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Current rectification in a double quantum dot through fermionic reservoir engineering
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Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties.
Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of
electrons through a double quantum dot can be achieved through an appropriately designed electronic environment.
Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned
with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically.
Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.
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I. INTRODUCTION

Transport through nanoelectronic structures has been a
thriving research field for many years, with quantum dots
(QDs) being a prime example [1]. Goals of this effort include
high-precision currents from single-electron pumps [2–6] and
quantum devices encoding information with single electrons
[7–9]. One important aspect of transport is current rectification.
It can be achieved through the Pauli spin blockade in double
quantum dots (DQDs) [10–13] or through Coulomb blockade
in triple quantum dots [14,15]. In both cases, rectification
is a result of many-body effects with an electron trapped
permanently in one of the QDs.

Reservoir engineering promises robust generation of quan-
tum states through designed environments [16]. It has been
applied to trapped atoms [17], trapped ions [18–20], circuit
quantum electrodynamics [21–23], and cavity optomechan-
ics [24–29]. Recently, it has been exploited for promising
magnetic-field-free directional devices for photons [30–35].
Surprisingly, fermionic-reservoir engineering is virtually un-
explored, except for situations where the system couples to
spin [36] or bosonic degrees of freedom [37] of the reservoir.

In this article, we present a mechanism for rectification in
a DQD that works on the single-particle level and relies on
dissipation in a reservoir shared between both dots. In contrast
to Refs. [36,37], the engineered reservoir exchanges fermions
with the system. The mechanism is based on a directional
interaction that arises due to interference of coherent (from a
Hamiltonian) and dissipative coupling (from a shared reser-
voir), independently of particle statistics [31]. The relative
phase of coherent and dissipative coupling is controlled by
an externally applied magnetic field and can be tuned to yield
forward directionality, backward directionality, or reciprocal
transport. It is therefore a form of passive coherent control,
in contrast to active feedback control [38,39], with potentially
interesting consequences for quantum thermodynamics [40].

We unearth the directionality mechanism using a simple
weak-coupling quantum master equation (QME) and corrob-
orate our analysis with the exact solution obtained from the
Laplace transform of the equations of motion, which shows
that the current-voltage characteristics are smoothed out over
the width of the energy levels. Finally, we discuss experimental

FIG. 1. Schematic showing a double quantum dot (DQD) in
contact with three reservoirs. We consider a single energy level in each
dot, with annihilation operator ĉ1,ĉ2. Electrons can tunnel between
the two sites with complex amplitude λ. Each dot is tunnel-coupled
to a reservoir (denoted left and right lead, playing the role of source
and drain) whose chemical potential can be controlled by externally
applied voltages. The crucial feature of our proposal is that both
sites are additionally tunnel-coupled to a shared reservoir that induces
nonlocal electron loss.

implementation, and the impact of other physical effects on di-
rectionality, including non-Markovianity of the reservoir. Our
work introduces fermionic-reservoir engineering, paving the
way to a new class of nanoelectronic devices, with applications
in electronic quantum information technology and precision
current generation.

II. MODEL

We consider a serial DQD in a magnetic field, where each
site is tunnel-coupled to a lead, and both are connected to a
shared electronic reservoir (see Fig. 1). We assume that the
energy level spacing in each dot is large compared to other
parameters in the problem and that the chemical potentials are
sufficiently low such that we only need to consider one level
per dot. If the applied magnetic field induces a large energy
splitting between the spin states, such that only one spin state is
relevant, we can drop the spin index. Under these assumptions,
the Hamiltonian of the system is (h̄ = 1)

Ĥ = Ĥsys + Ĥres + Ĥsys-res, (1a)

Ĥsys =
2∑

i=1

εi n̂i + λĉ
†
1ĉ2 + λ∗ĉ†2ĉ1, (1b)
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Ĥres =
∑

α=1,2,B

∑
k

εk,αb̂
†
k,αb̂k,α, (1c)

Ĥsys-res = −
∑

k

2∑
i=1

ĉ
†
i (Gk,i b̂k,B + Jk,i b̂k,i) + H.c. (1d)

Here, n̂i = ĉ
†
i ĉi is the fermionic number operator for site i,

λ the complex tunneling amplitude between the dots, b̂k,α are
the annihilation operators for fermions in the reservoirs, and
Gk,i,Jk,i are real couplings of the sites to the reservoir modes.

In the presence of a magnetic field, electrons moving in a
closed loop pick up a phase proportional to the flux through
the loop. In our system, the only closed loop is formed by
the two dots with the shared reservoir (cf. Fig. 1). In Eq. (1)
we have chosen a gauge in which the resulting Peierls phase
� is associated with the interdot coupling λ = |λ| exp(i�).
This phase is the crucial ingredient to obtain destructive in-
terference between coherent and dissipative interaction. While
time-reversal symmetry is broken by dissipation, the applied
magnetic field breaks the symmetry under exchange of 1 and 2.

Without the shared reservoir, Eq. (1) is the standard Hamil-
tonian for a serial DQD [41–44]. In contrast to previous work,
we include a third, shared reservoir, which can be realized
experimentally by tunnel-coupling both sites to a wire or a 2D
electron gas parallel to the structure. We propose a specific
experiment below (see Fig. 5 in Sec. V).

Let us first explore the mechanism for directionality within
the quantum master equation (QME). It is derived assuming the
system is weakly coupled to its reservoirs and the Born-Markov
approximation is valid [45]. The QME takes the Lindblad form
(derivation in Appendix A)

ρ̇S = −i[H̃sys,ρS] +
∑

j

[γ −
j D(ĉj ) + γ +

j D(ĉ†j )]ρS

+ [γ +
B D(ĉ†1 + ĉ

†
2) + γ −

B D(ĉ1 + ĉ2)]ρS, (2)

with

H̃sys = ε̃(n̂1 + n̂2) + δ̃

2
(n̂1 − n̂2) + (λ̃ĉ

†
1ĉ2 + H.c.), (3a)

γ +
α = 	αf (ε − μα), γ −

α = 	α[1 − f (ε − μα)], (3b)

where the tilde denotes that the parameters have been renor-
malized by the self-energy due to the reservoirs, and ε̃ ≡
(ε̃1 + ε̃2)/2, δ̃ ≡ ε̃1 − ε̃2. In the remainder of this article we
will drop the tilde again. The index α runs over (1,2,B).
The dissipation rates depend on the reservoir density of states
at energy ε and the coupling amplitudes, which has been
combined into the overall rate 	α , as detailed in Appendix A.
f (ε) = {exp[ε/(kBT )] + 1}−1 is the Fermi-Dirac distribution.
We assume all reservoirs to be at the same temperature, but
allow the chemical potential to vary between the reservoirs, as
they will be set by the applied voltages.

There is extensive literature about whether the QME should
be derived with respect to local degrees of freedom or with
respect to global energy eigenstates of the system [46–48].
In thermodynamic equilibrium, global dissipators tend to be
more accurate, but in out-of-equilibrium situations, it has
been shown that local dissipators model transport behavior
more accurately [48], which is why we have employed local

dissipators here. In order to show that they do indeed capture
the appropriate physics, we compare to the exact solution for
reservoirs with infinite bandwidth below.

III. DIRECTIONALITY

Consider the equation of motion for the expectation value
of the number of electrons on site 1, n̂1, derived from Eq. (2),

d

dt
〈n̂1〉 = −(	1 + 	B)〈n̂1〉 − i〈λĉ

†
1ĉ2 − λ∗ĉ†2ĉ1〉

− 	B

2
〈ĉ†1ĉ2 + ĉ

†
2ĉ1〉 + (γ +

B + γ +
1 ). (4)

The terms in this equation describe (in order) loss of electrons
into two reservoirs, coherent tunneling of electrons between
the two sites, dissipative coupling arising from the nonlocal
dissipator, and a constant rate of fermions added from the
reservoirs. The term−i〈λĉ

†
1ĉ2 − λ∗ĉ†2ĉ1〉 is the current between

the two sites. It is canceled by the succeeding term in Eq. (4)
if

λ = i	B/2, (5)

which causes destructive interference between the coherent
and the dissipative process [31]. This choice for λ, which we
adopt for the rest of the article, makes 〈n̂1〉 independent of site
2, which is the essence of isolation. Crucially, the same is not
true for site 2, as we have

d

dt
〈n̂2〉 = −(	2 + 	B)〈n̂1〉 + i〈λĉ

†
1ĉ2 − λ∗ĉ†2ĉ1〉

− 	B

2
〈ĉ†1ĉ2 + H.c.〉 + (γ +

B + γ +
2 ), (6)

such that for our choice [Eq. (5)] the current from site 1 to
site 2 is enhanced. Mathematically, this happens because the
phase in the coherent interaction is conjugated (λ∗ĉ†2ĉ1) when
exchanging 1 and 2, whereas the dissipator [D(ĉ1 + ĉ2)] is
symmetric.

While the QME enables a simple analysis, we gain confi-
dence in our result by deriving the exact solution directly from
the equations of motion, which is also valid for strong coupling.
Using the Laplace transform c̃(z) ≡ ∫ ∞

0 exp(−zt)c(t)dt allows
us to write the equations of motion as algebraic ones,⎛

⎝z + iε1 + i
1(z) iλ + ∑
k

Gk,1Gk,2

z+iεk,B

iλ∗ + ∑
k

Gk,2Gk,1

z+iεk,B
z + iε2 + i
2(z)

⎞
⎠(

c̃1(z)
c̃2(z)

)

=
⎛
⎝ĉ1(0) + ∑

k
iGk,1

z+iεk,B
b̂k,B(0) + ∑

k
iJk,1

z+iεk,1
b̂k,1(0)

ĉ2(0) + ∑
k

iGk,2

z+iεk,B
b̂k,B(0) + ∑

k
iJk,2

z+iεk,2
b̂k,2(0)

⎞
⎠ (7)

with

i
j (z) =
∑

k

(
G2

k,j

z + iεk,B

+ J 2
k,j

z + iεk,j

)

→
∫

dω

2π

(
	j,B(ω)

z + iω
+ 	j (ω)

z + iω

)
. (8)

The matrix on the left-hand side of Eq. (7) describes physical
effects similar to those of the QME. 
i(z) is a complex
self-energy induced by the coupling to the two reservoirs,
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FIG. 2. We plot the currents 〈Î1〉 (blue), 〈Î12〉 (yellow), 〈Î2〉 (red) for strong coupling [Eq. (10), in solid, dark] and weak coupling (dotted,
light), at zero temperature, as a function of the bias, where V1 ≡ 2(μ1 − ε)/(	B + 	lead) = −V2, for weak (left), intermediate (middle), and
strong (right) interdot coupling relative to the coupling to the leads. The currents are plotted in units of I0 = 	B	lead/(	B + 	lead). In reverse
bias, current from lead 2 flows into the shared reservoir, but current never flows into lead 1 and both 〈Î1〉 and 〈Î12〉 go to zero. In forward
(positive) bias, current flows from lead 1 to 2, but the current into lead 2 is at most half of the current leaving lead 1, which happens in the
“impedance-matched” case where the interdot coupling rate 2|λ| = 	B equals the lead coupling rate 	lead. As the asymmetry in 	B/	lead grows,
more electrons get directed into the shared reservoir [cf. Eq. (10)].

which describes loss (imaginary part) and renormalization
of the energy (real part). The interdot coupling λ is also
modified by an equivalent term, which captures the interference
of coherent and dissipative coupling. Finally, the right-hand
side of Eq. (7) contains the initial state of the system. The
correlators between the reservoir modes contain information
about chemical potential and temperature of the reservoir.

For a dense set of reservoir modes, we can replace the
sums over energy eigenstates (denoted symbolically by

∑
k)

by integrals, as shown in Eq. (8). In order to match the exact
solution to the QME, we choose the reservoir spectral density to
be flat, i.e., 	α(ω) = 	α . Assuming for simplicity that 	1,B =
	2,B ≡ 	B (full solution in Appendix D), directionality is
attained again for λ = i	B/2, in agreement with Eq. (5).
Furthermore, the fact that this effect occurs in the equations
of motion for the operators c1,c2 [Eq. (7)] is clear evidence
that directionality arises due to interference.

IV. CURRENTS

Ultimately, the relevant quantities in experiment are the
currents between the sites and through the leads. We derive
them below for both the QME and the exact solution.

Together with the equation of motion for the expecta-
tion value of the interdot current operator Î12 = −	B(ĉ†1ĉ2 +
ĉ
†
2ĉ1)/2 the QME yields a closed system of equations which

is solved to obtain the steady-state expectation value (cf.
Appendix B)

〈Î12〉 = 	2
B	lead[f (ε − μ1) − f (ε − μB)]

(	B + 	lead)2 + δ2
, (9)

where we have set 	i ≡ 	lead for simplicity. Eq. (9) is a key
result of our analysis. In order to obtain fully directional
transport we need γ +

B = 0, attained for ε − μB � kBT , such
that electrons from the shared reservoir do not enter the system.
In this case, the current is always non-negative, the hallmark
of directional transport. This is the regime we consider in the
rest of the paper.

In Eq. (9), δ is the energy difference between the two
sites. If it is large compared to the dissipation rates, the two

fermionic modes do not overlap, and current is suppressed.
If δ is negligible, and for strong bias (μ1 − ε � kBT , such
that γ +

1 = 	lead), we have 〈Î12〉 ≈ 	2
B	lead/(	B + 	lead)2, and

we identify two limits. If 	B � 	lead, interdot coupling is large
compared to dot-lead coupling, and the current is dominated by
the rate at which electrons are added: 〈Î12〉 ≈ 	lead. Conversely,
if 	B 
 	lead, the current is dominated by the rate at which
electrons are shuttled from site 1 to 2: 〈Î12〉 ≈ 	2

B/	lead.
Intriguingly, current from the shared reservoir reduces 〈Î12〉.

While it could be surprising or worrying that electrons seem-
ingly flow against directionality, it is a natural consequence
of the fact that the directionality originates from interference.
Electrons on site 2 have zero amplitude of traveling to site 1, but
this is not true for electrons from the shared reservoir, which
are added in a superposition on sites 1 and 2. Despite this, our
system is not a circulator, as can be seen from the asymmetry
between the currents from the three terminals (cf. Appendix B).

To verify Eq. (9), we present the exact solution obtained
from Eq. (7), and compare it to the QME in Fig. 2. Inverting
the Laplace transform yields the real-time solution for all
operators, whose correlators converge to stationary values
in the long-time limit, which are generically expressed as
integrals over all energies. At zero temperature, the interdot
current 〈Î12〉 and the current leaving lead i = 1,2, 〈Îi〉 become

〈Î1〉 = I0Is(V1), 〈Î12〉 = I0	lead

	B + 	lead
Id (V1),

(10)

〈Î2〉 = I0Is(V2) − 2	B

	B + 	lead
〈Î12〉,

where the scaled chemical potential Vα ≡ 2(μα − ε)/(	B +
	lead), and we have defined I0 ≡ (	B	lead)/(	B + 	lead) and
the currents through a single (s) and double (d) dot

Is(V ) = 1

2
+ tan−1(V )

π
, Id (V ) = Is(V ) + V

π (1 + V 2)
,

(11)

which are the integral over a Lorentzian and the square of a
Lorentzian, respectively (illustrated in Fig. 4). Alternatively, V
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Reverse bias

Forward bias

FIG. 3. This plot displays schematically how currents flow in the
case of forward and reverse bias, for a DQD with impedance-matched
interdot and dot-lead coupling rates 	B = 	lead, and in the directional
regime λ = i	B/2. In reverse bias, the whole current from the lead is
absorbed in the shared reservoir, and no current arrives in the left lead.
On the other hand, in forward bias, half of the current is absorbed by
the shared reservoir, and the other half is transmitted, which can be
seen in Eq. (10).

can be considered a scaled voltage with respect to the energy
of the site ε.

It is known that I0 is the maximum current through a mode
(per spin) [49] and that current through a mode is proportional
to the area under the line shape up to the chemical potential
[49]. At finite temperature, Is,d are modified, but Eq. (10)
remains unchanged. We distinguish expectation values in the
exact solution by using a calligraphicI, even though the current
operator is the same in both cases. The QME result (at δ = 0)

FIG. 4. Is (Id ) is the integral over a normalized Lorentzian
(squared) from −∞ to the normalized chemical potential V .

FIG. 5. A sketch showing a potential experimental implementa-
tion with a gated GaAs/AlGaAs heterostructure. Gates that expel the
2D electron gas are drawn in dark gray.

can be obtained from Eq. (10) by replacing

Is,d (V ) → f (μ − ε). (12)

Essentially, the weak-coupling QME neglects the finite width
of the modes.

We plot the current-voltage characteristics for symmetric
bias, V2 = −V1, zero temperature, and VB → −∞ for both
solutions in Fig. 2. The current leaving the first lead coincides
with current through a single dot [44], reflected in Is . The
second lead additionally receives current from the first lead,
which passes through both dots and hence has a characteristic
given by Id .

The current is clearly directional, in the sense that current
never enters the first lead, even in reverse bias. However,
some current is directed into the shared reservoir. In the ideal
case, where interdot coupling and dot-lead coupling rates are
matched, 	B = 	lead, and for V1 � 1, 〈Î1〉 → I0, whereas
〈Î2〉 → −I0/2 and half of the current flows into the shared
reservoir, as shown in Fig. 3. Away from that point the amount
of current lost increases steadily [cf. Eq. (10) and Fig. 2].

V. EXPERIMENTAL IMPLEMENTATION

Our proposal can be realized in gated GaAs/AlGaAs het-
erostructures, a well-established platform for QDs [1,50],
where related systems are a reality [51–53]. Directionality
requires finely tuned coupling rates, which are achievable
in current experiments [54–56]. Island gates with magnetic
flux have been implemented before [51,53]. A magnetic flux
of �0/4 threading an area of 0.01 μm2—a typical scale for
experiments [50–53,57]—requires a magnetic field of approx-
imately 50 mT, which is routinely achieved. If not confined
to the island, this magnetic field simultaneously serves to
spin-polarize the dots.

VI. DISCUSSION

One important open question concerns the effects of struc-
ture in the various reservoirs on the directionality proper-
ties. In Eq. (7) we see that isolation occurs when iλ =
− ∫

(dω/2π )	B(ω)/(z + iω), independently of the leads, such
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that we can confidently conclude that structure in the leads does
not impact directionality—though clearly a finite bandwidth
of the shared reservoir does. We expect isolation to work well
when the characteristic frequency range 	 over which the
reservoir density of states changes is large compared to the
width of the system modes,	 � 	B,	lead. Several numerical
approaches have been developed to tackle non-Markovian
reservoirs [58]. Approaches that extend the mode space of the
quantum system [59] might be particularly suitable.

Decoherence processes that couple to the number operator,
such as the phonon reservoir or the Coulomb interaction, do
not affect the mechanism for directionality, since the equation
of motion for n̂i does not change when dissipators such as
D(n̂1) or D(n̂1 ± n̂2) are added. The current between the dots,
however, is reduced as the coherence between the sites is lost,
akin to a quantum Zeno effect.

A more realistic double quantum dot model might include
a nonlinear Coulomb-repulsion term ξ ĉ

†
1ĉ1ĉ

†
2ĉ2 in Eq. (1). It is

not immediately clear how such a term modifies directionality.
While it precludes the straightforward solution via equations
of motion, it commutes with n̂1,n̂2,Î12, and thus does not alter
the QME result, but the QME derived here might cease to be
applicable.

Finally, since the equations are linear, the QME result
can easily be generalized to λ �= i	B/2, which could become
relevant for experiment.

VII. CONCLUSION

We have introduced fermionic-reservoir engineering in
DQDs and shown that a third reservoir shared between both
sites of a serial DQD leads to current rectification. The effect
is robust to various sources of decoherence and is observable
with current quantum dot technology.
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APPENDIX A: DERIVATION OF DISSIPATORS
IN THE QUANTUM MASTER EQUATION

Assuming the Born-Markov approximation, the equation of
motion for the density matrix is given by the QME [45]

d

dt
ρS(t) = −

∫ ∞

0
ds trB[ĤI (t),[ĤI (t − s),ρS(t) ⊗ ρB]],

(A1)

where ĤI (t) is the interaction-picture Hamiltonian for the
interaction with the reservoirs. Here we take the bare Hamil-

tonian Ĥ0 = ε(n̂1 + n̂2) + Ĥres and leave out the energy split-
ting Ĥδ = (δ/2)(n̂1 − n̂2) as well as interdot coupling Ĥλ =
λĉ

†
1ĉ2 + λ∗ĉ†2ĉ1, such that the interaction-picture Hamiltonian

for the system-reservoir coupling becomes

ĤI (t) = −
∑

k

2∑
j=1

ĉ
†
j e

iεt (Gk,j b̂k,Beikxi−iεk,B t

+ Jk,j b̂k,j e
−iεk,j t ) + H.c. (A2)

ρB is the reservoir density matrix, which remains unchanged
over time (Born approximation). Here, we will assume it to
be thermal, with a given chemical potential, such that the
occupation of each mode is governed by the Fermi-Dirac
distribution. If there are no correlations between the reservoirs,
we can treat them separately.

The part that couples site j to lead j

ĤI,j (t) = −
∑

k

ĉ
†
j e

iεtJk,j b̂k,j e
−iεk t + H.c. (A3)

leads to a contribution to the QME

ρ̇S = ∣∣Jk0,j

∣∣2
2πνj (ε){[1 − fj (ε)]D(ĉj ) + fj (ε)D(ĉ†j )}ρS

− i Re[
j ][ĉ†j ĉj ,ρS] + · · · , (A4)

where k0 is the wave vector at which εk0 = ε, fj (ε) = {1 +
exp[(ε − μj )/(kBTj )]}−1 and the dots denote that this is only
part of the equation of motion for ρS . The first term corresponds
to incoherent particle loss or gain, depending on temperature,
chemical potential, and the energy of the site. The second
term renormalizes the energy of the site, given by the self-
energy Re[
j ] ≡ ∑

k |Jk,j |2P[1/(εk − ε)], where P denotes
the principal part .

We repeat the analysis for the shared reservoir

ĤI,B(t) = −
∑

j

ĉ
†
jGk,j b̂k,Beiεt+ikxj −iεk,B t + H.c. (A5)

Going through the same procedure as before, we arrive at

ρ̇S = −
∑
k,i,j

{[1 − fB(εk)][Gij (k,t)(ĉ†i ĉj ρ − ĉj ρĉ
†
i )

+G∗
ij (k,t)(−ĉiρĉ

†
j + ρĉ

†
j ĉi)]

+ fB (εk)[Gij (k,t)(−ĉ
†
i ρĉj + ρĉj ĉ

†
i )

+G∗
ij (k,t)(ĉi ĉ

†
j ρ − ĉ

†
j ρĉi)]} + · · · , (A6)

with

Gij (k,t) = Gk,iG
∗
k,j e

ik(xi−xj )

(
P

−1

i(εk − ε)
+ πδ(εk − ε)

)
.

(A7)

Rearranging yields

ρ̇S =
∑

k

2πδ(εk − ε){[1 − fB(εk)]D(ẑk)ρS

+ fB (εk)D(ẑ†k)ρS} + P
1

i(εk − ε)
[ẑ†kẑk,ρS] + · · · ,

(A8)
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with

ẑk ≡ G∗
k,1e

−ikx1 ĉ1 + G∗
k,2e

−ikx2 ĉ2. (A9)

The first term can be evaluated, due to the presence of the
delta function, and the second can be written as an effective
Hamiltonian. In order to evaluate the delta function, we assume
the following:

(1) The reservoir dispersion relation is symmetric at the
energy ε, i.e., ε−k0 = εk0 . This can be tuned with a current
through the reservoir, which is another way to obtain an
overall complex phase, such that directionality may be obtained
without a magnetic field. Note that the factor of 2 disappears
because the density of states includes the states at positive and
negative wave vector, which we have to write out explicitly.

(2) Symmetric coupling Gk,i = Gk , and we choose Gk0 ∈
R. Any phase can be incorporated into interdot coupling λ.

Simplifying, and including the two individual leads, we
arrive at the QME in Lindblad form

ρ̇S = −i[H̃sys,ρS] +
∑

j

[γ −
j D(ĉj ) + γ +

j D(ĉ†j )]ρS

+ [γ +
B D(ĉ†1 + ĉ

†
2) + γ −

B D(ĉ1 + ĉ2)]ρS, (A10)

with

H̃sys = Ĥ0 + Ĥδ + Ĥλ + Ĥself-energies, (A11a)

γ +
B = 2πG2

k0
νB(ε)fB(ε) cos[k0(x1 − x2)], (A11b)

γ −
B = 2πG2

k0
νB(ε)[1 − fB(ε)] cos[k0(x1 − x2)], (A11c)

γ +
j = 2πJk0,j νj (ε)fj (ε) + 2πνB(ε)G2

k0
fB(ε)

×{1 − cos[k0(x1 − x2)]}, (A11d)

γ −
j = 2πJk0,j νj (ε)[1 − fj (ε)] + 2πνB(ε)G2

k0

× [1 − fB(ε)]{1 − cos[k0(x1 − x2)]}, (A11e)

and where Hself-energies is the sum of the terms in Eqs. (A4) and
(A8). In order to derive the exact form of the dissipation rates,
we started by assuming that the coupling rates to the shared
reservoir take the form Gke

iεk,i x . This specific form is unlikely
to be present in a realistic system. However, the resulting cos(φ)
term can be used to parametrize the imbalance between the
reservoir couplings, with φ varying from −π/2 to π/2. This
will modify the precise form of the rates, but not change the
physics fundamentally. These are subtleties that we do not wish
to address in this paper, and hence we set cos[k0(x1 − x2)] = 1.

With this choice, we arrive at the expressions in the main
text

γ +
α = 	αfα(ε), γ −

α = 	α[1 − fα(ε)], (A12a)

where α ∈ {1,2,B}, and 	α ≡ γ +
α + γ −

α . Note that if the
temperature is equal across all reservoirs, we can write fα(ε) =
f (ε − μα), with f (ε) = {1 + exp[ε/(kBT )]}−1, as is done in
the main text.

APPENDIX B: SOLUTION OF EQUATIONS OF MOTION

From the master equation, we derive the following equa-
tions of motion:

d

dt
〈n̂1〉 = −(	1 + 	B)〈n̂1〉 − i〈λĉ

†
1ĉ2 − λ∗ĉ†2ĉ1〉

− 	B

2
〈ĉ†1ĉ2 + H.c.〉 + (γ +

B + γ +
1 ), (B1a)

d

dt
〈n̂2〉 = −(	2 + 	B)〈n̂2〉 + i〈λĉ

†
1ĉ2 − λ∗ĉ†2ĉ1〉

− 	B

2
〈ĉ†1ĉ2 + H.c.〉 + (γ +

B + γ +
2 ), (B1b)

d

dt
〈ĉ†1ĉ2〉 = (iδ − 	y)〈ĉ†1ĉ2〉 + iλ∗〈n̂2 − n̂1〉

− 	B

2
〈n̂1 + n̂2〉 + γ +

B , (B1c)

having defined 	B ≡ γ +
B + γ −, 	j = γ +

j + γ −
j , and 	y ≡

	B + (	1 + 	2)/2. Setting λ = i	B/2, we arrive at

d〈n̂1〉
dt

= −(	1 + 	B)〈n̂1〉 + γ +
1 + γ +

B , (B2a)

d〈n̂2〉
dt

= −(	2 + 	B)〈n̂2〉 + γ +
2 + γ +

B − 	B〈ĉ†1ĉ2 + ĉ
†
2ĉ1〉,

(B2b)

d

dt
〈ĉ†1ĉ2〉 = (iδ − 	y)〈ĉ†1ĉ2〉 − 	B〈n̂1〉 + γ +

B . (B2c)

The steady-state solution is obtained by setting Eqs. (B2)
to zero:

〈n̂1〉 = γ +
1 + γ +

B

	1 + 	B

, (B3a)

〈ĉ†1ĉ2〉 = 	1γ
+
B − 	Bγ +

1

(	1 + 	B)(	y − iδ)
, (B3b)

〈n̂2〉 = γ +
2 + γ +

B

	2 + 	B

+ 2	y	B(	Bγ +
1 − 	1γ

+
B )

(	1 + 	B)(	2 + 	B)
(
	2

y + δ2
) .

(B3c)

In the limit considered in the main text, 	i = 	lead,	i,B =
	B,δ = 0, and zero temperature, these turn into

〈n̂1〉 = 	lead�(V1) + 	B�(VB)

	lead + 	B

, (B4a)

〈ĉ†1ĉ2〉 = 	lead	B

(	lead + 	B)2
[�(VB) − �(V1)], (B4b)

〈n̂2〉 = 	lead�(V2) + 	B�(VB)

	lead + 	B

+ 2	2
B	lead

(	lead + 	B)3
[�(V1) − �(VB)], (B4c)

where � is the Heaviside step function.
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APPENDIX C: LEAD CURRENTS AND INTERDOT
CURRENT OPERATOR

In order to find the current flowing from one site 1 to site 2,
we consider the Heisenberg equation of motion for the number
of particles at site 1 (in the absence of reservoirs)

˙̂n1 = i[ĤS,n̂2] = −i(λĉ
†
1ĉ2 − λ∗ĉ†2ĉ1) = 	B

2
(ĉ†1ĉ2 + ĉ

†
2ĉ1).

(C1)

We can interpret the right-hand side as the current from site 2
to 1 or as minus the current from site 1 to 2. Its expectation
value in the steady state of the full model is

〈Î12〉 = −	B

2
〈ĉ†1ĉ2 + ĉ

†
2ĉ1〉 = 	B	y

	2
y + δ2

	Bγ +
1 − 	1γ

+
B

	1 + 	B

−→ 	i = 	lead	
2
B

	Bγ +
1 − 	leadγ

+
B

(	lead + 	B)2 + δ2
. (C2)

The currents between the sites and the reservoirs have to
be found in a slightly roundabout way. Considering again the
equations of motion for the number of particles on site 1, we
can write it as

d

dt
〈n̂1〉 = γ +

1 (1 − 〈n̂1〉) − γ −
1 〈n̂1〉 − 	B〈n̂1〉 + γ +

B . (C3)

This form makes it clear that the current from the left lead to
the first site is given by

〈Î1〉 = γ +
1 (1 − 〈n̂1〉) − γ −

1 〈n̂1〉. (C4)

Analogously we can find the current from the right lead onto
site 2, 〈Î2〉. Plugging in the solution above,

〈Î1〉 = 	Bγ +
1 − 	1γ

+
B

	1 + 	B

, (C5a)

〈Î2〉 = 	Bγ +
2 − 	2γ

+
B

	2 + 	B

− 2	y	2	B(	Bγ +
1 − 	1γ

+
B )

(	1 + 	B)(	2 + 	B)(	2
y + δ2)

.

(C5b)

APPENDIX D: EXACT SOLUTION THROUGH LAPLACE
TRANSFORM OF EQUATIONS OF MOTION

We derive the following equations of motion from the
Hamiltonian in the main text:

˙̂c1 = −iε1ĉ1 − iλĉ2 + i
∑

k

(Gk,1b̂k,B + Jk,1b̂k,1),

(D1a)

˙̂c2 = −iε2ĉ2 − iλ∗ĉ1 + i
∑

k

(Gk,2b̂k,B + Jk,2b̂k,2),

(D1b)

˙̂bk,B = −iεk,B b̂k,B + iGk,1ĉ1 + iGk,2ĉ2, (D1c)

˙̂bk,i = −iεk,i b̂k,i + iJk,i ĉi . (D1d)

Through a Laplace transform c̃1(z) =∫ ∞
0 dt exp(−zt)ĉ1(t), these equations can be turned into

algebraic ones. Eliminating the reservoir modes

b̃k,B(z) = 1

z + iεk,B

[b̂k,B(0) + iGk,1c̃1(z) + iGk,2c̃2(z)],

(D2a)

b̃k,i(z) = 1

z + iεk,i

[b̂k,i(0) + iJk,i c̃i(z)], (D2b)

we arrive at(
z + iε̃1 iλ + ∑

k
Gk,1Gk,2

z+iεk,B

iλ∗ + ∑
k

Gk,2Gk,1

z+iεk,B
z + iε̃2

)(
c̃1(z)
c̃2(z)

)

=
(

ĉ1(0) + ∑
k

iGk,1

z+iεk,B
b̂k,B(0) + ∑

k
iJk,1

z+iεk,1
b̂k,1(0)

ĉ2(0) + ∑
k

iGk,2

z+iεk,B
b̂k,B(0) + ∑

k
iJk,2

z+iεk,2
b̂k,2(0)

)

≡
(

c̃1,in(z)
c̃2,in(z)

)
, (D3)

where the energy of the modes has been modified:

ε̃i ≡ εi − i
∑

k

G2
k,i

z + iεk,B

− i
∑

k

J 2
k,i

z + iεk,i

. (D4)

In order to make progress, we will have to make assumptions
about the spectrum of reservoir modes. Here, we assume them
to be dense (such that we have proper dissipation) and write

∑
k

G2
k,i

z + iεk,B

=
∫

dω

2π

	i,B(ω)

z + iω
,

∑
k

J 2
k,i

z + iεk,i

=
∫

dω

2π

	i(ω)

z + iω
.

(D5)

We will further assume the tunneling rates to be Lorentzians
	(ω) = 	δ2/(ω2 + δ2), and let the bandwidth δ → ∞. Non-
Markovian effects can be included by keeping δ finite.

(V)

s (V)

d (V)

- 4 - 2 0 2 4

0.

0.5

1.

Normalized chem. pot. V=2( - )/( lead+ B )

FIG. 6. A comparison of the three underlying functions in the
current characteristics: �(V ) (Heaviside step function), Is(V ), and
Id (V ) as defined in Eq. (D14). As is discussed in the main text, the
Heaviside step function �(V ) appears in the QME solution, which
does not take the finite width of the modes into account, whereas
Is(V ) and Id (V ) can be identified as the current through a single
mode and two modes.
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Together, these choices simplify Eq. (D3) to⎛
⎝ z + iε̃1 iλ +

√
	1,B	2,B

2

iλ∗ +
√

	1,B	2,B

2 z + iε̃2

⎞
⎠(

c̃1(z)
c̃2(z)

)
=

(
c̃1,in(z)
c̃2,in(z)

)
, (D6)

where now

ε̃i = εi − i
	1 + 	1,B

2
. (D7)

We see that 2λ = i
√

	1,B	2,B leads to directional interaction (and that the direction is flipped for the opposite phase). This choice
makes the problem easier to solve as well. Here, isolation can be perfect due to the infinite bandwidth reservoirs. In a realistic
setting, the bandwidth of the reservoir will limit the bandwidth of isolation.

We can express c̃i(z) in terms of the input operators by inverting the matrix:

(
c̃1(z)
c̃2(z)

)
=

⎛
⎝(z + iε̃1)−1 0

−
√

	1,B	2,B

(z+iε̃1)(z+iε̃2) (z + iε̃2)−1

⎞
⎠(

c̃1,in(z)
c̃2,in(z)

)
. (D8)

Due to the wide-band limit and directionality, the inverse Laplace transform can be found easily:

χ̃i(z) ≡ (z + iε̃i)
−1 → χi(t) = exp(−iε̃i t), (D9a)

χ̃12(z) ≡ −√
	1,B	2,B

(z + iε̃1)(z + iε̃2)
→ χ12(t) =

√
	1,B	2,B

i(ε̃1 − ε̃2)
(e−iε̃1t − e−iε̃2t ), (D9b)

G̃k,i(z) ≡ χ̃i(z)
iGk,i

z + iεk,B

→ Gk,i

ε̃i − εk,B

(e−iεk,B t − e−iε̃i t ), (D9c)

J̃k,i(z) ≡ χ̃i(z)
iJk,i

z + iεk,i

→ Jk,i

ε̃i − εk,i

(e−iεk,i t − e−iε̃i t ), (D9d)

α̃k,i(z) ≡ χ̃12(z)
iGk,i

z + iεk,B

→ −iGk,i

√
	1,B	2,B

(ε̃1 − εk,B)e−iε̃2t + (εk,B − ε̃2)e−iε̃1t + (ε̃2 − ε̃1)e−iεk,B t

(ε̃1 − εk,B)(εk,B − ε̃2)(ε̃2 − ε̃1)
, (D9e)

β̃k,i(z) ≡ χ̃12(z)
iJk,i

z + iεk,i

→ −iJk,i

√
	1,B	2,B

(ε̃1 − εk,i)e−iε̃2t + (εk,i − ε̃2)e−iε̃1t + (ε̃2 − ε̃1)e−iεk,i t

(ε̃1 − εk,i)(εk,i − ε̃2)(ε̃2 − ε̃1)
. (D9f)

1. Interdot current

Let us first evaluate the expectation value of the current operator from site 1 to site 2, Î12 = −√
	1,B	2,B(ĉ†1ĉ2 + ĉ

†
2ĉ1)/2:

〈Î12〉 = −√
	1,B	2,B Re

{
χ∗

1 (t)χ12(t)〈ĉ†1(0)ĉ1(0)〉 +
∑

k

G∗
k,1(t)[Gk,2(t) + αk,1(t)]〈b̂†k,B(0)b̂k,B(0)〉

+
∑

k

J ∗
k,1(t)βk,1(t)〈b̂†k,1(0)b̂k,1(0)〉

}
. (D10)

Like in the main text, we distinguish the exact result from the QME solution by using a calligraphic I. At late times, only a few
terms remain:

〈Î12〉 =
∑

k

Re

{
	1,B	2,B

[
iG2

k,1fB(εk,B)

|ε̃1 − εk,B |2(εk,B − ε̃2)
+ iJ 2

k,1f1(εk,1)

|ε̃1 − εk,1|2(εk,1 − ε̃2)

]
−

√
	1,B	2,BGk,1Gk,2fB(εk,B)

(ε̃∗
1 − εk,B)(ε̃2 − εk,B)

}
. (D11)

We turn the sum into an integral, noting that we are in the wide-band limit for the reservoir, such that

〈Î12〉 = 	1,B	2,B

∫
dω

2π
Re

{
i	1,BfB(ω)

|ω − ε̃1|2(ω − ε̃2)
+ i	1f1(ω)

|ω − ε̃1|2(ω − ε̃2)
− fB(ω)

(ε̃∗
1 − ω)(ε̃2 − ω)

}

= 	1,B	2,B

∫
dω

2π

{
(	2 + 	2,B)	1,BfB(ω)

2|ω − ε̃1|2|ω − ε̃2|2 + (	2 + 	2,B)	1f1(ω)

2|ω − ε̃1|2|ω − ε̃2|2 − fB(ω)

(ε̃∗
1 − ω)(ε̃2 − ω)

}
. (D12)

This current has three parts. The first describes fermions from the joint reservoir entering the double dot on the first site and being
transported to the second site, and the second part is due to electrons entering the system from the first lead (connected to the
first site). Finally, the third term reduces the current 〈Î12〉 and can even make it negative. It arises as a result of fermions added to

165308-8



CURRENT RECTIFICATION IN A DOUBLE QUANTUM DOT … PHYSICAL REVIEW B 97, 165308 (2018)

both sites through the shared reservoir. Their amplitudes add destructively on the second site, but constructively on the first site.
The first and third terms can be made small if the chemical potential of the shared reservoir is lowered. The second term encodes
the desired part of the current. All parts are also present in Eq. (C2), where they are encoded as γ +

1 and γ +
B , which are the rate of

electrons being added from the first lead and from the joint reservoir, respectively.
The integral in Eq. (D12) can be performed numerically for T �= 0 and analytically for generic values of the parameters at

T = 0, but the result is cumbersome. Assuming 	i = 	lead, 	i,B = 	B , δ = ε2 − ε1 = 0 and setting temperature T = 0, we find

〈Î12〉 = I0

{
	leadId (V1) + 	BId (VB)

	B + 	lead
− Is(VB)

}
, (D13)

where Vα ≡ 2(μα − ε)/(	lead + 	B), I0 = (	B	lead)/(	B + 	lead), and we define the currents through a single (s) and double (d)
dot (shown in Fig. 6):

Is(V ) = 1

2
+ tan−1(V )

π
, Id (V ) = Is(V ) + V

π (1 + V 2)
. (D14)

Taking the chemical potential for the shared reservoir μB → −∞, we are left with the first term, as in the main text. Finally,
here and below, it can be checked that the QME result (at δ = 0) can be obtained by replacing

Is,d (V ) → f (μ − ε), (D15)

which also works for finite μB .

2. Current leaving lead 1

To find the current leaving leads 1 and 2, we consider [44]

〈Îi〉 = − lim
t→∞

d

dt

∑
k

〈b̂†k,i(t)b̂k,i(t)〉. (D16)

Given the Laplace transform of the system operators Eq. (D8), we can find the Laplace transform of the reservoir operators
Eq. (D2). Keeping only terms that survive at late times, we obtain

b̂k,1(t) → e−iεk,1t b̂k,1(0) + Jk,1e
−iεk,1t

ε̃1 − εk,1
ĉ1(0) +

∑
q

Jk,1Gq,1

εk,1 − εq,B

(
e−iεq,B t

ε̃1 − εq,B

+ e−iεk,1t

εk,1 − ε̃1

)
b̂q,B (0)

+
∑

q

Jk,1Jq,1

εk,1 − εq,1

(
e−iεq,1t

ε̃1 − εq,1
+ e−iεk,1t

εk,1 − ε̃1

)
b̂q,1(0), (D17)

which gives rise to the reservoir occupation at late times:

∑
k

〈b̂†k,1(t)b̂k,1(t)〉 →
∑

k

f1(εk,1) +
∑

k

J 2
k,1

|εk,1 − ε̃1|2 〈ĉ†1(0)ĉ1(0)〉

− 2 Re
∑
k,q

Jk,1Jq,1

εk,1 − εq,1
eiεk,1t

(
e−iεq,1t

εq,1 − ε̃1
− e−iεk,1t

εk,1 − ε̃1

)
〈b̂†k,1(0)b̂q,1(0)〉

+
∫

dω dω′

4π2

	1	1,B

(ω − ω′)2

∣∣∣∣∣ e−iω′t

ω′ − ε̃1
− e−iωt

ω − ε̃1

∣∣∣∣∣
2

fB(ω′)

+
∫

dω dω′

4π2

	2
1

(ω − ω′)2

∣∣∣∣∣ e−iω′t

ω′ − ε̃1
− e−iωt

ω − ε̃1

∣∣∣∣∣
2

f1(ω′). (D18)

The first line is time-independent, so it does not contribute to the current. In the second line, both the nominator and denominator
go to zero as q → k. Applying l’Hôpital’s rule, we find a term linear in t , leading to a constant current.

−2 Re
∑
k,q

Jk,1Jq,1

εk,1 − εq,1
eiεk,1t

(
e−iεq,1t

εq,1 − ε̃1
− e−iεk,1t

εk,1 − ε̃1

)
〈b̂†k,1(0)b̂q,1(0)〉 → −2 Re

∫
dω

2π

	1f1(ω)

(ω − ε̃1)2
[1 + it(ω − ε̃1)]. (D19)

Finally, for the last two lines we need to use [44]

lim
t→∞

d

dt

∫
dω

2π

1

(ω − ω′)2

∣∣∣∣∣ e−iω′t

ω′ − ε̃1
− e−iωt

ω − ε̃1

∣∣∣∣∣
2

= 1

|ω′ − ε̃1|2 , (D20)

which can be derived from limt→∞ f (t) = limz→0 z
∫ ∞

0 dt e−ztf (t) [44].
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Hence the current at late times is given by

〈Î1〉 →
∫

dω

2π

	1(	1 + 	1,B)f1(ω)

|ω − ε̃1|2 −
∫

dω

2π

	1
[
	1f1(ω) + 	1,BfB(ω)

]
|ω − ε̃1|2 =

∫
dω

2π

	1	1,B[f1(ω) − fB(ω)]

|ω − ε̃1|2 . (D21)

Again, any reference to lead 2 is absent, because of isolation. In fact, the form of Eq. (D21) exactly coincides with the current
through a single quantum dot connected to two leads, which in this case are the first lead and the shared reservoir.

At zero temperature, we can evaluate the integral straightforwardly to yield

〈Î1〉 = 	1,B	1

	1,B + 	1
[Is(V1) − Is(VB)]

μB→−∞−−−−−→ 	1,B	1

	1,B + 	1
Is(V1). (D22)

Is(V ) is defined as in the main text [also cf. Eq. (D14)]. For a plot see Fig. 6. Note that the last expression is always positive, so
there is no reverse current in the limit μB → −∞, independently of μ2.

3. Current leaving lead 2

We repeat this procedure for the second lead. We have

b̃k,2(z) = b̂k,2(0)

z + iεk,2
+ iJk,2

(z + iε̃2)(z + iεk,2)

[
ĉ2(0) +

∑
q

iGq,2b̂q,B (0)

z + iεq,B

+
∑

q

iJq,2b̂q,2(0)

z + iεq,2

]

− iJk,2
√

	1,B	2,B

(z + iε̃2)(z + iε̃1)(z + iεk,2)

[
ĉ1(0) +

∑
q

iGq,1b̂q,B (0)

z + iεq,B

+
∑

q

iJq,1b̂q,1(0)

z + iεq,1

]
. (D23)

At late times, this is

b̂k,2(t) → e−iεk,2t b̂k,2(0) + Jk,2e
−iεk,2t

ε̃2 − εk,2
ĉ2(0) +

∑
q

Jk,2Gq,2b̂q,B (0)

εk,2 − εq,B

(
e−iεq,B t

ε̃2 − εq,B

+ e−iεk,2t

εk,2 − ε̃2

)

+
∑

q

Jk,2Jq,2b̂q,2(0)

εk,2 − εq,2

(
e−iεq,2t

ε̃2 − εq,2
+ e−iεk,2t

εk,2 − ε̃2

)

+ iJk,2

√
	1,B	2,B

{
ĉ1(0)e−iεk,2t

(ε̃1 − εk,2)(ε̃2 − εk,2)
+

∑
q

Gq,1b̂q,B (0)

εk,2 − εq,B

[
e−iεq,B t

(ε̃1 − εq,B )(ε̃2 − εq,B )
− e−iεk,2t

(ε̃1 − εk,2)(ε̃2 − εk,2)

]

+
∑

q

Jq,1b̂q,1(0)

εk,2 − εq,1

[
e−iεq,1t

(ε̃1 − εq,1)(ε̃2 − εq,1)
− e−iεk,2t

(ε̃1 − εk,2)(ε̃2 − εk,2)

]}
. (D24)

The first four terms are the same as for lead 1, except with 1 ↔ 2. The rest of the expression originates from coupling to site 1.
The reservoir occupation at late times contains the same terms as Eq. (D18) (except with 1 ↔ 2), in addition to the terms

2 Re
∫

dω dω′

4π2

i	1,B	2,B	2fB(ω′)
(ω − ω′)2

(
eiω′t

ε̃∗
2 − ω′ − eiωt

ε̃∗
2 − ω

)(
e−iω′t

(ε̃1 − ω′)(ε̃2 − ω′)
− e−iωt

(ε̃1 − ω)(ε̃2 − ω)

)

+
∫

dω dω′

4π2

	2
1,B	2,B	2fB(ω′)

(ω − ω′)2

∣∣∣∣∣ e−iω′t

(ε̃1 − ω′)(ε̃2 − ω′)
− e−iωt

(ε̃1 − ω)(ε̃2 − ω)

∣∣∣∣∣
2

+
∫

dω dω′

4π2

	1	2	1,B	2,Bf1(ω′)
(ω − ω′)2

∣∣∣∣∣ e−iω′t

(ε̃1 − ω′)(ε̃2 − ω′)
− e−iωt

(ε̃1 − ω)(ε̃2 − ω)

∣∣∣∣∣
2

. (D25)

The first line originates from the correlator of line 1 and 3 in Eq. (D24), whereas the latter two lines stem from the last two lines
in Eq. (D24). The time derivative of the first line can be shown to be

− d

dt

∫
dω dω′

4π2
	1,B	2,B	2fB(ω′)

	1 + 	1,B

(ω − ω′)2

∣∣∣∣∣ e−iω′t

(ε̃1 − ω′)(ε̃2 − ω′)
− e−iωt

(ε̃1 − ω)(ε̃2 − ω)

∣∣∣∣∣
2

. (D26)

Similarly to above,

lim
t→∞

d

dt

∫
dω

2π

1

(ω − ω′)2

∣∣∣∣∣ e−iω′t

(ω′ − ε̃1)(ω′ − ε̃2)
− e−iωt

(ω − ε̃1)(ω − ε̃2)

∣∣∣∣∣
2

= 1

|ω′ − ε̃1|2|ω′ − ε̃2|2 . (D27)
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Applying the same method as above we derive the current at late times,

〈Î2〉 = −
∫

dω

2π

	2	2,B[fB(ω) − f2(ω)]

|ω − ε̃2|2 −
∫

dω

2π

	1,B	2,B	1	2

|ω − ε̃1|2|ω − ε̃2|2 [f1(ω) − fB(ω)], (D28)

where the first term is the same as for the first lead, except with 1 ↔ 2, whereas the second term is an additional contribution due
to the coupling to lead 1. In the limit of zero-temperature reservoirs, we perform the integral (again setting 	i,B = 	B , 	i = 	lead,
and δ = 0)

〈Î2〉 = I0[Is(V2) − Is(VB)] + 2I0	B	lead

(	B + 	lead)2
[Id (VB) − Id (V1)]. (D29)

4. Comparison between QME and exact result

For reference, we collect the expressions for all currents here:

〈Î1〉 = I0[Is(V1) − Is(VB)], (D30a)

〈Î12〉 = I0

[
	leadId (V1) + 	BId (VB)

	B + 	lead
− Is(VB)

]
, (D30b)

〈Î2〉 = I0

{
Is(V2) − Is(VB) + 2	B	lead[Id (VB) − Id (V1)]

(	B + 	lead)2

}
. (D30c)

We can compare this with the currents in the weak-coupling limit for the same parameters:

〈Î1〉weak = I0[f (ε − μ1) − f (ε − μB)], (D31a)

〈Î12〉weak = 	lead	
2
B

(	lead + 	B)2 + δ2
[f (ε − μ1) − f (ε − μB)], (D31b)

〈Î2〉weak = I0[f (ε − μ2) − f (ε − μB)] + 2I0	B	lead

(	lead + 	B)2 + δ2
[f (ε − μB) − f (ε − μ1)]. (D31c)

It is straightforward to verify the replacement in the main text even for finite μB (but still δ = 0).
The current leaving lead 1 that does not enter lead 2 flows into the shared reservoir 〈ÎB〉 = −〈Î1〉 − 〈Î2〉.
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