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Resistivity scaling due to electron surface scattering in thin metal layers
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The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers
is investigated using nonequilibrium Green’s function density functional transport simulations. Cu(001) thin
films with thickness d = 1 − 2 nm are used as a model system, employing a random one-monolayer-high
surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature
resistivity increases from 9.7 ± 1.0 μ� cm at d = 1.99 nm to 18.7 ± 2.6 μ� cm at d = 0.90 nm, contradicting the
asymptotic T = 0 prediction from the classical Fuchs-Sondheimer model. At T = 900 K, ρ = 5.8 ± 0.1 μ� cm
for bulk Cu and ρ = 13.4 ± 1.1 and 22.5 ± 2.4 μ� cm for layers with d = 1.99 and 0.90 nm, respectively,
indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or
atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is
temperature-independent and proportional to 1/d , suggesting that it can be described using a surface-scattering
mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates
λs = 4 × d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The
1/d dependence deviates considerably from previous 1/d2 predictions from quantum models, indicating that the
small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface
roughness is a considerable fraction of d .
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I. INTRODUCTION

Electron transport in thin metallic films including the
prediction of the resistivity ρ as a function of layer thickness
d continues to be of great scientific interest [1–13]. Electron
scattering at film surfaces [14–19] is particularly important as
it causes an increase in ρ with decreasing thickness [20–26]
that has also garnered technological interest as it impedes
integrated circuit downscaling [27,28]. This resistivity size
effect due to surface scattering is described by the classical
Fuchs-Sondheimer (F-S) model [1,2], which employs Boltz-
mann transport and assumes that electron relaxation only
occurs in the bulk, while partially diffuse scattering at the
surfaces is accounted for by boundary conditions. The bulk
scattering is quantified by the bulk mean-free path λ which
is typically dominated by phonon scattering and is therefore
temperature-dependent, while surface scattering is described
by a phenomenological specularity parameter p that defines
the probability for specular vs diffuse electron reflection at
the surfaces. The F-S model describes experimental data well
for layer thicknesses that are comparable to or larger than λ,
but consistently underestimates the measured resistivity for
layers with d < 20 nm [16,18,20,22,23,29–35]. Moreover, in
the limit of high-purity films at low temperature, i.e., λ →
∞, the F-S model predicts a vanishing thin-film resistivity
since surface scattering alone cannot relax carriers within the
F-S model. This intrinsic limitation of the F-S model [3]
originates from two approximations that are not necessarily
satisfied at small thickness, in particular (i) the electronic
structure is bulklike, and (ii) the surface scattering occurs
exactly at the surface. Later studies have proposed other
models to replace the F-S model [3,4,5,7,12]. They apply a

two-dimensional transport description with quantized vertical
wave vector components, leading to an electronic structure
with subbands and an in-plane conductivity defined by the
sum over all conduction channels [5]. Within that framework,
surface scattering can be described by a mean-free path λs

that quantifies electron relaxation due to surface scattering
[5], contrary to the specularity parameter within the FS model
which describes a boundary effect without electron relaxation.
The resistivity in the limit of small thickness and/or low
temperature from these quantum mechanical models [3,4,5,7]
is proportional to 1/d2. This is in direct contradiction to the
F-S model which predicts ρ ∝ 1/[dln(λ/d)] for small d and/or
large λ. The disagreement at small d suggests the breakdown of
the F-S model and motivates resistivity studies that determine
the ρ vs d dependence at small thicknesses. Such studies
also provide quantitative insight and corresponding benchmark
data for metal nanowire applications including the continued
downscaling of integrated circuits.

First-principles simulations that explicitly account for the
atomic level structure and associated electronic structure of
the thin film are expected to yield correct transport data for
very thin films and nanowires [15,21,36–42]. They do not
directly provide a functional form for ρ as a function of, for
example, layer thickness, surface roughness, bulk (phonon)
scattering, or metal element. Nevertheless, we use in this study
this approach to numerically determine the ρ vs d relationship
for thin Cu(001) layers using a large number of individual
transport simulations. A key strength of this method is full
control over the parameters that determine electron scattering.
For example, a specific surface roughness [15,36,43] or atomic
displacements (to simulate temperature) [44,45] can be easily
constructed and kept constant while varying geometrical pa-
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rameters of the conductor, providing a direct path to determine
the resistivity from the calculated ballistic conductance and
ultimately the resistivity as a function of any desired structural
parameter. Correspondingly, in a second step, the simulated
data can be directly compared to model predictions to evaluate
existing or newly developed functional forms for the resistivity
size effect.

In this paper, we present results from first-principles cal-
culations of electron transport in 1–2 nm thick Cu(001) films,
employing nonequilibrium Green’s function (NEGF) density
functional theory (DFT) calculations. The chosen thickness
range is large enough so that the charge distribution in the film
center is bulklike, but is still comparable to the Fermi wave-
length in Cu (∼0.46 nm), such that quantum effects cannot be
neglected. Electron surface scattering is facilitated by a 50%-
coverage surface monolayer that represents a random atomic-
level roughness. The zero-temperature resistivity is purely
caused by this surface scattering, while finite-temperature
bulk scattering is included with a frozen-phonon approach.
Resistivities at both temperatures are calculated as a function
of film thickness, providing ρ vs d data that can be directly
compared to predictions of the existing models. The overall
results indicate that the resistivity contribution due to surface
scattering is proportional to 1/d, in direct contradiction to
the classical F-S model. In addition, the data also deviate
strongly from the 1/d2 prediction from more recent quantum
models, suggesting that the small-roughness approximation
is not applicable and that the surface roughness also affects
electron scattering within the layer.

II. COMPUTATIONAL PROCEDURE

The conductance of Cu(001) thin films is determined using
first-principles NEGF-DFT calculations as implemented in the
SIESTA package [46]. The simulated system is a two-terminal
device consisting of two electrodes that are semi-infinite along
the Cu [100] transport direction (x axis) and are separated
by a scattering region between the electrodes. Both electrodes
and the scattering region form a thin film which is infinite
along the [010] direction (y axis) but has a finite thickness of
6 to 12 monolayers (ML) along the z axis, corresponding to
d = 1 − 2 nm using a fixed lattice constant a = 0.3615 nm.
This is implemented using periodic boundary conditions and
supercells with a constant width w of 3a along [010] to form a
continuous film. This width corresponds to six atomic planes
and was chosen to render effects due to the periodicity of
frozen phonons and surface roughness negligible (<1% effect
on electron transmission) and, more importantly, to create a
large number of surface sites to reduce variations associated
with the random surface roughness as described below. The
supercells have a fixed height (along the z direction) of 10a,
so that the Cu only occupies a fraction of the cell while a
vacuum of at least 4a is placed above/below the Cu, forming
open Cu(001) surfaces. The length L of the scattering region
along the transport direction (x axis) is varied from 1 to 10a,
which ultimately allows us to determine the resistivity from the
length dependence of the calculated resistance. Each electrode
is 1.5a long along the transport direction, corresponding to
3 MLs. Therefore, the total size of the simulated cell is
(L + 2 × 1.5a) × 3a × 10a.

The electronic structure is calculated with a �-centered
12 × 6 × 1 k-point mesh for the electrodes and a 1 × 6 × 1
mesh for the scattering region. All calculations use a single-
zeta basis with polarization orbitals [47,48], an energy shift of
0.02 Ry, a norm-conserving pseudopotential for copper that
includes all core electrons up to the 3p electrons, and the
Perdew-Burke-Ernzerhof (PBE) exchange correlation func-
tional [49,50]. Electron smearing is carried out with a Fermi-
Dirac occupation function with a temperature of 100 K. The
electronic transport properties are then calculated using the
TRANSIESTA [51] code with zero bias. Green’s functions
are determined with 32 points on the complex contour. The
transmission coefficients are calculated with a 1 × 255 ×
1 k-point mesh. Convergence tests as a function of all of
these parameters indicate a numerical computational accuracy
of ±1% for the calculated resistance values. We note that
many simulated quantities in this study have considerably
larger relative uncertainties, as indicated by the error bars.
The primary reasons for this are that (i) the resistivity is
effectively determined from the difference of two resistance
values of similar size, which leads to a larger relative error,
and (ii) average values from ensembles of simulated random
configurations have standard deviations that are considerably
larger than 1%.

Atomic-level surface roughness is introduced to the scat-
tering region by randomly removing 50% of the atoms in both
the top and bottom ML of the simulated film. Correspondingly,
a simulation cell with for example L = 5a has 60 surface
atoms of which 30 are removed, since the two surfaces have
an area of 5 × 3a2 each and the (001) surface of an fcc crystal
has two atoms per a2. This corresponds to a reduction of the
average film thickness by exactly one monolayer. That is, a
simulation that starts out with, for example, a thickness of 6 ML
(=3a) has a scattering region thickness d = 5 ML = 2.5a =
0.90 nm after removal of the surface atoms. In contrast, the
electrodes in this example still have a thickness of 6 ML and are
therefore thicker than the scattering region. For any given set
of scattering region length L = 1 − 10 a and layer thickness
d = 0.90−1.99 nm, the resistance R is calculated using an
ensemble of six to sixteen configurations of surface atoms that
are randomly placed on surface lattice sites using a random
number generator. These surface atoms are not relaxed, since
their primary purpose is to cause electron scattering without
representing a realistic surface morphology. The average R
from these 6–16 calculations is subsequently used for further
analysis and determination of the resistivity, while the standard
deviation, which ranges in these calculations from 0.1% for
d = 1.99 nm and L = a to 5% for d = 0.90 nm and L = 5a,
is taken as the statistical uncertainty of a given R(L,d) value.

Frozen phonons are introduced in the scattering region
in order to simulate systems which exhibit bulk electron
scattering in addition to surface scattering. The idea of the
frozen-phonon approach is that the fast-moving electrons only
see a snapshot of the vibrating atoms [44,45]. Correspondingly,
electron transport is calculated for configurations with fixed
atomic positions which are, however, displaced from the
equilibrium lattice sites to simulate the temperature-induced
atomic vibrations. One direct approach to create an appropri-
ate set of atomic displacements is to superpose all allowed
modes and generate one corresponding configuration [52,53],
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while another approach employs repeated calculations over an
ensemble of systems in order to account for thermodynamic
fluctuations [38], where each system exhibits different random
displacements which are determined by molecular dynamics
[38] or a chosen spatial distribution function [37,54]. In
this work, we displace both bulk and surface atoms in the
scattering region from their equilibrium position by a vector �,
which is randomly determined for each atom by independently
choosing its x, y, and z coordinates from a uniform distribution
U [−A,A], where A corresponds to the maximum amplitude
of a local one-dimensional vibration. The temperature that
corresponds to a particular A is determined by calculating the
change in the potential energy vs displacement of one atom
in a bulk supercell and setting the average potential energy
corresponding to the uniform displacement distribution equal
to 1

2kT per degree of freedom. That is, phonons are assumed
to be local classical harmonic oscillators corresponding to the
“Einstein model” for lattice vibrations. We note that surface
atoms are expected to experience smaller force constants than
bulk atoms and would therefore need to be displaced by a larger
amplitude. This effect is neglected in this study because surface
atoms are already very strongly disordered and therefore the
vibration of them is expected to have a negligible effect on
the overall resistance. The chosen approach of displacing
atoms independently of each other has the advantage that the
resulting frozen phonons are independent of the system size,
that is, the scattering region size. In contrast, a physically
more realistic model where phonons are displacement waves
within the crystal would not only be computationally more
demanding but also would lead to problems in interpreting
the R vs L data which would no longer directly correspond
to the resistivity but would also be affected by the changing
system size as the phonons would be dependent on L. To
validate this chosen frozen-phonon approach, bulk transport
simulations that include frozen phonons but no surfaces were
done by NEGF-DFT, using a two terminal configuration with
a variable-length scattering region. These calculations employ
the same computational parameters as those used for the thin-
film calculations, except there is no vacuum in the supercell,
the cross-sectional area of the supercell perpendicular to the
transport direction is 2a × 2a, and k-point meshes are 12 ×
6 × 6 and 1 × 6 × 6 for the electrodes and scattering region,
respectively, and 1 × 255 × 255 for the transport calculation.

III. RESULTS

We first present results from bulk transport simulations
that are used to validate the frozen-phonon approach and the
system temperature. For these calculations, all atoms within
the scattering region are randomly and individually displaced
following a uniform distribution with a maximum amplitude A
in each dimension, as described in more detail in the previous
section. Figure 1(a) is a plot of the calculated resistance R
as a function of the length L of the scattering region, where
L = 3 − 6 is given in units of the lattice constant a = 3.615Å,
yielding L = 1.08 − 2.17 nm. The simulated system cell has
a cross-sectional area of 2a × 2a, such that the scattering
region contains a total of 48–96 atoms. Calculations are done
for maximum displacements A = 0, 0.02a, 0.03a, 0.04a,
0.05a, and 0.06a, which are equal to atomic displacements

FIG. 1. (a) Calculated resistance R vs length L of simulated
scattering region for bulk Cu with frozen phonons corresponding
to temperatures T = 0−1300 K. (b) Bulk resistivity ρ vs T, as
determined from the slopes in (a) (red triangles). The black open
squares indicate the experimental Cu bulk resistivity from Ref. [56].

of 0−0.22Å and correspond to classical temperatures of 0,
142, 324, 576, 901, and 1300 K, respectively. The resistance
at T = 0 K is 1828 � and is independent of L. This is
expected since this resistance corresponds to the ballistic
resistance R0 which is independent of conductor length. The
calculated values for the four different L = 3, 4, 5, and 6
a vary by only 0.005%, indicating a negligible numerical
variation associated with the unit cell length. The specific
ballistic resistance R0(wd) = 0.955 × 10−15 � m2 is within
the range 0.91 − 1.01 × 10−15 � m2 of previously reported
values for the ballistic resistance of Cu along the [100] direction
[13,39,55].

In contrast, the data labeled with T = 142 K in Fig. 1(a)
indicate resistances that are larger than R0 and increase with
increasing L. Each data point corresponds to the average R
of four separate calculations with different random atomic
displacements with an amplitude A = 0.02a, while the plotted
error bar indicates the standard deviation from these four
calculations. R increases linearly with L, as indicated with the
line through the data points which is the result from a linear
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fit that is forced to go through R0 at L = 0. That is, the only
fitting parameter is the R-vs-L slope, which corresponds to the
resistivity ρ = 1.13 ± 0.03 μ� cm due to the frozen phonons
at T = 142 K. Similarly, the data for T = 324 − 1300 K also
exhibit linear R(L) relationships, suggesting a well-defined
resistivity associated with the frozen phonons [38]. The plotted
error bars increase with increasing T. This is attributed to
the increasing displacement amplitudes which lead to larger
variations in the random displacement configurations.

Figure 1(b) is a plot of the resistivity ρ vs temperature
T, as determined from the slopes in Fig. 1(a). It increases
approximately linearly from 1.13 ± 0.03 μ� cm for T =
142 to 2.38 ± 0.07, 4.04 ± 0.11, 6.11 ± 0.16, and 8.53 ±
0.23 μ� cm for T = 324, 576, 901, and 1300 K. The linear
relationship is also indicated by the solid line from linear fitting
of the data points forced through the origin. Figure 1(b) also
shows as open symbols the known experimentally measured
resistivity of copper from Ref. [56]. Our frozen-phonon calcu-
lations are in good agreement with the experimental resistivity,
with deviations of <13% for T = 400−1000 K. The calcula-
tions overestimate ρ at low temperature, by 76% and 26% for
T = 142 and 324 K, respectively, which is expected because
the simulated phonons are purely classical and, therefore,
their density is proportional to T, while quantization in true
solids leads to a stronger-than-linear decrease in the phonon
density as their energy becomes comparable to or smaller
than kT. The low-temperature resistivity can be correctly
predicted by calculating and populating the eigenvalues of
collective lattice vibrations (i.e., phonon modes), as shown
by Liu et al. [52]. This approach is not used here, because
we are primarily interested in high temperatures and, more
importantly, our approach has the advantage of a phonon
population that is completely independent of the length of the
scattering region, as described in the previous section. Also,
Fig. 1(b) shows that the experimental resistivity increases more
steeply as the temperature approaches the Cu melting point
Tm = 1358 K. We attribute this to additional electron scattering
at Cu vacancies, which have a density of 0.76 × 10−3 per lattice
site at Tm [57].

For the remainder of this paper, we explore the effect of
phonons on electron transport using a single displacement
amplitude A = 0.0498a that corresponds to a nominal temper-
atureT = 900 K. For this temperature, the simulated resistivity
agrees with experiment within 1%. We note that it is also
possible to perform low-temperature simulations using our
frozen-phonon approach. In that case, the A vs T relationship
would need to be more carefully done, likely by calibrating the
temperature with the experimental resistivity. We emphasize
here again that the data in Fig. 1(b) represent a true first-
principles prediction of the temperature dependence of the
resistivity of Cu using a rather simple frozen-phonon approach
that, however, leads to an accurate resistivity prediction at
medium to high temperatures. Thus, in summary, we conclude
that the chosen frozen-phonon approach is well suited to cause
temperature-induced electron bulk scattering in our transport
simulations and is used in the following simulations of Cu(001)
thin films.

Figure 2 shows the results from transport simulations on
Cu(001) thin films with thickness d = 0.90−1.99 nm at T = 0
and 900 K. The resistance R is calculated as a function of the

FIG. 2. (a) Schematic of the simulated system including a scat-
tering region with 50% of surface vacancies and random atomic
displacements �, causing surface and phonon scattering, respectively.
(b) Calculated resistance R vs length L and (c) resistivityρ vs thickness
d of Cu(001) thin films at temperatures T = 0 and 900 K. The dashed
lines in (c) are from curve fitting using Eq. (8).

length L of the scattering region for simulated cells that are w =
3a = 1.08 nm wide and are terminated by periodic boundary
conditions on their sides to effectively simulate an infinitely
wide thin film, as described in more detail in Sec. II. Figure
2(a) is a schematic that illustrates the simulated geometry. For
each configuration, the surface atoms in the scattering region
are randomly placed on 50% of lattice sites and, forT = 900 K,
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the atoms in the scattering region are also displaced by a
random � from their lattice site to form frozen phonons as
described in detail in the previous section. The plot in Fig. 2(b)
shows a total of 76 data points, each representing the average R
from a minimum of six calculated configurations. The data set
for d = 0.90 nm and T = 0 K is from a 5-ML-thick layer. Its
resistance increases monotonically from R = 1017 ± 5 � for
L = 0.3615 nm to R = 1772 ± 17 μ� cm for L = 3.615 nm,
which is attributed to electron scattering at the atomically
rough surfaces. The increase is steep for small L but the slope
approaches relatively quickly a constant value, as illustrated by
the line through the data points in Fig. 2(b) which is approx-
imately straight for L > 4a. This line is obtained from data
fitting using R = R0 + mL − αe−βL, where R0 is the ballistic
resistance, m is the slope at large L which defines the resistivity
due to surface scattering, and the last term is an exponential
decay that accounts for the nonlinearity at small L which is
attributed to a tunneling current between the two electrodes
that lowers the overall resistance. Fitting yields R0 = 1095 �,
which is slightly larger than the calculated ballistic resistance
of 1021 � for a smooth copper layer with the same thickness (5
ML) and width, indicating an increase in the ballistic resistance
due to the rough surfaces, consistent with an earlier report on
the decrease in the ballistic conductance of Cu layers with
periodic surface roughness [36]. Extrapolating the fitted line to
zero length yields R(L = 0) = R0 − α = 1095 � − 338 � =
757 �, which is slightly smaller than the calculated ballistic
resistance of 856 � for the 6-ML-thick electrodes, indicating
a relatively large uncertainty (as expected) in extrapolating
an exponential function. The inverse of β is the decay length
of the exponential tail for electrode-electrode tunneling and
is sufficiently small (1.2a) such that the correction to the
resistance due to the tunneling becomes negligible (<0.5%)
for L > 5a. This confirms a good linearity with a well-defined
slope m that is unaffected by the uncertainty in the exact fit
of the exponential tail. m is used to determine the resistivity
ρ = m(wd).

This fitting process is repeated for different thicknesses
and temperatures, as indicated by the lines in Fig. 2(b). For
T = 0 K, the ballistic resistance decreases from R0 = 1095 to
784, 590, and 463 �, as d increases from 0.90 to 1.27, 1.63
to 1.99 nm, respectively, showing an expected proportionality
between ballistic resistance and the inverse of cross-sectional
area. The slope m, however, decreases much faster, from 69
to 32.9, 21.2, and 16.2 �/a, indicating a strong thickness
dependence of layer resistivity, which is caused by surface scat-
tering. The data for T = 900 K exhibit a comparable thickness
dependence but steeper slopes for all d, which is attributed
to the additional phonon scattering resistivity. In contrast,
the ballistic resistances R0 = 1097, 772, 573, and 472 � for
T = 900 K are nearly identical to the T = 0 K values, which
is expected since bulk scattering does not contribute to the
ballistic resistance (contact resistance).

Figure 2(c) shows the resistivity from all eight data sets, that
is, for four thicknesses d = 0.90, 1.27, 1.63, and 1.99 nm and
two temperatures T = 0 and 900 K. The values are determined
from the slopes m of the fitted curves in Fig. 2(b), and the
dashed lines through the data points in Fig. 2(c) are from
curve fitting using Eq. (8), as discussed in Sec. IV. The zero-
temperature ρ increases with decreasing d, from 9.7 ± 1.0 to

10.4 ± 2.6, 12.5 ± 1.6, and 18.7 ± 2.6 μ� cm. This resistivity
is purely due to surface scattering and is in direct contradiction
to the classical F-S model, which predicts a zero resistivity in
the absence of bulk (phonon and/or defect) scattering [1,2].
As discussed in Sec. I, we attribute this discrepancy to a
limitation of the F-S model, where carriers that move parallel
to the surface never interact with the surfaces and therefore
have, in the absence of bulk scattering, a diverging (infinite)
contribution to the conductance. The resistivity at T = 900 K
similarly increases with decreasing d, from 13.4 ± 1.1 to
15.6 ± 1.3, 17.4 ± 1.4, and 22.5 ± 2.4 μ� cm. These values
are all larger than those for T = 0 K, which is attributed
to additional electron scattering at the frozen phonons. The
resistivity difference between 0 and 900 K is �ρph = 3.7 ±
1.5, 5.2 ± 2.9, 4.9 ± 2.1, and 3.8 ± 3.5 μ� cm, respectively.
These values are relatively independent of layer thickness de-
spite that d varies by more than a factor of two from d = 0.90 to
1.99. This suggests that, within the large numerical uncertainty,
the resistivity contributions from phonon and surface scattering
are additive, such that no deviation from Matthiessen’s rule
can be detected. To explore the effect of phonon scattering in
thin films further, the resistivity at 900 K of smooth thin films
with frozen phonons was calculated by determining the slope
of R vs L similarly to what was done in Fig. 2, but without
surface roughness. This provides values �ρph = 6.06 ± 0.14,
5.48 ± 0.13, 5.81 ± 0.14, and 5.81 ± 0.05 μ� cm for smooth
layers with d = 1.08, 1.45, 1.81, and 2.17 nm, yielding an
average of 5.8 ± 0.1 μ� cm. This is close to the calculated bulk
resistivity at 900 K of 6.11 ± 0.16 μ� cm, but is larger than the
average �ρph = 4.4 ± 1.3 μ� cm for the rough layers. That is,
the resistivity contribution due to phonon scattering is the same
for bulk and flat thin film calculations, but is smaller for the
rough films. Correspondingly, we conclude that (i) the change
in the electronic structure from bulk to thin film has a negligible
effect on the electron-phonon scattering for our 1–2 nm thick
Cu(001) layers and (ii) there is a deviation from Matthiessen’s
rule for electron scattering at surfaces and phonons. The latter
may be attributed to the fact that electrons that scatter at the
potential variation of the rough surface will not scatter more
strongly if the surface atom is also displaced by a frozen
phonon. Thus, the large fraction of atoms that are at the surface
in our thin films effectively reduce the phonon contribution to
the resistivity �ρph for thin films with roughness. We note
though that the difference between �ρph = 4.4 ± 1.3 μ� cm
from rough layers and 5.8 ± 0.1 μ� cm from smooth films
is of similar magnitude to that of the computational accuracy,
such that the data do not unequivocally demonstrate a deviation
from Matthiessen’s rule.

IV. DISCUSSION

This section discusses possible functional forms of the
resistivity size effect of thin films. That is, it explores whether
physical models that predict a ρ vs d dependency are consistent
with the computational results presented in Sec. III. For this
purpose, we first compare the prediction of the classical Fuchs-
Sondheimer model with the calculated data, followed by a
discussion of a classical 2D transport model, quantum models,
and a generic power-law fitting of the data.
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A. Fuchs-Sondheimer model

The classical F-S model employs Boltzmann transport
equations to derive an explicit expression for the thin-film
resistivity [1,2]

ρ = ρ0

[
1 − 3

2κ
(1 − p)

∫ ∞

1

(
1

t3
− 1

t5

)
1 − e−κt

1 − pe−κt
dt

]−1

,

(1)

where ρ0 is the bulk resistivity that quantifies electron re-
laxation due to bulk (phonon) scattering, κ = d/λ, and the
phenomenological specularity parameter p defines the fraction
of electrons which retain their in-plane momentum when
reflecting off the surface, as accounted for as a boundary
condition. That is, p = 0 and 1 correspond to diffuse and
specular surface scattering, respectively, while the parameter
κ defines the relative importance of bulk vs surface scatter-
ing. More specifically, κ → ∞ represents the bulk scattering
dominated regime at relatively large thickness and/or high
temperature, leading to a well-known approximate F-S formula
ρ = ρ0[1 + 3λ(1 − p)/8d] that deviates by only 9% from
Eq. (1) for 0.05 < κ < 1, and converges to Eq. (1) for increas-
ing κ > 1 [33,58]. This approximate form implies that surface
scattering results in an additive resistivity term that is propor-
tional to 1/d, as often reported from experiments [27,30,59].
In contrast, κ → 0 represents the surface scattering dominated
regime at small thickness and/or low temperature, where
Eq. (1) converges to ρ = 4ρ0λ(1 − p)/[3(1 + p)dln(λ/d)]
[1,2]. That is, ρ is proportional to 1/[dln(λ/d)] and, since the
product ρ0 × λ is independent of temperature [60], the limit of
vanishing bulk scattering (λ → ∞) leads to a vanishing thin-
film resistivity [3]. This limitation is illustrated in Fig. 3(a).

Figure 3(a) is a plot of the calculated Cu(001) thin-film
resistivity together with curves obtained from data fitting using
the F-S model in Eq. (1). The data points are identical to
what is shown in Fig. 2(c), but are plotted vs the inverse of
thickness such that the bulk values ρ0 = 0 and 6.1 μ� cm at
0 and 900 K, respectively, can be directly plotted at 1/d = 0,
representing the important limit of thick (d → ∞) layers. The
plotted line fits the data well for T = 900 K. It is obtained
using the known product ρ0 × λ = 6.7 × 10−16 �m2 which
corresponds to a room-temperature ρ0 = 1.678 μ� cm and
λ = 39.9 nm [60]. Correspondingly, the only fitting parameter
is the surface scattering specularity which was found to be
p = 0.37, suggesting that the simulated surface roughness
represented by a random 50% occupation of a surface mono-
layer causes 37% of electrons to scatter specularly, while
correspondingly 63% of surface scattering is diffuse. That
is, the relatively rough simulated surface causes more diffuse
scattering than experimental smooth Cu(001) surfaces with a
reported specularity p = 0.67 [31]. The red dashed line in
Fig. 3(a) has a slight negative curvature, since the predicted
increase in ρ from Eq. (1) is less than for a linear ρ vs
1/d relationship. A straight line would be expected for the
large-thickness high-temperature limit of the approximate F-S
model which, however, is not perfectly applicable because
T = 900 K and d > 0.90 nm corresponds to a relatively small
κ > 0.08. We note that the plotted data points would be better
described by a straight line than the plotted F-S prediction.

FIG. 3. The simulated resistivity ρ vs the inverse of the thickness
d of Cu(001) layers at 0 and 900 K. The curves are from data fitting
using (a) the Fuchs-Sondheimer model according to Eq. (1), (b)
2D semiclassical (dashed line) and quantum transport (dotted line)
models according to Eqs. (4) and (5), and (c) a power law according
to Eq. (7).

This apparent linear increase in ρ vs 1/d is further discussed
below in subsection D.

In contrast, for T = 0 K and no bulk-defect scattering, the
F-S model predicts a thickness-independent ρ = 0 μ� cm, re-
gardless of the choice of fitting parameters. This is represented
in Fig. 3(a) with the horizontal line which completely fails to
describe the calculated zero-temperature thin-film resistivity.
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We attribute this breakdown to an intrinsic limitation of the F-S
model, which does not include any electron relaxation due to
surface scattering. Correspondingly, in the limit of ρ0 → 0, the
F-S prediction of the thin-film resistivity also vanishes which
is in complete contradiction with our calculated T = 0 K data.

B. Semiclassical 2D transport

Two-dimensional (2D) transport models avoid the low-
temperature breakdown of the F-S model. This is achieved by
electron surface scattering which causes electron relaxation
and is quantified by a surface-scattering mean-free path λs . In
this framework, the electrons are confined between the surfaces
of a thin film, forming a standing wave ϕn = √

2/dsin(nπz/d)
perpendicular to the surface. This gives rise to multiple con-
duction channels with a subband index n and quantized wave
vectors kz = nπ/d perpendicular to the layer surface [5,61].
At small thickness, this electronic structure is very different
from that of the bulk, and the total in-plane conductivity σ is
obtained from the sum over all channels [5]. Following this
approach, we express the conductivity of a thin film as

σ = e2

h

1

kF d

Nc∑
n=1

k2
II

(
1

λ
+ 1

λs(n)

)−1

, (2)

where kF is the length of the 3D Fermi vector which itself de-
pends on the thickness d, kII =

√
k2
F − k2

z =
√

k2
F − n2π2/d2

is the n-dependent length of the wave vector component within
the plane of the film, Nc ≈ kF d/π is the total number of
channels, and λs(n) is the electron mean-free path due to sur-
face scattering, which is thickness and channel dependent and
defined in three-dimensional space in order to be compatible
with the bulk mean-free path λ. Equation (2) can be used within
a semiclassical description for transport in thin films. In that
case, the distance that is traveled by an electron between the
two surfaces is d × kF /kz, and correspondingly, the classical
mean-free path for surface scattering becomes

λs(n) = kF d

kz(1 − p)
= kF d2

nπ (1 − p)
. (3)

This expression can now directly be used in Eq. (2), yielding
the thin-film resistivity within the framework of a semiclassical
2D conductor:

ρ = h

λe2d

[
Nc∑

n=1

k2
F − n2π2

/
d2

kF d2 + nπλ(1 − p)

]−1

. (4)

We note that for the limiting case of large thick-
ness (d/λ → ∞), Eq. (4) converges to the approxi-
mate F-S formula ρ = ρ0[1 + 3λ(1 − p)/8d] where ρ0 =
(3πh)/(2e2kF

2λ). This holds true as long as Nc ≈ kF d/π �
1. That is, the 2D semiclassical model prediction in Eq. (4)
converges for the bulk scattering dominated regime (κ → ∞)
to the F-S model if d � π/kF , which corresponds for the case
of copper to d � 0.23 nm. Additionally, the prediction for ρ

in Eq. (4) does not vanish in the zero-temperature (λ → ∞)
limit, correcting the problematic prediction of the F-S model
in the surface scattering dominated (κ → 0) regime.

The dashed lines in Fig. 3(b) show the result from data
fitting using the 2D semiclassical expression in Eq. (4). This

is done by numerical summation over all channels where the
only free fitting parameter is the specularity parameterp, which
is expected to be temperature-independent. Correspondingly,
fitting is done simultaneously for both temperatures, yield-
ing p = 0.35. This is close to the value p = 0.37 obtained
using the F-S model, as described above. The curves do not
satisfactorily describe the simulated data points and suggest a
considerably stronger resistivity scaling. More specifically, the
plotted curves exhibit a stronger curvature than the data points
and underestimate the resistivity at low temperature and large
thickness, but overestimate the resistivity at high temperature
and small thickness. Nevertheless, this 2D semiclassical model
provides a clear improvement over the F-S model for the
zero-temperature limit [horizontal line in Fig. 3(a)]. This is
attributed to two key improvements, namely (i) describing elec-
trons as quantized standing waves in the perpendicular space,
and (ii) introducing a mean-free path for surface scattering.

C. Quantum models

Full quantum mechanical approaches have also been ap-
plied to study electron-surface scattering in thin films [3,4,5,7].
In these models, the electron conductivity is predicted as a
function of the electronic potential and the geometry of the sur-
face roughness, treating the surface roughness as a perturbation
to the flat surfaces’ Hamiltonian. For the case of small rough-
ness, studies by Calecki [5], Tešanović et al. [3], Trivedi et al.
[4], and Sheng et al. [7] all predict a channel-dependent mean-
free path in the surface-dominated regime that is proportional
to the cube of the thickness, i.e., λs(n) ∝ d3/n2, which results
in a resistivity contribution from the surface that increases with
the inverse square of the thickness: (ρ − ρ0) ∝ 1/d2. Without
replicating the details of these quantum model approaches,
their result can be qualitatively understood by examining the
electron wave near the surface: The scattering probability 1/τs

is proportional to 〈ϕn|V (z)|ϕn〉 = ∫V (z)(2/d)sin2(nπ/d)dz,
where V(z) is the scattering potential. Since V(z) is localized at
the surface, 1/τs ∝ ∫V (z)(2/d)(nπ/d)2dz ∝ n2/d3. Accord-
ingly, the thin-film resistivity in the surface-dominated regime
was derived by Sheng et al. [7] for the case of small roughness:

ρ = hkF d

e2

[
Nc∑

n=1

k2
F − n2π2/d2

λ−1 + 4n2π2Q0/(kF d3)

]−1

, (5)

where Q0 quantifies the effect from the surface morphology.
This expression implies an effective mean-free path due to
surface scattering of

λs(n) = kF d3

4n2π2Q0
. (6)

We note, Eq. (5) converges to the F-S prediction in the
limit κ → ∞, defining the relationship between the rough-
ness factor Q0 and the specularity parameter p, as Q0 =
15(1 − p)/(32kF ).

The dotted lines in Fig. 3(b) are from fitting the data using
the expression in Eq. (5), which is done by numerical determi-
nation of the sum as a function of d, while keeping the fitting
parameter Q0 the same for the two temperatures. However, the
curves do not well describe the calculated data points. More
specifically, the predicted resistivity from this model increases
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too steeply with decreasing d. We note that the model also fails
at large thickness, since the Q0 = 0.037 nm from the fitting
procedure corresponds to an unphysical specularity parameter
p = −0.1, slightly outside the allowed range 0 � p � 1.

We attribute the failure of the quantum models to the small-
roughness approximation. This approximation requires that (i)
the lateral correlation length is small in comparison to the
Fermi wavelength which effectively means that the maximum
surface mound width is comparable to the size of atoms.
This requirement is met for our simulations, since the random
atomic surface roughness has a characteristic scale of one atom.
However, more generally, this requirement is not satisfied in
realistic thin films with mound features with typical lateral
length scales of 2–100 nm, resulting in an additional roughness
term to the resistivity [13,19]. We note that this correction
has been directly included in some quantum models which
predict a resistivity scaling that is more complex than 1/d2

for the case of long-range correlated surfaces [4,7]. Second,
the small-roughness approximation requires that (ii) the root-
mean-square roughness is small compared to the film thickness
[3,4,5,7]. This requirement is not met in our simulations since
the surface monolayers that define the roughness represent
a considerable fraction of the overall layer thickness. For
example, the thinnest simulated layer has just four perfect Cu
monolayers between the two surface roughness monolayers.
Consistent with this argument, a recent report on transport in
Cu suggests that electron transmission is severely degraded
near the surface, approximately ∼0.5 nm deep into the film
[41], which corresponds to the entire simulated layer with two
surfaces for d < 1 nm. Correspondingly, the predicted 1/d2

proportionality from the proposed quantum models for the
resistivity contribution in the thin-layer limit does not apply to
our simulation results. We also note that the quantum models
assume well-defined channels which may not correctly account
for channel mixing associated with the strong disorder at the
surface.

D. Power law

In an attempt to determine a functional form that satis-
factorily describes the resistivity vs thickness data from our
simulations, we use a general power-law expression for the
thin-film resistivity

ρ = ρ0 + f dγ . (7)

The prefactor f and exponent γ are functions of ρ0.
That is, they are not assumed to be temperature-independent,
so that Matthiessen’s rule is not pre-assumed, consistent
with the discussion in Sec. III. Figure 3(c) shows the result
from the power-law fitting with Eq. (7). The plotted curves
describe the data points well—considerably better than the
alternative models presented in Figs. 3(a) and 3(b). The fitting
procedure provides values for γ of −0.85 ± 0.14 at 0 K and
−0.99 ± 0.07 at 900 K. That is, considering the computational
uncertainty, the exponent is−1 for both temperatures, implying
an inverse thickness dependence for the resistivity contribution
from surface scattering. This is in good agreement with
previous work by Ke et al. [43] and Zahid et al. [15], who
reported surface scattering resistivity values calculated with
nonequilibrium DFT methods including vertex correction [62],

and used the approximate F-S formula with a 1/d dependence
to describe their data. Based on the 1/d dependence for
the resistivity contribution due to surface scattering at both
0 and 900 K, we assume that the 1/d dependence is also
valid for any other temperature between 0 and 900 K. In
that case, Eq. (2) can only be satisfied if λs(n) is channel-
independent and proportional to d. This implies that the surface
scattering probability is independent of the channel, which
means independent of the momentum perpendicular to the
surface and/or the probability distribution (i.e., the square of
the wave function) of the electron within the conducting film.
This is clearly different from the assumptions for the quantum
models described above, and suggests a surface scattering that
is “bulklike.” That is, opposite to the above models, surface
scattering does not only occur at the physical surface but
extends into the film. We attribute this to the simulated films
consisting of only a few monolayers, such that the perturbation
of the electron potential by the surface roughness extends
throughout the thickness of the layer, causing scattering of
electrons even if they have wave functions that vanish near the
surface.

Correspondingly, based on this temperature-independent
1/d dependence of the resistivity contribution due to surface
scattering, Eq. (7) with a fixed γ = −1 yields an expression
for the thin-film resistivity ρ with a surface-scattering mean-
free path λs that is proportional to the thickness d and both
temperature-independent and channel-independent:

ρ = ρ0

(
1 + λ

λs

)
, λs = α × d. (8)

The proportionality constant α is independent of tempera-
ture and thickness and is a function of the electronic structure of
the surface. We use Eq. (8) for data fitting of the simulated resis-
tivity, plotted as dashed lines in Fig. 2(c). The curves describe
the plotted data relatively well and yield λs = (3.8 ± 0.2) × d

and (4.4 ± 0.1) × d at T = 0 and 900 K, respectively. That
is, the mean-free path associated with electron scattering at
the simulated monolayer roughness is only four times the
layer thickness. Correspondingly, electron surface scattering
is expected to dominate the resistivity for layers that are
at least four times thinner than the bulk mean-free path λ.
This corresponds to a critical thickness of 10 nm for Cu at
room temperature below which electron surface scattering
dominates. We note that α for T = 900 K is 16% larger than
for T = 0 K, which can be attributed to the uncertainty but
may also indicate a trend towards larger λs with increasing T.
Such an increase in λs with increasing T (or correspondingly
decreasing λ) is consistent with the above discussion on
the deviation from Matthiessen’s rule. More specifically, an
electron that scatters on a displaced atom (phonon) will not
scatter “more” if this atom also belongs to a surface roughness.
This effectively reduces the effect of electron surface scattering
with increasing temperature, leading to an increase in λs .

We note that Eq. (8) proposes the same functional form as
the approximate F-S model. However, based on the discussion
above, Eq. (8) is valid for very thin layers for which surface
scattering becomes bulklike while the approximate F-S model
is valid in the limit of large thickness. More specifically, the
simulations in this work suggest a resistivity contribution due
to surface scattering on Cu(001) surfaces that is proportional
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to 1/d for the simulated range d = 1 − 2 nm, while previous
studies (including the classical F-S model) suggest the same
1/d dependence for approximately d > 20 nm [16,18,31,32].
It is not evident from our results whether the intermediate
range, d = 2−20 nm, exhibits the same functional form.

V. CONCLUSIONS

First-principles simulations of electron transport in
1–2 nm thick Cu(001) layers with electron scattering at
both surface roughness and bulk phonons suggest an additive
resistivity term due to electron surface scattering that is
nearly temperature-independent and inversely proportional to
the thickness. The calculated thin-film resistivity at 0 K is
finite, contradicting the classical F-S model prediction and
indicating a breakdown of the F-S model in the surface
scattering dominated regime. Both classical and quantum 2D
transport models correct the problematic F-S prediction at zero
temperature. However, they fail to correctly describe the 1/d

dependence. This is attributed to the small-surface-roughness
approximation in these models, which is not satisfied for the
simulated layers. The surface scattering in the simulations is
bulklike and described with a channel-independent mean-free
path λs that is proportional to d, leading to the additive 1/d

resistivity term. This functional form matches the approximate
F-S prediction for the case of relatively thick layers. Therefore,
the 1/d dependence is expected for both thin (<2 nm) and thick
(>20 nm) layers, while the intermediate 2–20 nm range may
yield another functional form.
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