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Realistic picture of helical edge states in HgTe quantum wells
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We propose a minimal effective two-dimensional Hamiltonian for HgTe/CdHgTe quantum wells (QWs)
describing the side maxima of the first valence subband. By using the Hamiltonian, we explore the picture of
helical edge states in tensile and compressively strained HgTe QWs. We show that both dispersion and probability
density of the edge states can differ significantly from those predicted by the Bernevig-Hughes-Zhang (BHZ)
model. Our results pave the way towards further theoretical investigations of HgTe-based quantum spin Hall
insulators with direct and indirect band gaps beyond the BHZ model.
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I. INTRODUCTION

The inverted HgTe/CdHgTe quantum well (QW) is the first
two-dimensional (2D) system in which a quantum spin Hall
insulator (QSHI) state was theoretically predicted [1] and then
experimentally observed [2–4]. The origin of the topologically
nontrivial QSHI state is caused by the inverted band structure
of bulk HgTe, which leads to a peculiar confinement effect
in HgTe/CdHgTe QWs. Specifically, in narrow QWs, the first
electronlike subband E1 lies above the first holelike level H1,
and the system is characterized by normal band ordering with
a trivial insulator state. As the QW width d is varied [see
Fig. 1(a)], the E1 and H1 subbands are crossed [5], and the
band structure mimics a linear dispersion of massless Dirac
fermions [6]. When d exceeds the critical width dc, an inversion
of the E1 and H1 levels drives the system in the QSHI state with
a pair of gapless helical edge states topologically protected due
to time-reversal symmetry [1].

So far, the theoretical description of the phase transition
between trivial and QSHI states in HgTe QWs has been based
on the Bernevig-Hughes-Zhang (BHZ) 2D model [1]. The
latter is derived from the Kane Hamiltonian [7], which includes
�6, �8, and �7 bulk bands with the confinement effect. Within
the representation defined by the basis states |E1,+〉, |H1,+〉,
|E1,−〉, |H1,−〉, the effective 2D Hamiltonian has the form

H2D(k) =
(

HBHZ(k) 0
0 H ∗

BHZ(−k)

)
, (1)

where the asterisk stands for complex conjugation, k = (kx,ky)
is the momentum in the QW plane, and HBHZ(k) = εkI2 +
da(k)σa is the BHZ Hamiltonian [1]. Here, I2 is a 2 × 2
unit matrix, σa are the Pauli matrices, εk = C − D(k2

x +
k2
y), d1(k) = −Akx, d2(k) = −Aky , and d3(k) = M − B(k2

x +
k2
y). The structure parameters C,M,A,B, and D depend on d,

strain, the barrier material, and external conditions. The mass
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parameter M describes inversion between the E1 and H1 sub-
bands: M > 0 corresponds to a trivial state, while for a QSHI
state, M < 0. We note that H2D(k) has a block-diagonal form
because the terms which break inversion symmetry and axial
symmetry around the growth direction are neglected [8,9]. The
latter is a quite good approximation for symmetric HgTe QWs.
The main advantage of the BHZ Hamiltonian is that it allows
analytical description of both bulk and edge states [10,11].
Therefore, it is widely used as a starting point in theoretical
investigations of various effects arising in the QSHI state of
HgTe QWs [12–23].

However, the BHZ Hamiltonian can be applied to HgTe
QWs only for a special situation when the E1 and H1 subbands
are very close in energy. In particular, for HgTe/Cd0.7Hg0.3Te
QWs grown on a (001) CdTe buffer, the BHZ model is
applicable to narrow QWs in a width range of approximately
5.0–7.3 nm [see Fig. 1(a)]. Moreover, even in this range,
it fits well the conduction subband, while for the valence
subband, the BHZ model describes only the states at small k.
Indeed, Fig. 1(b) presents a comparison of band structure for a
7-nm-wide QW calculated within the BHZ model and with a
realistic approach based on the Kane Hamiltonian. Strikingly,
the side maxima arising in the valence subband are ignored
within the BHZ model.

A further increase in the QW width enhances the role of
side maxima. At d > 7.3 nm, the top of the valence subband
at k = 0 lies below the side maxima, and the QW has inverted
an indirect band gap. In wider HgTe QWs [d > 8.7 nm; see
Fig. 1(a)], the E1 subband falls below the H2 one, so the
principal gap is formed between the H1 and H2 subbands. We
note that inversion between the E1 and H2 subbands does not
deny the existence of the gapless helical edge states in HgTe
QWs, as experimentally confirmed by Olshanetsky et al. [24].

In this work, we propose a minimal effective 2D model
which describes the side maxima in the valence subband and
qualitatively reproduces the band structure calculations based
on the Kane Hamiltonian, whose validity is confirmed by a
large variety of experiments performed using different tech-
niques [2–4,6,25–33]. By using the derived 2D Hamiltonian,
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FIG. 1. (a) Evolution of electronlike (blue curves) and hole-
like (red curves) subbands (at k = 0) as a function of QW width
d in a (001) HgTe/Cd0.7Hg0.3Te QW grown on a CdTe buffer.
(b) Band structure of the 7-nm-wide QW, calculated within different
approaches. Positive values of k correspond to the [100] crystallo-
graphic orientation. Parameters for HBHZ(k),H3×3(k), and H4×4(k)
are provided in Appendix A. The second electronlike E2 subband lies
significantly higher in energy. (c) and (d) Relative contributions from
electronlike fE and holelike fH states to the E1 and H1 subbands
as a function of quasimomentum k. The solid curves correspond to
the calculations based on the Kane Hamiltonian [7], while the dashed
curves are the results within the BHZ model [1].

we explore a picture of the edge states in HgTe-based QSHIs
with direct and indirect band gap.

II. EFFECTIVE 2D MODEL

To extend the limits of the BHZ model, we take into
consideration an additional H2 subband, which is the one
closest to the E1 and H1 subbands at k = 0. For simplicity,
we further consider the (001) HgTe QWs. Following
the expansion procedure [8,34], in the basis |E1,+〉,
|H1,+〉, |H2,−〉, |E1,−〉, |H1,−〉, |H2,+〉, H2D(k) be-
comes a 6 × 6 block-diagonal matrix with the blocks H3×3(k)
and H ∗

3×3(−k) defined as

H3×3(k) =
⎛
⎝εk + d3(k) −Ak+ R1k

2
−

−Ak− εk − d3(k) 0
R1k

2
+ 0 εH2(k)

⎞
⎠. (2)

Here, εH2(k) = C − M − �H1H2 + BH2(k2
x + k2

y),�H1H2 is
the gap between the H1 and H2 subbands at k = 0, and R1 and
BH2 are the structure parameters.

The band structure in the 7-nm QWs described by H3×3(k)
is presented in Fig. 1(b). It is seen that accounting for the
H2 subband indeed results in significant modification of the
band structure in the valence band. However, positive values
of BH2 (see Appendix A) and the presence of R1k

2
− in the

Hamiltonian both lead to nonmonotonic dispersion of the E1
subband and formation of a semimetal in the QW due to

vanishing of the indirect band gap. Thus, the 2D model based
on the H3×3(k) Hamiltonian gives even worse agreement with
the realistic band structure calculation than the BHZ model.
The Hamiltonian (2) was also derived by Raichev [35]. To
eliminate unphysical growing of the energy of the E1 subband
at high k, the term R1k

2
− was omitted in Ref. [35], and BH2

was set to zero.
We note that further improvement of the 2D model cannot

be performed by including the H3 and H4 subbands [see
Fig. 1(a)]. Figures 1(c) and 1(d) show relative contributions
from electronlike fE(k) and holelike fH (k) states for the E1
and H1 subbands in the 7-nm-wide HgTe QW. The calculations
were performed on the basis of the Kane Hamiltonian and BHZ
model. We recall that fE contains the contribution from the
Bloch functions of the |�6,±1/2〉, |�8,±1/2〉, and |�7,±1/2〉
bulk bands, while fH includes the contribution only from the
heavy-hole bulk band |�8,±3/2〉 [7]. It is clear that fE + fH =
1 at any value of k. The given subband is the holelike level if
fE > fH at k = 0. Otherwise, the subbands are classified as
electronlike, light-hole-like, or spin-off-like levels, according
to the dominant component of |�6,±1/2〉, |�8,±1/2〉, and
|�7,±1/2〉 at k = 0.

For instance, the conduction subband in the 7-nm QW
is holelike because fH = 1 at k = 0 [1]. However, the con-
tribution from electronlike states is dominant far from the
subband bottom. The valence E1 subband has an electronlike
character since fE = 1 at k = 0. The realistic calculations
based on the Kane Hamiltonian predict fE(k) and fH (k) are
nonmonotonic in the E1 subband. In the vicinity of the side
maxima, both contributions have almost the same value, and
further increasing k makes fE(k) dominant. The latter is fully
ignored in the BHZ model.

As the electronlike states plays a crucial role in the
formation of the side maxima in the valence subband,
we add the E2 subband to the set of E1, H1, and
H2 subbands. Thus, in the basis |E1,+〉, |H1,+〉, |H2,−〉,
|E2,−〉, |E1,−〉, |H1,−〉, |H2,+〉, |E2,−〉, the effective 2D
Hamiltonian H2D(k) is an 8 × 8 block-diagonal matrix with
the blocks H4×4(k) and H ∗

4×4(−k) defined as

H4×4(k) =

⎛
⎜⎜⎜⎝

εk + d3(k) −Ak+ R1k
2
− S0k−

−Ak− εk − d3(k) 0 R2k
2
−

R1k
2
+ 0 εH2(k) A2k+

S0k+ R2k
2
+ A2k− εE2(k)

⎞
⎟⎟⎟⎠,

(3)

where εE2(k) = C + M + �E1E2 + BE2(k2
x + k2

y),�E1E2 is
the gap between the E1 and E2 subbands at k = 0, and R2 and
BE2 are parameters given in Appendix A. We note that H4×4(k)
also describes the phase transition in two tunnel-coupled HgTe
QWs [34].

As seen from Fig. 1(b), H4×4(k) indeed qualitatively de-
scribes the side maxima in the first valence subband. The latter
proves that the E2 subband significantly affects dispersion
of the first valence subband at large k. Figure 2 provides a
comparison of the band structure for the QWs grown on a CdTe
buffer calculated within the Kane Hamiltonian and H4×4(k) for
different values of d. It is seen that although the difference
in the dispersion of the E1 subband calculated within two
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FIG. 2. Comparison of band structures for the 7-, 8-, and 9-nm QWs grown on a CdTe buffer, calculated on the basis of the Kane Hamiltonian
and H4×4(k). Positive values of k correspond to the [100] crystallographic orientation. Parameters for H4×4(k) are provided in Appendix A.
The left panel shows the results for compressively (ε = 1.4%) strained HgTe/Cd0.7Hg0.3Te QWs [36], which are discussed further in the text.

different approach increases with the QW width, a reasonable
agreement takes place for d < 9 nm. To decrease the difference
at large d, one has to take directly into account other low-lying
holelike (H3, H4) and light-hole-like [LH1, not shown in
Fig. 1(a)] subbands that, in turn, also result in the extension
of dimensionality of the effective 2D model. Note that the
band structure of the second valence subband within H4×4(k)
(for example, the H2 subband in the QW with d = 7 nm)
is in good agreement with the realistic band structure calcula-
tions only at small k. To extend the range of k, one should also
consider the low-lying subbands.

III. HELICAL EDGE STATES

Our derived effective 2D Hamiltonian allows us to obtain a
more realistic picture of the helical edge states in HgTe QWs
than predicted by the BHZ model [10,11]. To calculate the
energy spectrum of the edge states, we numerically solve the
Schrödinger equation with H4×4(k) and H ∗

4×4(−k) in a strip
with width L with the open boundary conditions for the wave
function �(x,0) = �(x,L) = 0. The actual form of the bound-
ary conditions for the effective 2D Hamiltonian strongly affects
dispersion of the edge states. The latter is demonstrated within
the BHZ model with the nonzero boundary condition in the
most general form [37]. It has been shown that dispersion of the
edge states also depends on the curvature of the boundary [38]
and the symmetry of the outer materials [39]. All the mentioned
factors require including additional terms in the Hamiltonian,
which are unknown yet for H4×4(k). Therefore, here, we
consider the simplest case of open boundary conditions, while
other cases may be the subject of future works on the boundary
conditions beyond the BHZ model.

The finite width of the strip leads to an inevitable overlap
of the states localized at the spatially separated edges and,
consequently, to the opening of a small gap at kx = 0. The gap,
however, exponentially decreases with L, and for L = 1 μm,
the gap is less than 1 μeV; that is, it almost vanishes. Thus, a 1-
μm-wide strip features the picture of the edge states, which are
very close to the one in semi-infinite media. The calculations
are based on the expansion method described in Appendix B.
We consider HgTe QWs of different width in the QSHI state
with direct and indirect band gaps.

Figure 3 presents the band structure of HgTe QWs grown
on a CdTe buffer with d = 7, 8, and 9 nm. Parameters for

H4×4(k) are provided in Appendix B. For all QWs, the edge
states lying in the band gap have two branches with different
helicity, localized at different sample edges. In the 7-nm QW,
the picture of the edge states described by H4×4(k) differs
from the linear dispersion within the BHZ model [10,11]. It
has strongly nonmonotonic character, with the side maxima
lying below the top of the valence subband. Interestingly,
the position of the local minima of the edge-state dispersion
coincides with the minimum of fE(k) for the E1 subband [see
Fig. 1(d)].

In addition to the edge states in the band gap, our model
also predicts the existence of edge states in the continuum
of the valence subbands. We note that coexistence of the
edge and bulk states in the valence band was first shown by
Raichev [35] within the reduced version of H3×3(k). In our
numerical calculations we cannot separate the edge and bulk
states. Nevertheless, the traces of the edge states in the valence
band, marked by the dashed brown curves, are clearly seen.
Their dispersions start at zero quasimomentum from the H2
subband and have a nonmonotonic dependence on kx .

In the 8-nm HgTe QW, the side maxima exceed the top of
the valence subband at zero quasimomentum, and the system is
characterized by a QSHI state with indirect band gap between
the E1 and H1 subbands. The edge states in the gap have a
monotonic dispersion, which merges with the bulk states of the
E1 subband at large kx (see Fig. 3). Unfortunately, we cannot
directly follow the edge states through the bulk continuum of
the E1 subband. However, the second monotonic branch of
the edge states in the gap between the E1 and H2 subbands
can be interpreted as a continuation of the dispersion from the
band gap slightly modified by the hybridization with the bulk
continuum of the E1 subband. The branch of the edge states
produced by the H2 subband remains qualitatively the same as
in the 7-nm HgTe QW.

In the 9-nm HgTe QW, the indirect band gap is formed
between the H1 and H2 subbands (cf. Ref. [24]). Figure 3
shows that the picture of the edge states in the band gap
and continuation of the dispersion branch from the band gap
are similar to those for the 8-nm QWs. The main difference
between the edge states in the 8- and 9-nm HgTe QWs arises
for the edge states in the valence band, in which the H2 subband
lies above the E1 subband.

By comparing the top panels in Fig. 3, one would conclude
that the difference in the pictures of the edge states in the
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FIG. 3. Top: Band structure of HgTe QWs grown on a CdTe buffer for different d , calculated on the basis of H4×4(k). The blue and red
curves correspond to dispersion of electronlike and holelike subbands, respectively. The thin black curves represent the continuum of the bulk
states obtained on a 1-μm strip. The helical edge states in the gap are presented by solid brown curves. The dashed brown curves schematically
show the dispersion of the edge states at kx < 0, which are hybridized with a continuum of the bulk states (also see Fig. 6 for a detailed
picture). For simplicity, the curves for kx > 0 are not shown. The edge states obtained within the BHZ model are plotted in green. For better
representation, we have diluted the levels in the valence subbands. The insets show dispersion of the bulk and edge states at small kx . Bottom:
Probability density of the edge states at two positions of the Fermi level, shown in the top panels by violet dotted lines.

band gap given by H4×4(k) and the BHZ model vanishes with
increasing of d. However, that is not true. In the bottom panels
of Fig. 3, we provide the probability density of the edge states
at different positions of the Fermi level. It is seen that the
probability density �Edge(y) calculated using H4×4(k) differs
significantly from the one in the BHZ model [10,11]. For
instance, �Edge(y) may have several maxima due to the relevant
contributions of the E2 and H2 subbands. Surprisingly, the
latter is valid even if the Fermi level lies in the vicinity of
the conduction subband, which is actually well described
by the BHZ model. Additionally, the damping of the
probability density described by H4×4(k) can have an
oscillating character instead of the monotonic one predicted
by the BHZ model [10,11]. It is seen that the probability
density calculated using H4×4(k) indeed slightly tends to
the one within the BHZ model if the QW width increases.

However, increasing d drives the system in the regime for
which the BHZ model is not applied due to the proximity of
other levels to the E1 and H1 subbands.

The differences in the probability density, calculated using
H4×4(k) and HBHZ(k), illustrate the differences in the wave
functions of the edge states within two models. The latter may
greatly influence the matrix elements of different interactions
(disorder, impurities, many-body interaction, etc.) in the novel
model, which, in turn, may dramatically change the picture of
the topological Anderson insulator [12,13], backscattering in
the edge channels [14–16], and collective excitations [18–21]
established by the BHZ model. However, investigations of all
these questions are beyond the scope of this paper and will be
addressed in future works.

We have investigated the picture of the edge states in
HgTe QWs grown on a CdTe buffer. Such a buffer results
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FIG. 4. (a) Band structure of a compressively (ε = 1.4%) strained
7.5-nm-wide HgTe/Cd0.7Hg0.3Te QW [36], calculated on the basis of
the effective 2D Hamiltonian with H4×4(k). For the notations, see the
caption of Fig. 3. For better representation, we have diluted the levels
in the valence subbands. (b) and (c) Probability density of the edge
states at two positions of the Fermi level, shown in (a) by violet dotted
lines. The blue curves represent the contribution from the E2 and H2
subbands.

in a tensile strain in the HgTe epilayers (ε = −0.3%). Re-
cently, Leubner et al. [36] discovered a way to change the
strain in HgTe QWs from tensile (ε < 0) to compressive
(up to ε = 1.4%). The latter significantly enhances the band
gap in the QSHI state (up to 55 meV) and suppresses the
side maxima in the valence subband. Figure 4 presents the
band structure of compressively strained 7.5-nm-wide HgTe
QWs, realized experimentally by Leubner et al. [36]. Under
these conditions, the QW is characterized by the QSHI state
with a direct band gap, opened between the H1 and H2
subbands.

As Fig. 4(a) shows, the edge states in the band gap are
presented by two branches slightly different from the ones
within the BHZ model. The fingerprint of continuation of the
edge-state dispersion from the band gap can also be seen in
the continuum of the bulk states in the valence subband (see the
dashed curve). The main difference in the edge states from the
picture of the tensile strained QWs (see Fig. 3) is the absence
of the branch of edge-state dispersion, produced by the H2
subband. In the tensile strained QWs, the origin of this edge
branch may be related to the nonmonotonic dispersion of the
H2 subband.

Figures 4(b) and 4(c) show the probability density of the
edge states lying in the band gap calculated using H4×4(k) and
the BHZ model. It is seen that at the energies in the vicinity of
the conduction subband both models yield similar results due
to the small contribution of the E2 and H2 subbands compared
with the tensile strained QWs. The differences increase if the
Fermi level lies far from the bottom of the conduction subband.
By comparing Figs. 3 and 4, one can see that both models pre-
dict increasing localization of the edge states with the band gap.

Now let us discuss additional spin-orbital terms, which may
arise in our model due to the absence of an inversion center.
These terms turn the block-diagonal form of our effective
Hamiltonian into an 8 × 8 matrix. As mentioned above, to
exclude the effect of structure inversion asymmetry (SIA) [8],
we consider QWs with a symmetric profile, while neglecting
the terms resulting from bulk inversion asymmetry (BIA) [9]

of zinc-blend crystals and interface inversion asymmetry
(IIA) [40] should be justified.

So far, the constants for both the BIA and IIA terms are
known only from first-principles calculations [40,41], while
their experimental values have not been directly measured
yet. We note that BIA and IIA induce a spin splitting of both
electronlike and holelike levels at nonzero k in the symmetrical
QWs. If the spin splitting is strong enough, it results in the
beatings arising in Shubnikov–de Haas oscillations. However,
these beatings have never been observed in symmetrical HgTe
QWs at low electron concentration. On the other hand, in
the presence of magnetic field, both BIA and IIA lead to
anticrossing behavior [9,42] of specific zero-mode Landau
levels [2]. In spite of the fact that the mentioned first-principles
calculations predict a large anticrossing gap, experimental
studies of magnetotransport have revealed a much smaller
value in HgTe/CdHgTe QWs [2,6,33,43].

Finally, the presence of BIA and IIA terms induces the op-
tical transitions between two branches of helical edge states. If
both terms are small, only spin-dependent transitions between
edge and bulk states are allowed [19]. Very recent accurate
measurements of a circular photogalvanic current in HgTe
QWs [44] have revealed the optical transitions between only
the edge and bulk states. Thus, the mentioned experimental
results [2,6,33,43,44] evidence the small effects of the BIA
and IIA terms in HgTe QWs.

IV. SUMMARY

In summary, we have derived an effective 2D Hamiltonian,
qualitatively describing the valence subband in HgTe QWs
with a symmetric profile. By applying the open boundary con-
ditions, we have investigated the helical edge states in tensile
and compressively strained HgTe QWs and have compared
them with the prediction of the BHZ model. Our work provides
a basis for future investigations of topological Anderson
insulators [12,13], edge transport [14–16], topological super-
conductivity [17], and collective excitations [18–21] in QSHIs
beyond the BHZ model. We note that although investigation
of the edge state in HgTe QWs with an asymmetric profile
is beyond the scope of present work, we expect significant
differences in the SIA-induced contribution to the edge states
obtained within BHZ model [8] and the extended version of
our effective 2D Hamiltonian.
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APPENDIX A: PARAMETERS FOR THE EFFECTIVE
2D MODELS

By using the eight-band Kane Hamiltonian, accounting
for the interaction between the �6, �8, and �7 bands in
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TABLE I. Structure parameters involved in H4×4(k).

QW width (buffer) C (meV) M (meV) B (meV nm2) D (meV nm2) A (meV nm) �H1H2 (meV) �E1E2 (meV)

7 nm (CdTe) −30.64 −4.53 −768.11 −593.47 363.47 51.14 297.57
8 nm (CdTe) −35.19 −12.58 −994.44 −819.62 346.81 40.75 269.47
9 nm (CdTe) −38.59 −18.51 −1324.19 −1149.25 330.41 33.23 246.70
7.5 nm (ε = 1.4%) −117.92 −41.75 −821.26 −646.52 396.86 45.50 266.05

QW width (buffer) R1 (meV nm2) R2 (meV nm2) BH2 (meV nm2) BE2 (meV nm2) A2 (meV nm) S0 (meV nm)
7 nm (CdTe) −1006.74 −43.51 711.25 −29.99 336.13 44.70
8 nm (CdTe) −1050.30 −44.38 619.32 −35.04 324.16 51.85
9 nm (CdTe) −1154.64 −45.28 571.70 −38.94 312.21 57.30
7.5 nm (ε = 1.4%) −441.19 −37.51 97.08 802.56 363.77 59.25

zinc-blende materials [7], and applying the procedure
described in Refs. [8,34], we have calculated parameters for
the effective 2D Hamiltonians HBHZ(k),H3×3(k), and H4×4(k)
presented in the main text. The parameters of H4×4(k) are
given in Table I. To obtain the parameters of the H3×3(k)
Hamiltonian from those for H4×4(k), one should renormalize
BH2, B, and D as follows:

B
(3×3)
H2 = B

(4×4)
H2 + A2

2

�E1E2 + �H1H2 + 2M
,

B(3×3) = B(4×4) − S2
0

2�E1E2
,

D(3×3) = D(4×4) − S2
0

2�E1E2
. (A1)

For the BHZ Hamiltonian, the parameters are the same as for
H3×3(k).

APPENDIX B: EXPANSION METHOD FOR THE STRIP
GEOMETRY

As mentioned in the main text, to calculate the energy spec-
trum of the edge states, we numerically solve the Schrödinger
equation with the effective 2D Hamiltonian in a strip of width
L with the open boundary conditions �(x,0) = �(x,L) = 0.
As all the Hamiltonians presented in the main text have a
block-diagonal form, the eigenvalue problem can be solved for
the upper and lower blocks separately. Assuming translation
invariance along the x direction, the function �(x,y) can be
represented as

�i(r) = exp (ikxx)fi(y), (B1)

where i = 1, . . . ,m, with m = 2, 3, 4 for HBHZ(k),H3×3(k),
and H4×4(k), respectively.

The open boundary conditions can be transformed into the
potential-energy term in the given Hamiltonian with the form
of U (y)Im, where Im is an m × m unit matrix and U (y) is
written as

U (y) =
{

0 for 0 � z � L,
∞ for z < 0 or z > L. (B2)

One can see that the reduced Hamiltonian, obtained from
the full Hamiltonian [HBHZ(k) or H3×3(k) or H4×4(k)] by
keeping only the diagonal terms and potential energy U (y),

has a wave function with the components proportional to

ηn =
√

2
L

sin ( πn
L

y) (n = 1,2,3, . . . ). Therefore, to solve the
eigenvalue problem for the full Hamiltonian, the functions
fi(y) in Eq. (B1) are convenient to expand in the complete
basis set {ηn} of the reduced Hamiltonian:

fi(y) =
√

2

L

N∑
n=1

C
(n)
i sin

(πn

L
y
)
. (B3)

The present expansion leads to a matrix representation of
the eigenvalue problem, where the eigenvectors with com-
ponents C

(n)
i and the corresponding eigenvalues are obtained

by diagonalization of the matrix 〈ηn|[HBHZ(k)]ij |ηn′ 〉 (or
〈ηn|[H3×3(k)]ij |ηn′ 〉 or 〈ηn|[H4×4(k)]ij |ηn′ 〉). We note that the
matrix elements of the full given Hamiltonian in the basis set
{ηn} are calculated analytically.

To demonstrate this expansion method, we calculate the
energy spectrum of the 7-nm-wide HgTe QW within the
BHZ Hamiltonian. We note that the BHZ Hamiltonian has

FIG. 5. Band structure of the 7-nm-wide (001)
HgTe/Cd0.7Hg0.3Te QW grown on a CdTe buffer calculated within
the BHZ model. The thick black and blue curves correspond to the
energy dispersion of the bulk and edge states given by Eqs. (B4)
and (B5), respectively. The thin black curves represent the continuum
of the bulk states on the 1-μm strip, calculated numerically by using
the expansion method. The dotted red curves correspond to the
dispersion of the edge states calculated numerically.
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FIG. 6. Dispersion of the valence subbands for HgTe QWs grown on a CdTe buffer for different d , calculated on the basis of H4×4(k). For
the notations, see the caption of Fig. 3. The traces of the edge states in the bulk continuum are clearly seen.

analytical solutions for the energy dispersion of bulk and edge
states [10,11]:

E
(exact)
bulk (k) = C − D

(
k2
x + k2

y

)

±
√

A2
(
k2
x + k2

y

)2 + [
M − B

(
k2
x + k2

y

)]2
, (B4)

E
(exact)
edge (kx) = C − DM

B
± A

B

√
B2 − D2kx. (B5)

In Eq. (B5), different signs correspond to the upper HBHZ(k)
and lower H ∗

BHZ(−k) blocks of the effective 2D Hamiltonian.
Figure 5 compares the energy dispersion of the edge

and bulk states, calculated numerically using the expansion
methods, with the analytical solution given by Eqs. (B4)

and (B5). One can see good agreement between the numerical
calculations based on the expansion method and the analytical
results. We note that N in Eq. (B3) defines the accuracy of the
solution of the eigenvalue problem. The proposed expansion
method is intuitively clear, but it weakly converges to an exact
solution. For instance, the numerical calculations within the
BHZ Hamiltonian, presented in Fig. 5, have been done at N =
500. The calculations based on H4×4(k), presented in the main
text, and provided in Fig. 6 have been performed at N = 1500.

In our numerical calculations, we cannot separate the edge
and bulk states. Therefore, at quasimomentum, at which the en-
ergy dispersions E

(exact)
edge (kx) and E

(exact)
bulk (kx,0) touch, the edge

states transform into the bulk states. The latter corresponds to
the infinite localization length of the edge states [11].
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