. (14) and (15),
results in

�ρXX
0 = 7α − 2/3

2α2
. (17)

One last important step to add to our analysis is to take into
account the higher order expansion terms of the interexciton
long-range interaction energy at a distance such as the dipolar
(DI) and quadrupolar (QI) interaction contributions—which
are greater than the interexciton van der Waals interaction
energy that we neglected in the main equation (12), which
are present in the square-root series expansion in Eq. (13), and
which we did miss out on using the leading term approximation
in 1/�ρ in Eqs. (14) and (15). We complete this step by
including these terms as given by Eq. (13) taken at y = 0,
to write down the final expression for the biexciton binding
energy as follows:

EXX(d) = −JXX

(
�ρXX

0

) + 2d2(
�ρXX

0

)3 − 3d2

2
(
�ρXX

0

)5 . (18)
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Equations (16)–(18) and (3) solve the ground-state binding
energy problem for the biexciton complex formed by the two
indirect dipolar excitons in layered quasi-2D nanostructures.

III. CHARGE-COUPLED INDIRECT EXCITON:
THE TRION

The trion system we study here is a charged three-particle
complex formed by an indirect exciton and a hole (electron).
In such a complex, two like-charge carriers are confined to the
same layer and the third (opposite-charge) carrier is confined
to another layer. The system can be viewed as two like-charge
carriers sharing the third carrier of an opposite sign to form
two equivalent indirect exciton configurations [as shown in
Fig. 1(b) for the negative trion complex of the two electrons
sharing the same hole]. The binding energy can then be found
by using a modification of the Hamiltonian (1), in which the
first two lines are the same as in Eq. (1), the line next to last
is absent, and only one term is present in the last line—either
the first or the second one for the positive and negative trion
complex, respectively. With σ = 1 we have chosen for the
reasons explained in Sec. II, the positive-negative trion binding
energy difference disappears, and the quantity we are about
to derive will provide the upper bound for the (negative)
ground-state binding energy of the trion complex of interest.

Just like in the case of the biexciton above, the treatment
of the trion problem starts with the coordinate transformation
(7) to bring the Hamiltonian from the original configuration
space (ρ1,ρ2) into the coordinate space (x,y), whereby the
origin and both coordinate axes can be adjusted as shown in
Fig. 2 to capture the maximal tunnel flow that occurs at the
intersection of the two tunnel channels between the respective
minima of the potential energy surface. The tunnel exchange
splitting integral in Eq. (8) now takes the form [97,102]

JX
∗ (�ρ) =

∫ �ρ/
√

2

−�ρ/
√

2
dy

∣∣∣∣ψX
∗ (x,y)

∂ψX
∗ (x,y)

∂x

∣∣∣∣
x=0

, (19)

where ψX
∗ (x,y) is the ground-state wave function of the

Schrödinger equation with the Hamiltonian (1) modified to the
negative trion case and transformed to the (x,y) coordinates as
described above. [We do the negative trion both for definiteness
and for simplicity since the positive trion case would require
a counterpart of the transformation (7) to be used to bring the
first term in the last line of the Hamiltonian (1) to the form
one obtains using Eq. (7) for the second term in the negative
trion case.] The tunnel exchange current integral JX

∗ (�ρ) is
due to the electron position exchange relative to the hole; see
Fig. 1(b). This corresponds to the tunneling of the entire three-
particle system between the two equivalent indistinguishable
configurations of the two indirect excitons sharing the same
hole in the configuration space (ρ1,ρ2). They are those given
by the minima at ρ1 = ρ2 = 0 and ρ1 = −ρ2 = �ρ in Fig. 2.
Such a tunnel exchange binds the three-particle system to form
a stable trion state.

Like in the case of the biexciton, one seeks the function
ψX

∗ (x,y) in the form

ψX
∗ (x,y) = φIX(x,y) exp[−SX

∗ (x,y)], (20)

where φIX is given by Eqs. (11), (4), and (7) as before, and
SX

∗ stands for an unknown smooth slowly varying function

to account for the deviation of ψX
∗ from φIX in the “tail

area” (x ∼ y ∼ 0) due to the tunnel exchange coupling of
the isolated two-exciton state centered at ρ1 = ρ2 = 0 (x =
−�ρ/

√
2, y = 0) to another equivalent isolated two-exciton

state centered at ρ1 = −ρ2 = �ρ (x = �ρ/
√

2, y = 0) as
shown in Fig. 2. Substituting Eq. (20) into the Schrödinger
equation with the negative trion Hamiltonian pretransformed to
the (x,y) coordinates and following exactly the steps described
above for the biexciton case, one obtains

√
2

(
−α + 1

�ρ

)
∂SX

∗

∂x
≈ − 1

|x/
√

2 − �ρ/2| , (21)

with the solution of the form

SX
∗ (x,y) = �ρ

α�ρ − 1
ln

∣∣∣∣∣
√

2�ρ

x − �ρ/
√

2

∣∣∣∣∣ (22)

to fulfill the boundary condition SX
∗ (−�ρ/

√
2, y) = 0 in

the domain of interest |x|, |y| � �ρ/
√

2. Using this in the
tunnel exchange coupling integral of Eq. (19), by analogy with
Eq. (16) one now obtains

JX
∗ (�ρ) = 2N4�ρ

(
α�ρ√

�ρ2 + 4d2
+ 1

α�ρ − 1

)

×
(

1

2

)2�ρ/(α�ρ−1)

exp[−2α(
√

�ρ2 + 4d2 − 2d)].

(23)

This expression has the same properties as its biexciton
counterpart in Eq. (16), with the only difference being that now
the same extremum-seeking procedure applied to the function
JX

∗ (�ρ) results in

�ρX∗
0 = 7α − 2

2α2
, (24)

to give the trion binding-energy expression in the form

EX
∗ (d) = −JX

∗
(
�ρX∗

0

)
. (25)

IV. DISCUSSION

Figure 3 shows the binding energies in atomic units for
the biexciton and trion complexes calculated according to
Eqs. (16)–(18) and Eqs. (23)–(25), respectively, as functions of
the interlayer separation distance. Since the long-range DI and
QI terms in Eq. (18) have the opposite signs, being repulsive
and attractive, respectively, the biexciton binding energy is
presented by three curves calculated with no DI and QI terms
included, with only the DI term included, and with both DI
and QI terms included, respectively. The QI term is seen not
to contribute much at all. Therefore, we only take into account
the DI term in Eq. (18) in the discussion of our results in what
follows. For the purpose of comparison, we also include in
Fig. 3 the graph of the biexciton binding energy calculated
numerically by using the stochastic variational method (SVM)
by Meyertholen and Fogler [91]. One can see that our analytical
theory agrees well with the SVM. The comparison of the SVM
with other numerical techniques as well as the detailed analysis
of their advantages and limitations can be found in Ref. [91].

Figure 3 shows the presence of the critical threshold
interlayer separation dc ≈ 0.9 for the biexciton complex—the
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FIG. 3. Binding energies of the biexciton and trion complexes as
functions of the interlayer separation distance, calculated in atomic
units according to Eqs. (16)–(18) and Eqs. (23)–(25), respectively.
Biexciton binding energy is presented by three different curves
calculated with no long-range interaction terms included, with only
the dipolar interaction term included, and with both dipolar and
quadrupolar interaction terms included, respectively. For comparison,
also shown (circles connected by dashes) is the biexciton binding
energy reported earlier by Meyertholen and Fogler [91], obtained
numerically using the SVM.

cutoff distance with the biexciton formation being only possi-
ble for d < dc due to the long-range dipolar repulsion of the
two indirect excitons (see, however, Ref. [100])—in agreement
with what was earlier reported by Meyertholen and Fogler [91].
A similar repulsive interaction is absent from the trion com-
plex, and so no critical distance exists for the trion and its bind-
ing energy goes down to zero exponentially always exceeding
that of the biexciton as the interlayer separation increases.

As it follows from our original model Hamiltonian (1),
the binding energies in Eqs. (18) and (25) are functions of
the interlayer distance d, the exciton reduced effective mass
μ, and the effective average dielectric constant ε for the
bilayer structure. Figure 4 presents the biexciton and trion
binding energies calculated in absolute units as functions of
d and μ with ε = 1 in Fig. 4(a) and ε = 2.5 in Fig. 4(b) for
comparison. Both of the dielectric constants we have chosen
are representative of quasi-2D layered van der Waals materials
such as double bilayer graphene [41,103], gapped bilayer
graphene [111,112], and few-layer TMD systems [42–50,55],
where the material layers are generally surrounded by air,
or by dielectrics with relatively small permittivities. Hence,
the value ε = 1 is expected to represent reasonably well
the interlayer electron-hole Coulomb interaction in indirect
excitons, whereas ε = 2.5 corresponds precisely to εeff = 5
reported recently in Ref. [55] as being the effective dielectric
screening parameter to give a realistic binding energy estimate
of ∼0.5 eV for direct 2D excitons in TMD monolayers (with
μ = 0.25m0 and the fourfold increased Rydberg constant
typical of 2D confinement as opposed to the unchanged atomic
Rydberg of 13.6 eV we use here). We note, however, that in
our case of the complexes formed by indirect excitons, the
actual intralayer Coulomb screening weakens the repulsion
between the like-charge particles at not too long distances
to increase the overall stability for both biexciton and trion.
Therefore, one should expect their actual binding energies to be

FIG. 4. Binding energies of the biexciton and trion complexes
as functions of the interlayer separation distance and the exciton
reduced effective mass, calculated in absolute units according to
Eqs. (16)–(18) and Eqs. (23)–(25), respectively, for (a) ε = 1 and (b)
ε = 2.5. In panel (a), the biexciton binding energy is presented by the
two different graphs calculated with no long-range interaction terms
included and with the dipolar interaction term included, respectively,
for the purpose of comparison.

greater than those our theory predicts, which is still consistent
with the statement we have made above to emphasize that our
model provides the upper bound for the (negative) ground-state
binding energies of the biexciton and trion complexes formed
by indirect excitons.

In Fig. 4(a), two different graphs are presented for the
biexciton binding energy—calculated with and without the
long-range DI term included in Eq. (18), respectively—to
compare with that for the trion. One can see that taking account
of the long-range dipolar repulsion in the system of two indirect
excitons is important to obtain the correct estimate for the
biexciton binding energy. With no DI term included one obtains
an illusive crossover behavior for the biexciton and trion
binding energies, whereby being less for relatively small μ and
d the biexciton binding energy increases to become greater than
that of the trion with μ and d increasing. This is quite similar
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to what was reported earlier for quasi-1D biexciton and trion
systems [97]. For compound quasi-1D exciton systems, this is
a generic feature resulted from the fact that greater μ, while not
affecting significantly the single-charge tunnel exchange in the
trion complex, makes the neutral biexciton complex generally
more compact to facilitate the mixed charge tunnel exchange
in it and thus to make the biexciton binding energy greater
than that of the trion. This feature is suppressed in quasi-2D
complexes of indirect excitons due to their long-range dipolar
repulsion, which is absent from the trion complex to keep its
binding energy always being greater than that of the biexciton
as one can see in Fig. 4(a). One can also see that the biexciton
formation cutoff distance dc is a rapidly decreasing function
of μ—obviously due to the fact that the biexciton complex
tends to get more compact with increasing μ, thereby loosing
its ability to withstand the interlayer distance increase.

From Fig. 4(b) one can see that the features just described
are preserved for ε = 2.5 as well, although the increased
dielectric screening results in the overall binding energy
decrease both for the biexciton and for the trion to roughly
the same extent. The binding energies of both complexes
are seen to be only weakly μ dependent while exceeding
10 meV and a few tens of meV for the biexciton and trion,
respectively, at interlayer separations d � 5 Å typical of
layered van der Waals heterostructures. For d greater than that
the trion graphs both in Fig. 4(b) and in Fig. 4(a) suggest
that the formation of trions can still be quite possible at
low temperatures in layered semiconductor materials with
relatively small μ∼ 0.01m0 – 0.06m0 such as CQWs of some
of conventional group-IV/III-V/II-VI semiconductors [109],
whereas the biexciton formation is hardly possible with no
extra lateral confinement [17,18]. Comparing Figs. 4(b) and
4(a), one can also see that the enhanced screening leads to
the increase of the biexciton formation cutoff distance dc,
especially for greater μ. The physical reason is that the Bohr
radius increase with ε, on the one hand, and the Rydberg
constant increase with μ, on the other, make the exciton larger
in size while still keeping it stable enough to be able to form
biexciton complexes at larger interlayer separation distances.

Recently [98], the problem of the trion complex formation
in conventional GaAs/AlGaAs semiconductor CQWs was
studied theoretically in great detail for trions composed of
a direct exciton and an electron (or a hole) located in the
neighboring quantum well as sketched above in Fig. 1(a).
Significant binding energies were predicted on the order of
10 meV at the interwell separations d ∼ 10–20 nm for the
lowest energy positive and negative trion states, allowing the
authors to propose a possibility for the trion Wigner crystal-
lization phenomenon. For laterally confined semiconductor
CQW heterostructures, the experimental evidence for the con-
trollable formation of the multiexciton Wigner-like molecular
complexes of indirect excitons (single exciton, biexciton,
triexciton, etc.) was reported recently as well [17]. Significant
binding energies (over 10 meV for d � 5 Å) for the biexciton
and trion complexes formed by the indirect excitons we report
about here suggest that this strongly correlated multiexciton
phenomenon can also be realized in the quasimonolayer van
der Waals heterostructures such as double bilayer graphene
[41,103], gapped bilayer graphene [111,112], and few-layer
TMD systems [42–50,55].

The overall stability of strongly correlated multiexciton
structures depends on the stability of their elementary com-
ponents, their building blocks—trions and biexcitons. Under-
standing of the basic principles of the trion and biexciton
formation is therefore important to understand the nature of the
formation of strongly correlated many-particle electron-hole
states that are of direct relevance to important fundamental
physical phenomena such as the said Wigner crystallization,
exciton BEC, and superfluidity. For example, one can imagine
a coupled charge-neutral “zigzag-shaped” electron-hole struc-
ture formed by two trions shown in Fig. 1(b), one positively and
one negatively charged. This six-particle Wigner-like structure
will be electrically neutral with positive and negative charge
carriers separated in different layers, and it will have the total
spin of zero (assuming that all of its constituents are spin-1/2
fermions) with nonzero alignment of single-particle spins in its
ground state. Such a correlated electron-hole complex can also
be viewed as a triexciton—a coupled state of the three indirect
singlet excitons. Adding one more charge carrier (electron or
hole) to this correlated electron-hole state turns it into the
state of nonzero net charge and spin with other features still
preserved, to allow precise electro- and magnetostatic control
and manipulation by its optical and spin properties. This
opens up new routes for nonlinear optics and spinoptronics
applications with indirect excitons in quasi-2D semiconductor
heterostructures.

V. CONCLUSION

We consider the trion and biexciton states formed by
indirect (dipolar) excitons in layered quasi-2D semiconductor
heterostructures. The trion state we are looking at is a charged
three-particle Coulomb-bound electron-hole complex with the
two like-charge particles confined to the same layer and
the third (opposite sign) charge particle confined to another
layer. The charge-neutral biexciton state we deal with is a
Coulomb-bound four-particle electron-hole complex with an
interesting charge separation feature where a pair of like
charges is confined to one layer and another pair of like
charges of an opposite sign is confined to another layer. We
use the configuration space method developed earlier by one
us for quasi-1D excitonic systems [102] to obtain analytical
expressions for the binding energies of the biexciton and trion
complexes as functions of the interlayer separation distance,
the exciton reduced effective mass, and the effective dielectric
constant of the system. The method captures the essential
kinematics of the complex formation to reveal that, despite a
rapid decrease with distance, the binding energies can exceed
10 meV and a few tens of meV for the biexciton and trion,
respectively, for the interlayer distances ∼3–5 Å typical of
van der Waals heterostructures. Indirect excitons, biexcitons,
and trions formed by indirect excitons control the forma-
tion of strongly correlated (Wigner-like) electron-hole crystal
structures. Significant binding energies we predict herewith
suggest that this strongly correlated multiexciton phenomenon
of Wigner crystallization can be realized in layered van der
Waals heterostructures such as double bilayer graphene and
few-layer TMD systems, to open up new avenues for nonlinear
coherent optical control and spinoptronics applications with
indirect excitons.
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Note added in proof. Recently, it has come to our attention
that similar problems were lately addressed numerically by
Witham et al. [113]. They used variational and diffusion quan-
tum Monte Carlo simulations in their studies. Their numerical
results agree quite well with our analytical theory reported
here.
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