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Efficient method for computing the electronic transport properties of a multiterminal system
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We present a multiprobe recursive Green’s function method to compute the transport properties of mesoscopic
systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the
multiprobe problem into the standard two-probe recursive Green’s function method. We apply the method to
compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We
show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
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I. INTRODUCTION

The recursive Green’s function (RGF) method is a powerful
tool to calculate the electronic transport properties of quan-
tum coherent mesoscopic systems [1–4]. Several important
improvements have been proposed over the last decades to
improve the method performance, such as an optimal block-
diagonalization scheme [5] and a modular RGF method [6,7],
to name a few. Notwithstanding, with few exceptions so far the
method has been mainly used to compute the Landauer con-
ductance in two-terminal devices, that is, in systems attached
to two leads in contact with electronic reservoirs.

Some studies [4,8–14] have extended the method to treat
multiprobe systems. However, the latter are designed to address
systems with very simple geometries, except for Ref. [10], at
the expense of increasing the algorithm complexity.

In this paper, we report a multiprobe recursive Green’s
function (MPRGF) method that generalizes and improves the
previous developments. Our scheme is simple to implement,
very flexible, and capable of addressing systems with arbitrary
geometry, and shows a superior or similar performance as
compared to the others.

This paper is organized as follows: In Sec. II, we summarize
the multiprobe Landauer-Büttiker approach and present ex-
pressions for the observables of interest cast in terms of Green’s
functions. In Sec. III, we introduce the adaptive partition
scheme that allows for an efficient solution of the problem.
We illustrate the method using a simple pedagogical model.
Section IV shows an application of the MPRGF method in a
physical system of current interest. The processing time and
accuracy of the method are discussed in Sec. V. We summarize
our results in Sec. VI.

II. ELECTRONIC TRANSPORT PROPERTIES
IN MULTIPROBE SYSTEMS

In this section, we present a brief summary of the main
results of the Landauer-Büttiker approach to calculate the
transport properties of a multiprobe quantum coherent meso-
scopic system. The RGF method can be implemented for both
a finite-element discretization of the Schrödinger equation
[15,16] or a tight-binding model based on a linear combination
of atomic orbitals [17,18]. For simplicity, in this paper, we

consider nearest-neighbor tight-binding models that use a
single orbital per site. The generalization to more realistic
models is straightforward. With this restriction, we can use the
same discrete notation for both above-mentioned Hamiltonian
models.

In linear response theory, the multiterminal Landauer-
Büttiker formula for the electronic current Iα at the terminal α

reads [19–21] (see Fig. 1)

Iα =
N∑

β=1

Gαβ(Vα − Vβ), (1)

where the greek letters label the terminals, Vα is the voltage
applied to the α terminal, and Gαβ is the conductance given by

Gαβ = 2e2

h

∫ ∞

−∞
dE

(
− ∂f

∂E

)
Tαβ(E), (2)

that is cast in terms of the the Fermi distribution f (E) =
[1 + e(E−μ)/kBT ]−1 and the transmission Tαβ(E). The factor
2 assumes spin degeneracy. For cases where the system
Hamiltonian depends explicitly on the electron spin projection,
one incorporates this degree of freedom in the lattice basis,
doubling its size.

The transmission Tαβ(E) is given by [22]

Tαβ(E) = tr[�β(E)Gr (E)�α(E)Ga(E)], (3)

where Gr = (Ga)† is the retarded Green’s function of the
full system (central region and leads—see Fig. 1), whose
computation is the central goal of this paper, while �α is the
linewidth of the lead corresponding to the α terminal. Both Gr

and �α are expressed in a discrete representation, where Gr has
the dimension of the number of sites in the central region, and
the dimension of �α is the number of sites at the α-lead–central
region interface. Following the standard prescription [16,17],
the leads are considered as semi-infinite. The decay width is
related to the embedding self-energy, namely,

�r
α = V†Gr

αV (4)

and

�α = i[�r
α − (�r

α)†], (5)
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FIG. 1. Sketch of the mesoscopic system of interest. Blue sites
compose the central region. The leads α = 1, . . . ,NL are connected
to electronic reservoirs in thermal and chemical equilibrium that act as
terminals. The dashed lines indicate the lead–central region interfaces.
Red, pink, and gray sites represent the first, second, and third primitive
unit cells of different leads.

where V gives the coupling matrix elements between the lead
α and the central region, and Gr

α is a contact Green’s function
that casts the electron dynamics in the leads, which can be
calculated in a number of ways [2,23–25].

The local density of states (LDOS) can be directly obtained
from Gr , namely,

ρ(j ) = − 1

π
Im Gr

jj , (6)

where j corresponds to the site at rj .
Another important quantity of interest is T α

jj ′ , the local
transmission between two sites j and j ′ due to electrons
injected from the terminal α, namely [17,26],

T α
jj ′ = −2 Im{[Gr�αGa]j,j ′Hj ′,j }, (7)

where H is the system Hamiltonian in the discrete representa-
tion.

III. ADAPTIVE SLICING SCHEME

In this section, we put forward an efficient adaptive slicing
scheme tailor-made for multiterminal systems. We present
general expressions for the Green’s functions and illustrate
how the method works using a small and very simple lattice
model, depicted in Fig. 2, which serves as a practical guide for
the system labels we use. In what follows, we deal only with
retarded Green’s functions Gr , where E → E + iη. Hence, to
simplify the notation, from now on we omit the superindex r .

The implementation of the RGF method requires a partition
of the system into N domains or “slices”. A given slice n, that
contains Mn sites, is connected only with the slice n − 1 and the
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FIG. 2. (a) Standard RGF slicing scheme applied to a three-probe
system with N = 6 slices with intraslice hopping matrices Hn and
interslice hopping matrices Un,n+1 for n = 1, . . . ,6. Each slice n

has Mn = 4 sites. (b) Matrix structure of H + � for the system (a).
White boxes correspond to Hij + �ij = 0 and the red ones to matrix
elements where �ij �= 0. The thick solid lines highlight the intra- and
interslice blocks.

slice n + 1 through the hopping matrices Un,n−1 and Un,n+1,
respectively, and has an internal hopping matrix Hn. See the
lattice model in Fig. 2 for details. Several partition schemes
have been proposed in the literature [5,11,12]. As a rule, it is
preferable to minimize the number of sites Mn inside each slice
n and increase the number of slices N , since the computational
time cost scales as N×M3

n .
For two-terminal geometries, it is convenient to connect the

first n = 1 and the last n = N slices to the left lead L and to
the right lead R, respectively. This partition scheme leads to
a block tridiagonal Hamiltonian and a retarded self-energy �

coupled only to the first and last slices of the system. Thus,
in a block matrix representation, the self-energy has the form
�n,n′ = �1,1δn,1δn′,1 + �N,Nδn,Nδn′,N , and H + � has a block
tridiagonal structure. As long as the last requirement is met,
one can apply the RGF method straightforwardly.

Unfortunately, this simple scheme does not work for setups
with more than two terminals. Figure 2 shows the standard RGF
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slicing scheme applied to a very simple two-dimensional lattice
system with three terminals. We show the lattice model in
Fig. 2(a) and the corresponding matrix structure of H + � for a
nearest-neighbor coupling model Hamiltonian in Fig. 2(b). The
matrix is sparse, as indicated by the white boxes (zero-value
matrix elements). Here, N = 6 and each slice n = 1, . . . ,6 has
Mn = 4 sites. Note that the matrix elements due to terminal
3 spoil the tridiagonal block structure of H + �: Nonzero
self-energy matrix elements appear in blocks other than the
first and last slices (1 and 6) connecting simultaneously slices
3, 4, and 5. In more realistic cases of wider leads, the number of
nonzero self-energy matrix elements increases and they appear
further away from the tridiagonal block structure.

The RGF method has been modified over the years to ac-
count for multiple terminals. As mentioned in the Introduction,
there are some well-established schemes for multiprobe RGF
in use, such as the cross strip [4,8,9] and the circular [12]
methods. All of them, including our scheme, are faster than the
full inversion. Nevertheless, their efficiency depends strongly
on the system symmetry. The partition scheme we present here
finds an optimal set of slices with minimal Mn for arbitrary
system geometries and it is of very simple implementation.

Our MPRGF implementation relies on using the power and
simplicity of the standard two-probe RGF equations [17] that
is achieved by introducing an adaptive slicing scheme and a
(single) virtual lead [5]. This is done in two main steps.

(i) Adaptive partition. We start the recursion with a virtual
“left” lead composed by all the contact sites in the leads, which
we call slice n = 0. We define the slice n = 1 by the sites
that are connected to any lead α = 1, . . . ,NL, where NL is
the number of leads attached to the system. The next slices
n = 2,3, . . . are composed by the sites that are connected to
sites that belong to the n − 1 slice. This procedure is repeated
N times until all lattice sites are assigned to a slice. This scheme
gives a block tridiagonal H (see mapping below) in an N×N

block matrix representation. Figure 3(a) shows the proposed
slicing scheme applied to the system of Fig. 2. We use different
shapes and colors to indicate the slice each site belongs.

(ii) Site label reassignment. We renumber the sites in the
system according to the lead they are attached and the slice
they belong in increasing order as follows. The sites in n = 1
are numbered in increasing order according to the leads to
which they are connected. The number of sites connected to
the lead α is M1α . Thus, the total number of sites in the n =
1 slice is M1 = ∑NL

α=1 M1α . We divide the slice n = 1 into
α = 1, . . . ,NL sub-blocks, where the α block contains the M1α

sites connected to the lead α and has dimension M1α×M1α .
The self-energy matrix � has nonzero elements only in the
sub-blocks �

α,α
1,1 due to each real lead α. The numbering of

sites in the slices n � 2 can follow any specific order as long
as each site in slice n has a higher number than any site in slice
n − 1.

For clarity, let us explicitly implement this scheme for the
model system of Fig. 2. Figure 3(a) shows the result. The sites
connected to the leads that were originally numbered as 3,
9, 13, 17, 22, and 23 in Fig. 2(a) constitute the n = 1, with
M11 = 1, M12 = 2, and M13 = 3 sites connected to leads 1,
2, and 3, respectively, that give M1 = 6. Figure 3(a) indicates
the sites in slice n = 1 as red circles. We find this site label
reassignment convenient, but is certainly not unique.
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FIG. 3. MPRGF slicing scheme applied to the system in Fig. 2. (a)
shows the sites with their new labels. Red circles, blue triangles, green
squares, and purple pentagons represent sites belonging to the first,
second, third, and fourth slices, respectively. (b) is the representations
of the matrix H + � corresponding to the slicing scheme in (a). The
thick solid lines highlight the intra- and interslice blocks while the
thick dashed lines correspond to the sub-block division of the slice 1
(see the main text for details). The hatched pattern represents the
contribution from the self-energy � that acts only on the diagonal
sub-blocks of slice 1 due to its ordering by leads.

Next, the sites connected to the n = 1 are the sites with the
original labels 2, 4, 5, 7, 10, 14, 18, 19, 21, and 24. These ten
sites belonging to slice 2 are renumbered from 7 to 16 and
shown in Fig. 3(a) as blue triangles. Following this protocol,
n = 3 has six sites (1, 6, 8, 11, 15, 20) renumbered from 17
to 22 and represented as green squares, while n = 4 contains
two sites (12, 16) renumbered as 23 and 24 being represented
by purple pentagons in Fig. 3(a).

Figure 3(b) shows the corresponding matrix structure of
H + �. Obviously the matrix has the same sparsity as before,
but the size of the blocks can become larger than those expected
in the standard RGF depending on the system. Each diagonal
sub-block of the block n = 1 is filled by the self-energy of one
lead.

In this example we see that this slicing scheme is simple and
fast to implement. It is possible to introduce optimizations to
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the slicing scheme, such as the one developed for two probes in
Ref. [5] based on the theory of graphs, at the cost of increasing
the coding complexity. This discussion is beyond the scope of
the present work.

Now we have all the ingredients to calculate the Green’s
functions using the RGF method. As standard, the free Green’s
functions are defined by setting the interslice hopping matrices
Un,n+1 = 0. By turning on the interslice matrices Un,n+1 we
write a Dyson equation for the fully connected system. We
perform left and right recursions using the equations [17]

GL
n,n = (

E − Hn − Un,n−1GL
n−1,n−1Un−1,n

)−1
, (8)

GR
n,n = (

E − Hn − Un,n+1GR
n+1,n+1Un+1,n

)−1
, (9)

where GL
n,n (GR

n,n) is the Green’s function of the slice n =
1, . . . ,N when all the k slices at its “left” with k < n (“right”
with k > n) are already connected. The recursions in Eqs. (8)
and (9) start at n = 1 and n = N , respectively, and depend
on the surface Green’s functions of the virtual leads GL

0,0

and GR
N+1,N+1. The latter are obtained by standard procedures

[17,23]. Since in our scheme all terminals are coupled to a
single left virtual lead and the right virtual lead is uncoupled,
we write

GL
1,1 = (E − H1 − �1,1)−1, (10)

GR
N,N = (E − HN )−1, (11)

where �1,1 ≡ U1,0GL
0,0U0,1 is block diagonal because the real

leads are decoupled, as we show in Fig. 3(b).
Figure 4 shows how the adaptive slicing scheme maps the

lattice of Fig. 3(a) into an equivalent two-terminal system
lattice with a virtual left lead containing all the real leads and
an uncoupled virtual right lead.

The local Green’s functions of the fully connected system
Gn,n are given by [17]

Gn,n = (
E − Hn − Un,n−1GL

n−1,n−1Un−1,n

−Un,n+1GR
n+1,n+1Un+1,n

)−1
. (12)

Using Eq. (12) we can directly calculate local properties such
as the LDOS for all the sites in the system by simply extracting
the diagonal elements of Gn,n for all n and using Eq. (6).

To calculate the transmission matrix elements given by
Eq. (3), we need the Green’s functions components G1,1

connecting sites attached to different real leads. The Green’s
function G1,1 has dimension M1 and reads

G1,1 =

⎛
⎜⎜⎜⎜⎜⎝

G1,1
1,1 G1,2

1,1 · · · G1,NL

1,1

G2,1
1,1 G2,2

1,1 · · · G2,NL

1,1
...

...
...

GNL,1
1,1 GNL,2

1,1 · · · GNL,NL

1,1

⎞
⎟⎟⎟⎟⎟⎠

, (13)

where each sub-block Gα,β

1,1 of dimension M1α×M1β represents
the propagator between all the M1α sites connected to the lead
α and all the M1β sites connected to the lead β. Note that
the sub-block division of the slice n = 1 for H + � naturally
renders to the sub-block division of G1,1 in Eq. (13) [see the
example in Fig. 3(b)].
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FIG. 4. Slicing scheme for the three-terminal model system. The
site representation (colors and shapes) is the same as in Fig. 3(a).
The dashed lines mark the slice divisions and the solid lines represent
the bonds between sites. The left virtual leads contains all the real
leads attached to the system and the right virtual lead is empty.

If we are interested only in the total transmissions, we need
to perform only the right sweep in Eq. (9) for n = N, . . . ,2
and calculate G1,1 using Eq. (12) for n = 1. The calculation
of other local properties such as the local transmissions T α

jj ′ in
Eq. (7) requires the Green’s function components that connect
the sites of interest j and j ′, that belong to slices n and n′,
respectively, and the sites attached to any lead α, that belong
to n = 1. Thus, we need the full Green’s function blocks Gn,1.

We calculate Gn,1 by means of the extra recursions [17]

GL
n,1 = GL

n,nUn,n−1GL
n−1,1, (14)

Gn,1 = Gn,nUn,n−1GL
n−1,1, (15)

where, as before, n = 2, . . . ,N and the label L indicates that
the Green’s function GL

n,1 is the propagator between slices n

and 1 when all the slices between them are connected. Note that
in distinction to the two-terminal RGF, here it is not necessary
to compute GN,n, Gn,N , and G1,n. Those matrices are not
necessary because all the leads are connected only to the slice
1, as we show in Fig. 4.

Once again we use the sub-block representation to write

Gn,1 =

⎛
⎜⎜⎜⎜⎝

G1
n,1

G2
n,1
...

GNL

n,1

⎞
⎟⎟⎟⎟⎠, (16)
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FIG. 5. Longitudinal Rxx and Hall RH resistances as functions of
the electronic energy EF for a constant magnetic flux φ/φ0 = 0.01
and V = 0.07t . The dashed lines mark the analytical value of the
Landau levels En for n = 1, 2, 3, and 4 (see text for details). The
inset shows the geometry used in the MPRGF calculations. Each arm
and the main branch of the Hall bar are 100 Å wide. The color map
shows the LDOS in arbitrary units for EF = 0.2t where one transport
channel is open.

where each sub-block Gα
n,1 is the Green’s function that con-

nects all the M1α sites contained in slice n = 1 that are attached
to the lead α to all the Mn sites in the slice n. For instance, by
inspecting Fig. 4, one easily concludes that G3

2,1 is a 10×3
matrix connecting the sites 7, . . . ,16 at slice 2 to the sites 4, 5,
6 in slice 1 that are attached to lead 3.

We stress that, for simplicity, we have only discussed
lattice Hamiltonians with nearest-neighbor coupling terms.
The method and equations presented here apply to any number
of next-nearest neighbors, namely, second, third, and so on,
which is of particular interest for tight-binding models based
on maximally localized Wannier functions or related develop-
ments (see, for instance, Ref. [27]). Obviously, the inclusion
of next-nearest neighbors increases Mn, since each slice n is
composed by all the sites connected to the n − 1 partition, and
decreases with the number of slices N . As a consequence, both
the computational time and the memory usage increase with
the reach of hopping integrals.

IV. APPLICATION

Let us illustrate the power of the method by calculating
longitudinal and Hall resistances for a disordered graphene
monolayer sample submitted to a strong perpendicular mag-
netic field B in a Hall-bar geometry with six terminals
(see Fig. 5).

The electronic properties of the system are modeled by a
nearest-neighbor tight-binding Hamiltonian with disordered
on-site energy [28,29], namely,

H = −
∑
〈i,j〉

ti,j c
†
i cj +

∑
j

εj c
†
j cj , (17)

where the operator c
†
j (cj ) creates (annihilates) one electron

at the pz orbital of the j th atom of the graphene honeycomb
lattice. The first sum runs through nearest-neighbor atoms. The
hopping matrix element between sites i and j is ti,j = teiϕij ,
where t = 2.7 eV is the hopping integral for graphene [28]
and ϕij is the standard Peierls phase acquired in the path from
i to j due to the presence of a magnetic field. The magnetic
field is accounted for by a vector potential in the Landau gauge,
namely, A = Bxŷ. The corresponding Peierls phase reads [17]

ϕij = e

h̄

∫ rj

ri

A · dl = 2π
φ

φ0

(xj + xi)(yj − yi)

a2
0

√
3

, (18)

where rj = xj x̂ + yj ŷ is the site j position, a0 = 2.46 Å is
the graphene lattice parameter, φ0 = h/e is the magnetic flux
quantum, and φ is the magnetic flux through one hexagon of the
graphene lattice, namely, φ = BAH , where AH = a2

0

√
3/2.

We use the Anderson model for the on-site disorder, where εj

is randomly chosen from a uniform distribution in the interval
[−V,V ]. The disorder strength is taken as V = 0.07t and the
magnetic flux is φ/φ0 = 0.01. The results presented below
correspond to a single disorder realization.

Using the MPRGF technique described in Sec. III, we
calculate the zero-temperature conductance matrix Gαβ =
(2e2/h)Tαβ given by Eq. (2). We avoid spurious mode mis-
match at the lead-sample interface, without the need of chang-
ing the gauge [30], by using vertical leads in all six terminals
of the Hall bar (see the inset of Fig. 5).

In linear response, the multiterminal Landauer-Büttiker
formula [19–21], Eq. (1), gives the current Iα at terminal α

as a function of the voltages Vβ at all terminals β = 1, . . . ,6.
We set terminals α = 2–5 as voltage probes with I2 = I3 =
I4 = I5 = 0 to compute the current between terminals 1 and
6, namely, I ≡ I1 = −I6. See the inset of Fig. 5. We obtain
the longitudinal and Hall resistances using Rxx = |V4 − V5|/I
and RH = |V3 − V5|/I , respectively [15,20,21].

Figure 5 shows the resistances Rxx and RH as functions
of the electronic energy EF . We have chosen φ/φ0 such that
the system is in the quantum Hall (QH) regime. The quantized
nature of the QH effect is clearly manifest for energies where
Rxx = 0 and RH = h/2e2(2|n| + 1), where 2|n| + 1 is the
number of propagating channels (without spin) and n is the
Landau level (LL) index [15,21]. The position of the first peak
in Fig. 5 matches the analytical value E1 = √

3/2ta0/B cal-
culated using the Dirac Hamiltonian, that effectively describes
the low-energy dynamics of electrons in graphene |EF | 
 t

[28,31]. When EF matches En, the energy of the Landau
level n, backscattering becomes available through the LL
flatband channel yielding a peak in Rxx . As expected, as one
increases |EF |/t , the Dirac Hamiltonian is no longer a good
approximation and the numerically obtained values of the LL
energies increasingly deviate from the analytical prediction
En = E1

√
n [32].

The MPRGF method is also employed to calculate the
LDOS, Eq. (6). The system geometry (see the inset of Fig. 5)
has armchair and zigzag edges along the vertical and horizontal
directions [32], respectively, and a rough tilted edge with no
high symmetry crystallographic orientation near terminals 1
and 6. The inset shows that the LDOS is roughly constant along
the zigzag edges. A similar behavior is not observed neither
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FIG. 6. Local transmission in arbitrary units for EF = 0.2t . The panels consider settings where the electrons are injected from different
terminals, indicated by the corresponding labels and arrows. We show only nonvanishing transmissions. The parameters are the same as
in Fig. 5.

in armchair nor in chiral edges. This indicates that in the QH
regime the electron propagation along zigzag edges is more
robust against bulk and edge disorder than the propagation
along edges with other crystallographic directions, reminiscent
of the behavior observed in the absence of an external magnetic
field [33].

Figure 6 shows the local transmission calculated according
to Eq. (7). Here, we set EF = 0.2t , corresponding to the
first Hall plateau. We find that the enhanced LDOS at op-
posite edges of the Hall bar observed in the inset of Fig. 5
corresponds indeed to transmissions in opposite directions.
Electrons injected from one terminal propagate along the
system edges to the next terminal on the “left” due to the strong
magnetic field. The edge current profile depends very weakly
on which terminal the electrons are injected or on the edge
crystallographic orientation, which is in contrast to the LDOS
behavior in Fig. 5 (inset).

V. BENCHMARK

Let us now analyze the performance and accuracy of the
MPRGF method. We compare the computational time required
to calculate the transmission matrix in a six-terminal Hall bar as
depicted in Fig. 7 by means of direct diagonalization, circular
slicing [12], and the proposed adaptive scheme.

The circular scheme, depicted in Fig. 7(a), leads to a number
Mn of sites inside a slice n that depends linearly on L and W

simultaneously. Since the number of operations in the standard
RGF scheme depends on the weight w = ∑N

n=1 M3
n , the typical

runtime of a circular slicing algorithm scales as w ∝ (LW 3 +
WL3). Thus, the computational time scales cubically with the
largest of L and W . On the other hand, in the MPRGF, the
number of sites inside each cell depends mainly on W while
the number of slices N depends mainly on L, which results in
a computational time that scales with LW 3. In both cases, the
CPU time scales approximately as L4 if the system has aspect
ratio W/L ≈ 1.

Figure 8 shows the computational time to calculate the full
transmission matrix for the system in Fig. 7 as a function of the

length L, where L  W . Here, we consider a two-dimensional
electron gas (2DEG) described by a discretized Hamiltonian in
a square-lattice representation with nearest-neighbor hopping
matrix elements. Using the finite-difference method [15,16],
the discretization of the Schrödinger Hamiltonian in two
dimensions leads to a “hopping” parameter −t , where t =
h̄2/(2m∗a2), m∗ is the electron effective mass, and a is the
grid spacing in both x and y directions. We calculate the
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(b) L

W
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(a) L

W

FIG. 7. Schematic comparison between the slicing scheme used
in the circular slicing and the MPRGF that we propose applied to a
Hall-bar geometry. (a) The circular slicing provides slices that contain
sites along both longitudinal and transverse directions, corresponding
to dimensions L and W . The first slice of this recursive method is the
largest one, containing all the sites that are connected to the leads
plus extra sites along the length L. The slice sizes decrease towards
the center of the system as the last slice is the smallest one. (b) The
MPRGF slicing scheme ensures that the first slice contains all the sites
connected to the leads, rendering a smaller number of sites inside the
first slice and a larger number of slices.
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FIG. 8. Computational time in arbitrary units (single processor) to
calculate the full transmission matrix of the system depicted in Fig. 7
as a function of L for W = 10 using direct diagonalization (black
squares), circular slicing (blue circles), and the proposed MPRGF
(red stars).

transmission for the electron energy EF = 0.01t for systems
with W = 10 sites.

We find that, for large L, the runtime of the adaptive scheme
indeed scales linearly with L while both direct diagonalization
and the circular slicing scale as L3 as discussed. The power-
law dependences, which are intrinsic to the methods, render
a performance to the proposed MPRGF that is orders of
magnitude better than the other codes for L  W .

Hybrid slicing schemes have been proposed to optimize the
RGF method for particular system geometries. Some examples
are the cross strip [4,8,9] and the mixed circular [12] schemes.
In these works the partition of the system region connected to
the leads is designed based on the specificities of the sample
geometry, while the rest of the system is sliced by the standard
method. Another nice multiprobe approach is the “knitting”
one [10], that does not require a partition scheme. These
procedures show a good computational performance, but the
coding complexity is increased. We stress that our scheme does
not rely on specific features of the sample (or leads) geometry,
since it extracts from the Hamiltonian all the information
needed for determining the optimal partitions.

Let us now discuss the accuracy of the adaptive scheme. It is
possible to quantify the precision of the method by comparing
(E − H − �)G with the unit matrix 1. This straightforward
scheme cannot be used since the recursive method avoids the
calculation of a large number of full Green’s function matrix
elements. However, since Gn,n and Gn,1 are available, we can
estimate the precision by evaluating δ ≡ maxval[|∑n(E −
H − �)1,nGn,1 − 1|], where maxval returns the maximum
value of the elements in the matrix. Figure 9 shows the
deviation δ as a function of the length L for the system depicted
in Fig. 7. By computing G in double precision, we find that δ

does not systematically increase with L, supporting the confi-
dence on the algorithm stability, and it remains roughly within
10−14 · · · 10−13, which is four orders of magnitude smaller than
the deviations reported using similar methods [11].

101 102 103 104 105
10-15

10-14

10-13

δ

L
FIG. 9. Accuracy estimate δ for the numerical calculation of the

system Green’s functions as a function of the system length L for
W = 10. See the main text for details.

We conclude this section by discussing the effect of the
regularization parameter η in the calculations. In our approach,
η is only necessary for the computation of the contact Green’s
function [23] and is introduced only in the first decimation
loop to guarantee fast convergence. We find that this procedure
leads to a contact Green’s function Gα that does not depend
on the choice of η and minimizes the deviation between the
calculated numerical value of Gα and the one obtained by
analytical expressions for one-dimensional (1D) chains. Since
we use the �r extracted from the contact Green’s functions, in
general it is not necessary to introduce η for the computation of
the central region Green’s functions. The “η-free” calculation
of the system Green’s function renders the numerical precision
reported in this paper.

VI. SUMMARY

In this paper, we have put forward a multiprobe recursive
Green’s function method to compute the transport properties of
a quantum phase-coherent system using the Landauer-Büttiker
approach.

By applying the adaptive slicing scheme put forward in
Sec. III, we write the H + � matrix in block tridiagonal
form. In this representation, all leads belong to a “left”
virtual lead. Hence, the central region sites connected to
the leads belong to the n = 1 slice and there is no “right”
virtual lead attached to the slice with the largest partition
slice n = N . This mapping allows one to use the standard
RGF equations, designed to compute only the full Green’s
function matrix elements necessary to calculate the trans-
port quantities of interest, such as LDOS, local, and total
transmissions.

The slicing scheme we put forward allows one to ad-
dress multiterminal systems with arbitrary geometries and
multiorbital tight-binding Hamiltonians with hopping terms
that include more than nearest neighbors (at the expense of
increasing CPU time). Our method is exact, since the Green’s
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functions are calculated using the standard RGF equations,
which provide a fast and robust computational scheme that has
been optimized and extensively tested over the years. Further,
it allows for the inclusion of an electronic interaction via a
mean-field approach where one needs to integrate the Green’s
functions in the complex plane weighted by the Fermi-Dirac
distribution [34–37].
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