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Electro-optical properties of Cu2O for P excitons in the regime of Franz-Keldysh oscillations
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We present the analytical method which enables one to compute the optical functions i.e., reflectivity,
transmission, and absorption, including the excitonic effects, for a semiconductor crystal exposed to a uniform
electric field for the energy region above the gap and for the external field suitable for the appearance of
Franz-Keldysh (FK) oscillations. Our approach intrinsically takes into account the coherence between the carriers
and the electromagnetic field. We quantitatively describe the amplitudes and periodicity of FK modulations as
well as the influence of Rydberg excitons on the FK effect. Our analytical findings are illustrated numerically for
P excitons in Cu2O crystal.
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I. INTRODUCTION

A lot of studies, both experimental and theoretical, have
been devoted to examining various properties of excitons in
Cu2O bulk crystal, and it appeared that the spectroscopical
features of copper oxide were recognized throughout (see
Refs. [1–7]). But recently, the interest in this bulk semiconduc-
tor has reignited due to an outstanding experiment performed
by Kazimierczuk et al. [8], who discovered highly excited
states, so-called Rydberg excitons (RE), in the natural crystal of
copper oxide. They have observed absorption lines associated
with excitons of principal quantum numbers up to n = 25.

A large number of new studies focused on the extraordinary
properties of RE have attracted increasing attention during the
last three years [9–17], especially regarding their behavior
in external fields [18–20] as well as in the context of the
similarity of their spectra to quantum chaos and breaking all
antiunitary symmetries [21–23]. Recently, an observation of
photoluminescence of excitonic Rydberg states was reported
[24].

Until now, much effort has been devoted to examining
excitons in Cu2O for energies below the gap, the region
in which the most important effect, i.e., the appearance of
excitons with a high number n, has been observed. One distinct
peculiarity of copper oxide is the moderately small Rydberg
energy of only 90 meV, which ensures that all relevant states
from the ground state up to the continuum above the band gap
are optically accessible using attainable lasers.

Recently, some attempts [25] have been reported in which
the optical properties of Cu2O for excitation energies ex-
ceeding the fundamental gap were examined. Heckötter et al.
[25], using two-color pump-probe spectroscopy, studied RE in
copper oxide in the presence of free carriers injected by above-
band-gap excitation. They examined the impact of an ultralow-
density plasma on Rydberg excitations at the temperature of
a few kelvins and observed that inside a Cu2O crystal plasma
shifts the band edge downwards, diminishing the maximum
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excitable Rydberg state, which, in turn, leads to modulation of
the plasma blockade induced by the band gap modulation.

Below we study another effect that appears for above-gap
excitation, electro-optic properties. For excitation energies
below the gap, the main electro-optic effects are the shifting,
splitting, and, for higher excitonic states, mixing of spectral
lines [18]. Like for direct-band semiconductors, for energies
above the gap and when a constant electric field is applied,
specific oscillations in the spectra, known as the Franz-Keldysh
oscillations, have been observed [26–41].

These oscillations are results of wave functions “leaking”
into the band gap; the key mechanism of this effect is photon-
assisted tunneling across the band gap. When an electric field
is applied, the electron and hole wave functions become Airy
functions rather than plane waves (and they have a “tail” which
extends into the classically forbidden band gap). Due to the
influence of the electric field on interband transitions in the
presence of excitons the dielectric constant of a semiconductor
exhibits Franz-Keldysh oscillations, which can be detected by
modulated reflectance. The Franz-Keldysh (FK) effect, which
gives the possibility of creating and controlling reflectivity
oscillations, provides a key ingredient to the goal of achieving a
precise tool for steering on-demand periodicity and amplitude
of electromodulations. The FK effect has also had practical
applications (see, for example, Ref. [42]).

The theoretical description of the FK effect is quite different
from that for all the phenomena below the gap. For energies
below the gap a well-known solution of a hydrogenlike
Schrödinger equation can be used in which the term related
to the applied electric field is treated as a perturbation [18].
For energies above the gap one deals with the continuum
states. When the electric field is applied, the relevant material
(constitutive) equation contains terms of different symmetries,
so an analytical solution is not known.

As mentioned by Ralph [30], to the best of our knowledge
the FK effect has not been examined experimentally for the
Cu2O bulk crystal.

Here we develop the real density-matrix approach previ-
ously used to describe optical properties of Rydberg excitons
below the gap [10,18,20], including energies above the gap
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and taking into account the changes caused by an externally
applied electric field, whose intensity should be small enough
to avoid Stark localization but sufficient to enable observation
of Franz-Keldysh oscillations. The Franz-Keldysh effect gives
the possibility to create and control reflectivity oscillations.
Circumventing this problem would be a key to achieve the
goal of precisely steering on-demand periodicity and amplitude
of electromodulations. Below we show that using excitons,
one gets a flexible tool to study the oscillation dynamics of
reflectivity of a Cu2O crystal irradiated by electromagnetic
radiation and affected by an electric field. The tunability, which
can be exploited to force the desired period and amplitude
of modulations, can be achieved through the modification of
an external electric field intensity, which in turn influences
the excitonic levels’ shifting and overlapping. Moreover,
the periodic FK oscillations can be used to determine the
effective masses along the axes of propagation inside the
crystal.

This paper is organized as follows. In Sec. II we sketch the
outline and present general density-matrix equations governing
the evolution of the system, which are necessary to calculate
the macroscopic polarization of a medium. These general
considerations are then specified for the case of Cu2O in
Secs. III and IV, where we show the appearance of the Franz-
Keldysh effect. Section V contains a discussion of how more
excitonic states can be accounted for in the calculations of
the FK effect with illustrative examples of susceptibility for
Cu2O. In Sec. VI the general approach in which each of the
excitonic states is described by appropriate harmonic oscil-
lators is presented. Such a procedure allows one to calculate
the electrosusceptibility for any energetic region (below and
above the gap). The particular case of a P exciton for energies
above the gap is also discussed in this section. The conclusions
are discussed in Sec. VII.

II. DENSITY-MATRIX FORMULATION

We intend to calculate the optical functions of a Cu2O
crystal when a homogeneous electric field is applied in the z

direction, which is chosen to be perpendicular to the crystal
surface, and the excitation energy exceeds the fundamen-
tal gap energy. The method is based on the so-called real
density-matrix approach (RDMA) which, for a similar physical
situation but with excitation energy below the gap, was used in
Ref. [18]. The kernel of the RDMA is the so-called constitutive
equation

Ẏ (R,r) + (i/h̄)HehY (R,r) + (1/h̄)�Y (R,r)

= (i/h̄)M(r)E(R), (1)

where Y is the bilocal coherent electron-hole amplitude (pair
wave functions), R is the excitonic center-of-mass coordinate,
r = re − rh is the relative coordinate, M(r) is the smeared-out
transition dipole density, and E(R) is the electric field vector
of the wave propagating in the crystal. The coefficient � in
the constitutive equation represents dissipative processes. The
two-band effective mass Hamiltonian Heh of the system under
a constant electric field F = (0,0,F ) that includes the electron
and hole kinetic energy terms, the electron-hole interaction

potential, and the confinement potentials [10] has the form

Heh = Eg − h̄2

2me

∂2
ze

− h̄2

2mh

∂2
zh

− h̄2

2μ

(
∂2
x + ∂2

y

)

− h̄2

2Mtot

(
∂2
R‖ + R−1

‖ ∂R‖
) + eF (zh − ze)

+Veh(ze − zh,ρ) + Ve(ze) + Vh(zh), (2)

where we have separated the center-of-mass coordinate R‖
from the relative coordinate ρ on the plane x-y. The potential
term representing the Coulomb interaction in an anisotropic
medium is given by

Veh = − e2

4πε0εb[(x2 + y2) + z2]1/2
, (3)

with εb being the bulk dielectric constant. The smeared-out
transition dipole density M(r), which should be chosen in our
case to be appropriate for P or F excitons [20], is related to
the bilocality of the amplitude Y and describes the quantum
coherence between the macroscopic electromagnetic field and
the interband transitions.

The coherent amplitude Y defines the excitonic counterpart
of the polarization

P(R) = 2
∫

d3rRe[M(r)Y (R,r)], (4)

which is then used in the Maxwell propagation equation

c2∇2
RE − ε

b
Ë(R) = 1

ε0
P̈(R), (5)

where ε
b

is the bulk dielectric tensor and ε0 is the vacuum
dielectric constant. In the present paper we solve Eqs. (1)–
(5) in order to compute the electro-optical functions (i.e.,
reflectivity, transmission, and absorption) for Cu2O. Contrary
to the previous paper on electro-optical properties [18], we will
consider the excitation energies above the energy gap, which
will require a more general approach.

Both polarization and electric field must obey Maxwell’s
equations, which have to be solved in order to get the prop-
agation modes. The above approach takes into account key
factors necessary for the calculation of all optical functions.
They are obtained, as usual, by comparing the amplitudes of
incident, reflected, or transmitted electric fields and depend on
the applied field strength and on the total crystal thickness.

III. THE BASIC EQUATIONS

The considered crystal is modeled by a slab with infinite
extension in the xy plane and the boundary planes z = 0,z =
L. For the sake of simplicity, the slab is located in vacuum.
A monochromatic, linearly polarized electromagnetic wave
propagates along the z axis. Its electric field is given by

E = (0,Ey,0), Ey = Eine
ik0z−iωt , (6)

where k0 = ω/c is the wave vector in the vacuum, with ω

being the frequency, and Ein is the amplitude of the incoming
wave. Due to the fact that the energy of the propagating wave
is divided into reflected and transmitted waves one obtains the
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reflectivity and transmissivity from the following relations:

R =
∣∣∣∣E(0)

Ein
− 1

∣∣∣∣
2

, T =
∣∣∣∣E(z = L)

Ein

∣∣∣∣
2

, (7)

where E(z) is the y component of the wave’s electric field
inside the crystal. We will calculate the optical functions for
the case when a constant electric field F is applied in the z

direction. The calculation of the optical functions consists of
several steps. The first one is the solution of the constitutive
equation (1). Due to the specific properties of Cu2O, we will
treat the crystal as the bulk region and assume the amplitude
Y and the wave electric field E have the forms

Y (Z,r) = Y (r)eikzZ, E(Z) = E0e
ikzZ. (8)

Assuming the wave propagation is in the z direction and
accounting for the properties of Cu2O, we neglect the R‖
component and the confinement potentials, arriving at the
equation[

Eg − h̄ω − i� + h̄2k2
z

2Mtot
− h̄2

2μ
∂2
z − h̄2

2μ

(
∂2
x + ∂2

y

)

+ eFz + Veh(z,ρ)

]
Y (x,y,z) = M(r)E(Z), (9)

where Mtot and μ are the exciton total and reduced effective
masses, respectively. For further considerations we must spec-
ify the dipole density M. Due to the symmetry properties of
Cu2O the total symmetry of the excitons’ state must be the
same as the symmetry of the dipole operator, and according
to this, the transition dipole density appropriate for P excitons
will be considered. This will result in the shapes of the real and
imaginary parts of the electrosusceptibility. In previous papers
[18,20], for energies below the gap, we took the dipole density
in terms of spherical coordinates. For energies above the gap
and with the applied electric field, the cylindrical symmetry
must be used. For the sake of simplicity, we use the in-plane
components of the dipole density with the coherence radius r0

along the planes and zero in the growth direction.
The cylindrical version of the formula for the My compo-

nent of the P exciton in Cu2O, given in Ref. [10], has the form

M(ρ,ζ,φ) = 1

2
M0

√
2

π

ρ

ρ3
0

e−ρ2/2ρ2
0
eiφ + e−iφ

√
2π

δ(ζ ). (10)

Here we used the dimensionless quantities

ρ =
√

x2 + y2

a∗ , ζ = z

a∗ , (11)

and ρ0 is the coherence radius. For further discussion we define
the quantities

f = F

FI
, k2 = 2μ

h̄2 a∗2(Eg − h̄ω − i�) + μ

Mtot

(
k2
z a

∗2
)
,

(12)

where FI is the so-called ionization field

FI = h̄2

2μ‖ea∗3
= R∗

a∗e
, (13)

with R∗ being the excitonic Rydberg and a∗ being the cor-
responding excitonic Bohr radius. We also use the so-called

electro-optic energy

h̄� = R∗f 2/3 =
(

h̄2

2μ

)1/3

(eF )2/3. (14)

With these quantities Eq. (9) can be rewritten in the form(
k2 − ∂2

ρ − 1

ρ
∂ρ − 1

ρ2
∂2
φ − ∂2

ζ + f ζ

)
Y

= 2μ

h̄2 a∗2MEy + 2√
ρ2 + ζ 2

Y. (15)

M denotes the relevant component of the dipole density, given
by Eq. (10), and Ey is the y component of the electric wave
field.

IV. THE ELECTROSUSCEPTIBILITY AND
FRANZ-KELDYSH EFFECT FOR THE P EXCITON

In this section we derive the expression for the bulk
Cu2O electrosusceptibility for the P exciton. Following the
procedure described in Ref. [36], we separate the Hamiltonian
in Eq. (1) transformed to the form in (15) into a kinetic +
electric field part Hkin+F and a potential term V which lead to
the following form of the basic constitutive equation (1):

Hkin+FY = ME − V Y. (16)

The above expression corresponds to THE Lippmann-
Schwinger equation, in which the Green’s function G appro-
priate for the kinetic + electric field part is adopted for the
coherent amplitude

Y = GME − GV Y. (17)

The Green’s function for Eq. (15) has the form

G(ρ,ρ ′; ζ,ζ ′; φ,φ′)

= 1

2π

∞∑
m=−∞

eim(φ−φ′)

×
∫ ∞

0
x dx Jm(xρ)Jm(xρ ′)gx(ζ,ζ ′), (18)

where

gx(ζ,ζ ′) = g< g>,

g< = π

f
1
3

{
Bi

[
f

1
3

(
ζ< + k2 + x2

f

)]

+ iAi

[
f

1
3

(
ζ< + k2 + x2

f

)]}
,

g> = Ai

[
f

1
3

(
ζ> + k2 + x2

f

)]
, (19)

Jm are Bessel functions, and Ai(z) and Bi(z) are Airy functions
(see Ref. [43]). To obtain the optical functions one has to
solve Eq. (17) using the Green’s function (18). Please note
that Eq. (17) has the form of the Fredholm integral equation
of the second type. There are many methods of solving such
equations [44], and the particular choice depends on the
specific properties of the particular crystal. One of the methods
uses a certain form of the function Y (ansatz) which depends on
an unknown parameter Y0. The parameter is then obtained from
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Eq. (17) and used to calculate the polarization from Eq. (4) and
the electric field of the wave from Eq. (5).

The ansatz for Y will be taken in the form

Y = Y0ρ
eiφ + e−iφ

√
2π

exp(−k
√

ρ2 + ζ 2), (20)

which has the symmetry of the 2P exciton state. With the above
ansatz, the Green’s function (18), and the My dipole density
(10), we obtain the following expression for the susceptibility:

χ = 2
|M0|22μ

ε0a∗h̄2f
1
3 Q

∫ ∞

0
x3dx exp(−ρ2

0x2)

[
Bi

(
k2
x

f
2
3

)

+ iAi

(
k2
x

f
2
3

)]
Ai

(
k2
x

f
2
3

)
M̃Y

M0Y0

= 2πρ3
0χ ′

Q
f e−Eρ2

0

∫ ∞

−E
du e−ρ2

0 f 2/3u(u + E)[Bi(u)

+ iAi(u)]Ai(u), (21)

with

χ ′ = 2

ε0

2μ

h̄2a∗
M2

0

4πρ0
(22)

and

k2
x = k2 + x2,

u = k2 + x2

f 2/3
,

E = h̄ω + i� − Eg

h̄�
,

M̃Y

M0Y0
=

√
2

π
ρ0�(4) exp

(
k2ρ2

0/4
)
D−4(kρ0),

where h̄� is the electro-optical energy (14) and D−4 is the
parabolic cylinder function (see, for example, [43,45]),

Dp(z) = exp(−z2/4)

�(−p)

∫ ∞

0
e−xz−(x2/2)x−p−1dx

(Re p < 0), (23)

with � being the Euler gamma function. The expression Q

appearing in the denominator in (21) is given by

Q = (M̃Y ) − M̃G|V |Y
M0Y0

, (24)

where

MG|V |Y = M0Y0ρ0

√
2

π

2π

f 1/3

∫ ∞

0
x3 dxe−ρ2

0 x2/2Ai

(
k2
x

f 2/3

)

×
∫ ∞

0
dζ

(
ζ

k2
x

+ 1

k3
x

)
e−kxζ

{
Bi

[
f 1/3

(
k2
x

f
− ζ

)]

+ iAi(f 1/3

(
k2
x

f
− ζ )

)}
+ M0Y0ρ0

√
2

π

2π

f 1/3

×
∫ ∞

0
x3 dxe− ρ2

0 x2

2

[
Bi

(
k2
x

f 2/3

)
+ iAi

(
k2
x

f 2/3

)]

×
∫ ∞

0
dζe−kxζ

(
ζ

k2
x

+ 1

k3
x

)
Ai

[
f 1/3

(
k2
x

f
+ ζ

)]
.

(25)
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FIG. 1. Real part of the electrosusceptibility for a Cu2O crystal
in the energetic region of Franz-Keldysh oscillations, calculated with
formula (21) and taking into account the excitonic effect, (a) for two
values of the electric field strength (F = 10V/cm and F = 20 V/cm)
and (b) for a range of values of F . The coherence radius is ρ0 = 0.2a∗,
� = 0.8 meV.

The vanishing of the real part of Q gives the resonances
of the susceptibility. In particular, for the case without electric
field F = 0, one obtains

M̃G|V |Y
M0Y0

= M0Y0ρ0

√
2

π

1

2k
�(4)ez2/4D−4(kρ0). (26)

Some unique features of the susceptibility can be read off
directly from formula (21). In particular, for energies above
the gap (i.e., for h̄ω > Eg) we obtain the FK oscillations in the
spectrum, which appear due to the periodic character of Airy
functions Ai and Bi.

Some quantitative properties of the spectrum can be ob-
tained by neglecting the electron-hole interaction, i.e., by
taking V = 0. The results for the susceptibility from formula
(21) with Q calculated from Eq. (24) are shown in Fig. 1 (the
real part) and Fig. 2 (the imaginary part) for two values of
the applied electric field. The two values are inserted into
formula (A10), which gives the corresponding values of χ ′.
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FIG. 2. The same as in Fig. 1(a) for the imaginary part of the
susceptibility. For clarity, oscillations are enlarged and marked by
dashed lines.

We have used the parameter values appropriate for Cu2O:
Eg = 2172 meV,me = 0.985m0,mh = 0.575m0 [46], with m0

being the free-electron mass. With those masses one obtains
the reduced mass as μ = 0.363m0. The Rydberg energy and
the excitonic Bohr radius are then obtained from

R∗ = μ × 13 600 meV

ε2
b

, a∗ = εb

μ
a0. (27)

Taking the values εb = 7.5 and a0 = 0.0529 nm, we obtain
R∗ = 87.78 meV and a∗ = 1.1 nm. The quantity χ ′ [see
Eq. (A10)], related to the oscillator strength, depends on the
L − T energy LT for which we have used the value 1.25 μeV
[47]. We have performed the calculations for two values of
damping, � = 0.4 meV and � = 0.8 meV; the latter value of
� corresponds to that calculated by Stolz et al. [47] for the
n = 2 state of the P exciton in Cu2O. It can be seen from
Figs. 1 and 2 that for excitation energies E = h̄ω above the
gap noticeable oscillations in the real and imaginary parts of
the susceptibility appear. Their period and amplitude increase
with field strength.

The effects of coherence between the quantum effects
(here the FK oscillations) and the macroscopic incoming
wave are incorporated into the shape of the transition dipole
density M(r), characterized by the matrix element M0 and the
coherence radius ρ0. In the presented model the two parameters
are not independent, and the relation between them is discussed
in Appendix A. Here we used ρ0 as a free parameter, which
was also done in previous papers in which the real density-
matrix approach was used [10,18]. The dependence of the
susceptibility on the coherence radius and energy is shown in
Fig. 3. In the subsequent plots, we have taken ρ0 = 0.2a∗ [10].

For the purpose of illustration we show in Figs. 4 and 5 the
real and imaginary parts of the derivative ∂χ/∂E, for which
the FK oscillations are more evident. It should be noted that the
external field should be chosen carefully, i.e., be small enough
to avoid Stark localization but sufficiently strong for oscillation
to manifest.

FIG. 3. The same as in Fig. 1(b) at fixed value of the electric field,
F = 10 V/cm, for a range of values of ρ0.

It can be proved (see Ref. [48] and Appendix B) that
the peaks of FK oscillations observed in Figs. 1–5 appear at
energies

(En − Eg)3/2 = 3

4
nπ (h̄θ )3/2 = 3nπeh̄F

4
√

2μ
. (28)

The above formula contains all extrema. It follows from
Eq. (B4) that for � → 0 FK oscillations appear around a
curve (h̄ω − Eg)3/2. The slope is analogous to that obtained
for forbidden transitions [28,29,40] and differs from that
observed for S excitons, which in turn depends on

√
h̄ω − Eg

[28,29,36]. It should be pointed out that the decreasing of
Re χ , which is described by Eq. (B4), follows from the fact
that ε∞ is smaller than εb.

The effect of FK oscillations on feasible experimentally
measurable optical functions is shown in Figs. 6(a) and
6(b). We have chosen the absorption coefficient α and the

FIG. 4. The real part of the derivative Re ∂χ/∂E displayed for
the data in Fig. 1 for two values of the applied electric field.
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FIG. 5. The same as in Fig. 4 for the imaginary part of the
susceptibility.

transmissivity T , for which we used the expressions

T = 16|n|2
|(1 + n)2|2 e−αL

= 16
(
n2

1 + n2
2

)
[
(1 + n1)2 − n2

2

]2 + 4n2
2(1 + n1)2

e−αL,

α = 2
h̄ω

h̄c
Im n, (29)

where n denotes the complex refraction coefficient n =√
εb + χ = n1 + in2. When calculating the difference T =

T (F ) − T (F = 0), we use the expression for the zero-field
susceptibility [see Eq. (A7)]

χ (F = 0) = χ ′

1 − 1/2k

[
2kρ0 + √

π
(
1 − 2k2ρ2

0

)
w(ikρ0)

]
.

(30)

One can see that the oscillations in the absorption spectrum be-
come smoother for higher electric field [Fig. 6(a)]. Moreover,
the absorption increases with electric field, while the amplitude
of oscillations remains almost unchanged. Similar effects are
seen for the relative transmission coefficient [Fig. 6(b)], which
is, in turn, lower for higher F . It can also be seen that the
shape of the FK oscillations strongly depends on the damping
parameter �, as shown in Figs. 7(a) and 7(b). The spectrum
shows characteristic FK oscillations, and the positions of their
minima and maxima are in perfect agreement with peaks for
excitation energies predicted by Eq. (28). The amplitude of
the oscillations is more pronounced for higher values of the
damping parameter � which characterizes dissipative pro-
cesses, e.g., the interaction between excitons (quasiparticles)
and phonons. An external electric field accelerates particles,
which leads to an increase in their energy and amplifies their
coupling with the background. As a consequence, one can
observe enlarged amplitudes of FK oscillations due to the
increase in absorption for higher values of �. In Fig. 7(b),
the full three-dimensional plot shows the dependence of FK

FIG. 6. (a) Absorption α and (b) relative transmission coefficient
T/T for two values of applied electric field F .

oscillations of the absorption spectrum on energy (above the
gap) for a wide range of the damping parameter.

V. IMPACT OF HIGHER EXCITONIC STATES ON THE
FRANZ-KELDYSH EFFECT

Above we have considered the Franz-Keldysh effect with
one exciton state. Until now only the problem of the depen-
dence of the multiplicity of excitonic states on the Franz-
Keldysh effect for confined systems or for a system in an
external magnetic field has been examined ([38] and references
therein), and the general solution for bulk crystal is not
available. Below we propose a method which allows us to
study the effect of the two lowest exciton states. To achieve
this goal we will consider the amplitude Y in the form

Y = Y1 + Y2, (31)

where

Y1 = N1Y01ρeiφe−k
√

ρ2+ζ 2 = Y01ψ1,

Y2 = N2Y02ρeiφ(3 − k
√

ρ2 + ζ 2)e−(2k/3)
√

ρ2+ζ 2

= Y02ψ2 (32)
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FIG. 7. (a) Imaginary part of the susceptibility for two values of �.
Dashed lines mark the positions of extrema calculated from Eq. (28).
(b) Imaginary part of the susceptibility for a range of values of �.

are orthogonal for k real (below the gap for � = 0) and
N1,N2 represent the normalization factors of the resonance
energies. In the above definitions we neglect the center-of-mass
dependence.

The ansatz (31) contains two unknown parameters, Y01,Y02.
They can be determined from the integral equation (17). One
of the possible methods is to use the projection of those
equations onto an orthonormal basis which yields equations
for the parameters (Galerkin method). We choose the basis in
the form

ϕ1(ρ,ζ,φ) = 1√
π

ρ

ρ2
0

eiφ exp

(
− ρ2

2ρ2
0

)
δ(ζ ),

ϕ2(ρ,ζ,φ) =
√

2

π

ρ

ρ2
0

eiφ

(
1 − ρ2

2ρ2
0

)
exp

(
− ρ2

2ρ2
0

)
δ(ζ ). (33)

Using the common notation for the scalar product, we obtain
the equations

〈ϕ1|Y 〉 = 〈ϕ1|GM〉 − 〈ϕ1|GV Y 〉,
〈ϕ2|Y 〉 = 〈ϕ2|GM〉 − 〈ϕ2|GV Y 〉, (34)

where we neglect the constant factors. Inserting the expression
for Y , we get from (34) the equations

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2, (35)

where

x1 = 2

ε0E
M0Y01, x2 = 2

ε0E
M0Y02,

a11 = 〈ϕ1|ψ1〉 − 〈ϕ1|GṼ ψ1〉, (36)

and

a12 = 〈ϕ1|ψ2〉 − 〈ϕ1|GṼ ψ2〉,
a21 = 〈ϕ2|ψ1〉 − 〈ϕ2|GṼ ψ1〉,
a22 = 〈ϕ2|ψ2〉 − 〈ϕ2|GṼ ψ2〉,
Ṽ = 2√

ρ2 + γ ζ 2
, M̃ = M

M0
,

b1 = 2μ

h̄2a∗
2M2

0

ε0
〈ϕ1|GM̃〉,

b2 = 2μ

h̄2a∗
2M2

0

ε0
〈ϕ2|GM̃〉. (37)

The quantities x1,x2,b1,b2 are dimensionless; x1,x2 define
the electrosusceptibility via the equation

χ = x1〈M|ψ1〉 + x2〈M|ψ2〉. (38)

As done above, some information can be elicited by setting
V = 0. After some simple algebra we obtain

x1 = 1


(b1〈ϕ2|ψ2〉 − b2〈ϕ1|ψ2〉),

x2 = 1


(b2〈ϕ1|ψ1〉 − b1〈ϕ2|ψ1〉),

 = 〈ϕ1|ψ1〉〈ϕ2|ψ2〉 − 〈ϕ1|ψ2〉〈ϕ2|ψ1〉. (39)

Comparing the above outcomes with the aforementioned
results for the one-exciton state we observe that an additional
state (the same holds for more additional states) will influence
only the shape and the amplitude of FK oscillations, while the
periodicity will practically remain the same since it is involved
in the Green’s function. One can also say that the calculation, at
least the analytical one, will be more intricate than in the case of
the one-exciton state. As a consequence, the method described
above is practically operational only for two-exciton states.
However, it should also be stressed that the higher excitonic
states are coupled with oscillator strengths decreasing as 1/n3,
so their influence will be orders of magnitude smaller than the
contribution of the two lowest states.

VI. RYDBERG EXCITONS IN A
ONE-DIMENSIONAL MODEL

As we have discussed above, the simultaneous description
of a multiplicity of excitonic states below the gap and the FK
oscillations above the gap is, at the moment, not accessible. So
considering the multiplicity of exciton states as the dominant
feature of Rydberg excitons, we propose a simplified exciton
model in which both phenomena can be described by analytical
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formulas. To this end, we consider a system with reduced
dimensionality, where an electron with the effective mass me

and a hole with the effective mass mhz move along the z axis.
A constant electric field F is applied in the same direction.
The optical properties of the system described in the previous
sections will be described with the RDMA, starting from the
constitutive equation (1), with the Hamiltonian (2), which now
takes the form

Heh = Eg − h̄2

2me

∂2
ze

− h̄2

2mhz

∂2
zh

+ eF (zh − ze)

+Veh(ze − zh) + Ve(ze) + Vh(zh). (40)

In order to account for n excitonic states, we consider the
system to be a set of independent oscillators which, in our
formalism, will be related to the exciton amplitudes Yn. The
amplitudes will satisfy the equations[

Eg − h̄ω − i�n − h̄2

2μz

∂2
z

+ eFz + Vehn(z)

]
Yn(z) = Mn(z)E0, (41)

where E0 is the amplitude of the electromagnetic wave prop-
agating in the medium. The potentials Vehn and the transition
dipole matrix elements Mn will be chosen to reproduce the
optical properties of Rydberg excitons. Equation (4) for the
total polarization will be replaced by the relation

P(R) = 2
∫

d3r Re

[∑
n

Mn(r)Yn(r,R)

]
. (42)

Following the scheme described in Sec. III, we arrive at the
equation

[
k2 − ∂2

ζ + f ζ
]
Yn = 2μ‖

h̄2 a∗2M̃n(ζ )E0 − Ṽehn(ζ )Yn. (43)

The Green’s function of the above equation has the form
[compare Eq. (19)]

G(ζ,ζ ′) = g< g>,

g< = π

f 1/3
Bi

[
f

1
3

(
ζ< + k2

f

)]
+ iAi

[
f

1
3

(
ζ< + k2

f

)]
,

g> = Ai

[
f

1
3

(
ζ> + k2

f

)]
. (44)

When the external electric field is absent, the Green’s function
takes the form

G(ζ,ζ ′)F=0 = exp(−k|ζ − ζ ′|
2k

. (45)

Choosing M̃n and Ṽehn in the form

M̃n = M0nδ(ζ ), Ṽehn = −2
√

εT nδ(ζ ), (46)

we arrive at the following expression for the susceptibility:

χ =
∑

n

fnG(0,0)

1 − 2
√

εT nG(0,0)
, (47)

with oscillator strength, for which we can use the expressions
derived in Ref. [10]. With respect to (45), for energies below

the gap and for the field F = 0, we obtain

χ =
∑

n

fn

2(k − √
εT n)

. (48)

The poles in the susceptibility define the quantities εT n which
are related to the excitonic resonances energies h̄ωT n by
εT n = (Eg − h̄ωT n)/R∗. Note that formulas (47) and (48) are
valid for both energies below and above the gap. They are
obtained from a model different from that used in Ref. [10],
which was applied for energies below the gap. Here excitonic
states are described by appropriate harmonic oscillators. When
considering the case of Cu2O, the resonance energies are

√
εT n,

and the oscillator strengths are also well known, so the shapes
of the susceptibility (for the energies below the gap) calculated
with the help of both procedures are identical.

Considering the case of Cu2O, we start with n = 2, and the
oscillator strengths fn will be chosen as

fn = εb

LT

R∗
32

3

n2 − 1

n5
. (49)

The absorption calculated by Eq. (48) gives an account of the
qualitative behavior of the imaginary part of the susceptibility
for energies below and above the gap. We obtain the resonances
below the gap as well as the oscillations characteristic of the
FK effect, but the magnitudes of the oscillations’ amplitudes
differ considerably in both energetic regions. Resonances
below the gap amplify oscillations, while above the gap the
lack of excitonic resonances causes a significant reduction.
The Rydberg exciton states compose the background of the
FK oscillations. When the electric field is applied, we use
expression (47) with Green’s function (44). As in the general
considerations (see Sec. IV), we observe the FK oscillations.

The advantage of the method described in this section results
from the fact that an arbitrary number of excitonic states can
be taken into account; in such a case the optical functions
display the impact of the increasing number of considered
states. One can see that the period and phase of the oscillations
do not depend on the excitonic state number n. This effect is
illustrated in Fig. 8, which presents the impact on absorption
of the number of excitonic states taken into account. As one
might expect, the influence of higher excitonic states on FK
oscillations is visible but not distinctive. This is due to the fact
that oscillator strengths diminish as 1/n3, and since LT /R∗
is of the order of 10−5, the impact of additional excitons with
higher n on spectra above the gap becomes subtle. This justifies
our choice to take into account only one excitonic state (with
the largest oscillator strength) as done in Sec. IV.

VII. DISCUSSION AND CONCLUSIONS

We have analyzed the optical properties of semiconductors
with Rydberg excitons exposed to a static electric field. We
have developed a simple mathematical procedure to calculate
electro-optical functions of semiconductor crystal with sym-
metry where P -exciton transitions are dipole allowed. The
presented method has been used to investigate electro-optical
functions of Cu2O crystal for the case of normal incidence
and the static electric field applied in the same direction. For
excitation energies larger than the fundamental gap we have
obtained oscillations for optical functions which are identified
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FIG. 8. The impact of the number of discrete excitonic states
below the gap on the FK oscillations above the gap for F = 10 V/cm.

as Franz-Keldysh oscillations. Their periodicity with respect
to the excitation energy, the amplitudes, and the dependence
on the applied field strength was calculated and presented in
the form of analytical expressions. The outcomes differ from
the known results for the FK effect for S excitons. We have
also examined the influence of the coherence of the carriers on
dispersion Reχ .

The Franz-Keldysh effect provides an optoelectronic mech-
anism to create and control the electromodulations which
might be an essential and flexible tool for constructing optical
compatible output devices, e.g., a modulator or detectors
with an off-chip laser. The copper oxide–based optoelectronic
modulators employing the Franz-Keldysh effect might show
great promise in meeting the strict energy requirements with
controlled modification of the reflection/transmission modu-
lation. It also seems that controlling the periodicity of FK
oscillations may help determine the effective masses along
propagation axes.

The experimental data for the FK effect in Cu2O are not
available yet, but we hope that our theoretical considerations
might stimulate experiments of the electro-optical properties of
this crystal for the above-gap regime. We conclude that the dy-
namical density-matrix approach is well suited to describe the
macroscopic fields (static and dynamic) and the microscopic
excitons in all limits of physical interest.
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APPENDIX A: THE DIPOLE TRANSITION MATRIX
ELEMENT M0

The polariton dispersion relation for the considered case
has the form

c2k2
z

ω2
= ε(ω,kz,�) = εb + χ, (A1)

with χ being the susceptibility. When the constant electric field
is absent, the susceptibility has the form

χ = 2

ε0

2μ

h̄2a∗
M2

0

4πρ0

[
2kρ0 + √

π
(
1 − 2k2ρ2

0

)
w(ikρ0)

]
× 1

1 − 1/2k
, (A2)

where w(z) is the complex error function [43],

w(z) = e−z2

(
1 + 2i√

π

∫ z

0
e−t2

dt

)
= e−z2

[1 − erf(−iz)],

(A3)

and erf(z) is the common error function,

erf(z) = 2√
π

∫ z

0
e−t2

dt. (A4)

In our formalism the coherence effects are included in the
dipole density function M (10), where M0 is the integrated
strength and is related to the coherence radius ρ0. For the
longitudinal mode ε = 0 at kz = 0 and � = 0, which gives
the equation

εb + 2

ε0

2μ

h̄2a∗
M2

0

4πρ0

[
2kLρ0 + √

π
(
1 − 2k2

Lρ2
0

)
w(ikLρ0)

]
× 1

1 − 1/2kL

= 0, (A5)

where we denoted

kL = k(ωL) =
(

Eg − h̄ωL

R∗

)1/2

. (A6)

Introducing the quantity χ ′ [Eq. (22)], we express the total
dielectric function for the case without applied field as

ε(ω) = εb + χ ′

1 − 1/2k

[
2kρ0 + √

π
(
1 − 2k2ρ2

0

)
w(ikρ0)

]
(A7)

and transform Eq. (A5) into the form

εb + χ ′[2kLρ0 + √
π

(
1 − 2k2

Lρ2
0

)
w(ikLρ0)

] 1

1 − 1/2kL

= 0.

(A8)

Since, for the P exciton, kL ≈ 1/2 and

1

1 − 1/2kL

≈ − R∗

2LT

, (A9)

we obtain from (A8)

χ ′ = 2εbLT

R∗
[
2kLρ0 + √

π
(
1 − 2k2

Lρ2
0

)
w(ikLρ0)

]−1
. (A10)

The above equation determines the relation between the quan-
tity χ ′ (and thus the matrix element M0) and the coherence
radius ρ0. For a given value of ρ0 we determine the quantity
χ ′, which is then used in the expressions for the susceptibility.
As stated in Ref. [36], the relation (A5) determines the value of
M2

0 /ρ0; to determine separately the matrix element M0 and the
coherence radius ρ0, we need some more information about the
behavior of the susceptibility at energies far above the excitonic
resonances.
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APPENDIX B: ASYMPTOTIC BEHAVIOR

As we have shown above, the optical properties of the excitation energy exceeding the fundamental gap are mainly determined
by the behavior of the numerator in Eq. (21). For the Cu2O data the expression ρ2

0x2 is small in the relevant interval of x. Therefore
we can expand exp(−ρ2

0x2) and perform the integration involving Airy functions [49]. In the lowest order and for � → 0 we
obtain

Re χ = 2πχ ′ρ3
0

Q

(
h̄�

R∗

)3/2 1

6

[
4EAi′Bi′ + 4E2AiBi − Ai′Bi − AiBi′

]

= 2πχ ′ρ3
0

Q

{
2

3

(
h̄�

R∗

)1/2(
h̄ω − Eg

R∗

)
Ai′

(
− h̄ω − Eg

h̄�

)
Bi′

(
− h̄ω − Eg

h̄�

)
+ 2

3

(
R∗

h̄�

)1/2(
h̄ω − Eg

R∗

)2

× Ai

(
− h̄ω − Eg

h̄�

)
Bi

(
− h̄ω − Eg

h̄�

)
− 1

6

(
h̄�

R∗

)3/2

Ai′
(

− h̄ω − Eg

h̄�

)
Bi

(
− h̄ω − Eg

h̄�

)
− 1

6

(
h̄�

R∗

)3/2

× Ai

(
− h̄ω − Eg

h̄�

)
Bi′

(
− h̄ω − Eg

h̄�

)}
, (B1)

Im χ = 2πχ ′ρ3
0

Q

{
−1

3

(
h̄�

R∗

)3/2

Ai′
(

− h̄ω − Eg

h̄�

)
Ai

(
− h̄ω − Eg

h̄�

)
+ 2

3

(
h̄�

R∗

)1/2(
h̄ω − Eg

R∗

)
Ai′2

(
− h̄ω − Eg

h̄�

)

+ 2

3

(
R∗

h̄�

)1/2(
h̄ω − Eg

R∗

)2

Ai2
(

− h̄ω − Eg

h̄�

)}
, (B2)

with χ ′ defined in Eq. (22).
Note that the above expressions differ from the expressions for S excitons (allowed interband transitions, for example, GaAs)

[28,29,36],

Im χ ∝
{

h̄ω − Eg

h̄�
Ai2

(
− h̄ω − Eg

h̄�

)
+

[
Ai′

(
− h̄ω − Eg

h̄�

)]2}
. (B3)

Having in mind the properties of Cu2O, we observe that the value of the electro-optical energy h̄� is small compared to the
Rydberg energy. Therefore the arguments of the Airy functions in expressions (B1) and (B2) quickly reach the values which
justify the use of their asymptotic expansions, giving in the lowest order with respect to ζ the formulas for the real and imaginary
parts of the susceptibility,

Re χ → −χ ′ρ3
0

3Q

(
h̄�

R∗

)3/2

sin 2ζ, Im χ → χ ′ρ3
0

Q

(
h̄�

R∗

)3/2

cos 2ζ + 4χ ′ρ3
0

3Q

(
h̄ω − Eg

R∗

)3/2

, ζ = 2

3

(
h̄ω − Eg

h̄�

)3/2

. (B4)

The above expressions allow us to get the periodicity of the FK oscillations; the peaks will appear at energies given in Eq. (28).

[1] D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H.
Stolz, and W. von der Osten, Coherent Propagation and Quantum
Beats of Quadrupole Polaritons in Cu2O, Phys. Rev. Lett. 67,
2343 (1991).

[2] S. Nikitine, Experimental investigations of exciton spectra in
ionic crystals, Philos. Mag. 4, 1 (1959).

[3] D. Fröhlich and R. Kenklies, Polarization dependence of two-
photon magnetoabsorption of the 1s exciton in Cu2O, Phys.
Status Solidi B 111, 247 (1982).

[4] J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A.
Sawatzky, and M. T. Czyzyk, Electronic structure of Cu2O and
CuO, Phys. Rev. B 38, 11322 (1988).

[5] A. Jolk, M. Jörger, and C. Klingshirn, Exciton lifetime, Auger
recombination, and exciton transport by calibrated differential
absorption spectroscopy in Cu2O, Phys. Rev. B. 65, 245209
(2002).

[6] M. Jörger, T. Fleck, C. Klingshirn, and R. von Baltz, Midinfrared
properties of cuprous oxide: High-order lattice vibrations and

intraexcitonic transitions of the 1s paraexciton, Phys. Rev. B 71,
235210 (2005).

[7] H. Stolz, R. Schwartz, F. Kieseling, S. Som, M. Kaupsch, S.
Sobkowiak, D. Semkat, N. Naka, T. Koch, and H. Fehske,
Condensation of excitons in Cu2O at ultracold temperatures:
Experiment and theory, New J. Phys. 14, 105007 (2012).

[8] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M.
Bayer, Giant Rydberg excitons in the copper oxide Cu2O, Nature
(London) 514, 343 (2014).

[9] J. Thewes, J. Heckötter, T. Kazimierczuk, M. Aßmann, D. Fröh-
lich, M. Bayer, M. A. Semina, and M. M. Glazov, Observation
of High Angular Momentum Excitons in Cuprous Oxide, Phys.
Rev. Lett. 115, 027402 (2015).

[10] S. Zielińska-Raczyńska, G. Czajkowski, and D. Ziemkiewicz,
Optical properties of Rydberg excitons and polaritons, Phys.
Rev. B 93, 075206 (2016).

[11] F. Schöne, S.-O. Krüger, P. Grünwald, H. Stolz, M. Aßmann, J.
Heckötter, J. Thewes, D. Fröhlich, and M. Bayer, Deviations of

165205-10

https://doi.org/10.1103/PhysRevLett.67.2343
https://doi.org/10.1103/PhysRevLett.67.2343
https://doi.org/10.1103/PhysRevLett.67.2343
https://doi.org/10.1103/PhysRevLett.67.2343
https://doi.org/10.1080/14786435908238225
https://doi.org/10.1080/14786435908238225
https://doi.org/10.1080/14786435908238225
https://doi.org/10.1080/14786435908238225
https://doi.org/10.1002/pssb.2221110127
https://doi.org/10.1002/pssb.2221110127
https://doi.org/10.1002/pssb.2221110127
https://doi.org/10.1002/pssb.2221110127
https://doi.org/10.1103/PhysRevB.38.11322
https://doi.org/10.1103/PhysRevB.38.11322
https://doi.org/10.1103/PhysRevB.38.11322
https://doi.org/10.1103/PhysRevB.38.11322
https://doi.org/10.1103/PhysRevB.65.245209
https://doi.org/10.1103/PhysRevB.65.245209
https://doi.org/10.1103/PhysRevB.65.245209
https://doi.org/10.1103/PhysRevB.65.245209
https://doi.org/10.1103/PhysRevB.71.235210
https://doi.org/10.1103/PhysRevB.71.235210
https://doi.org/10.1103/PhysRevB.71.235210
https://doi.org/10.1103/PhysRevB.71.235210
https://doi.org/10.1088/1367-2630/14/10/105007
https://doi.org/10.1088/1367-2630/14/10/105007
https://doi.org/10.1088/1367-2630/14/10/105007
https://doi.org/10.1088/1367-2630/14/10/105007
https://doi.org/10.1038/nature13832
https://doi.org/10.1038/nature13832
https://doi.org/10.1038/nature13832
https://doi.org/10.1038/nature13832
https://doi.org/10.1103/PhysRevLett.115.027402
https://doi.org/10.1103/PhysRevLett.115.027402
https://doi.org/10.1103/PhysRevLett.115.027402
https://doi.org/10.1103/PhysRevLett.115.027402
https://doi.org/10.1103/PhysRevB.93.075206
https://doi.org/10.1103/PhysRevB.93.075206
https://doi.org/10.1103/PhysRevB.93.075206
https://doi.org/10.1103/PhysRevB.93.075206


ELECTRO-OPTICAL PROPERTIES OF Cu2O FOR P … PHYSICAL REVIEW B 97, 165205 (2018)

the exciton level spectrum in Cu2O from the hydrogen series,
Phys. Rev. B 93, 075203 (2016).

[12] F. Schweiner, J. Main, and G. Wunner, Linewidths in excitonic
absorption spectra of cuprous oxide, Phys. Rev. B 93, 085203
(2016).

[13] P. Grünwald, M. Aßmann, J. Heckötter, D. Fröhlich, M. Bayer,
H. Stolz, and S. Scheel, Signatures of Quantum Coherences in
Rydberg Excitons, Phys. Rev. Lett. 117, 133003 (2016).

[14] J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer,
M. A. Semina, and M. M. Glazov, Scaling laws of Rydberg
excitons, Phys. Rev. B 96, 125142 (2017).

[15] F. Schweiner, J. Main, G. Wunner, and Ch. Uihlein, Even exciton
series in Cu2O, Phys. Rev. B 95, 195201 (2017).

[16] F. Schweiner, J. Ertl, J. Main, G. Wunner, and Ch. Uihlein,
Exciton-polaritons in cuprous oxide: Theory and comparison
with experiment, Phys. Rev. B 96, 245202 (2017).

[17] V. Walther, R. Johne, and T. Pohl, Giant optical nonlinearities
from Rydberg excitons in semiconductor microcavities, Nat.
Commun. 9, 1309 (2018).

[18] S. Zielińska-Raczyńska, D. Ziemkiewicz, and G. Czajkowski,
Electro-optical properties of Rydberg excitons, Phys. Rev. B 94,
045205 (2016).

[19] F. Schweiner, J. Main, G. Wunner, M. Freitag, J. Heckötter, Ch.
Uihlein, M. Aßmann, D. Fröhlich, and M. Bayer, Magnetoexci-
tons in cuprous oxide, Phys. Rev. B 95, 035202 (2017).

[20] S. Zielińska-Raczyńska, D. Ziemkiewicz, and G. Czajkowski,
Magneto-optical properties of Rydberg excitons: Center-of-
mass quantization approach, Phys. Rev. B 95, 075204 (2017).

[21] M. Aßmann, J. Thewes, and M. Bayer, Quantum chaos and
breaking of all antiunitary symmetries in Rydberg excitons, Nat.
Mater. 15, 741 (2016).

[22] F. Schweiner, P. Rommel, J. Main, and G. Wunner, Exciton-
phonon interaction breaking all antiunitary symmetries in exter-
nal magnetic fields, Phys. Rev. B 96, 035207 (2017).

[23] F. Schweiner, J. Main, and G. Wunner, Magnetoexcitons Break
Antiunitary Symmetries, Phys. Rev. Lett. 118, 046401 (2017).

[24] T. Kitamura, M. Takahata, and N. Naka, Quantum number
dependence of the photoluminescence broadening of excitonic
Rydberg states in cuprous oxide, J. Lumin. 192, 808 (2017).

[25] J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer,
P. Grünwald, F. Schöne, D. Semkat, H. Stolz, and S. Scheel,
Rydberg excitons in the presence of an ultralow-density electron-
hole plasma, arXiv:1709.00891.

[26] W. Franz, Einfluß eines elektrischen Feldes auf eine optische
Absorptionskante, Z. Naturforsch. 13a, 484 (1958).

[27] L. V. Keldysh, Behavior of non-metallic crystals in strong
electric fields, Zh. Eksp. Teor. Fiz. 33, 994 (1957) [Sov. Phys.
JETP 6, 763 (1958)].

[28] K. Tharmalingam, Optical Absorption in the Presence of a
Uniform Field, Phys. Rev. 130, 2204 (1963).

[29] K. S. Viswanathan and J. Callaway, Dielectric Constant of a
Semiconductor in an External Electric Field, Phys. Rev. 143,
564 (1966).

[30] H. I. Ralph, On the theory of Franz-Keldysh effect, J. Phys. C 1,
378 (1968).

[31] D. F. Blossey, Wannier exciton in an electric field. I. Optical
absorption by bound and continuum states, Phys. Rev. B 2, 3976
(1970).

[32] D. F. Blossey, Wannier exciton in an electric field. II. Elec-
troabsorption in direct-band-gap solids, Phys. Rev. B 3, 1382
(1971).

[33] B. Schlichterle, G. Weiser, M. Klenk, F. Mollot, and Ch. Starck,
Effective masses in In1−xGaxAs superlattices derived from
Franz-Keldysh oscillations, Phys. Rev. B 52, 9003 (1995).

[34] M. Nakayama, T. Nakanishi, K. Okajima, M. Ando, and
H. Nishimura, Miniband structures and effective masses of
GaAs/AlAs superlattices with ultra-thin layers, Solid State
Commun. 102, 803 (1997).

[35] H. Shen and M. Dutta, Franz-Keldysh oscillations in modulation
spectroscopy, J. Appl. Phys. 78, 2151 (1995).

[36] G. Czajkowski, M. Dressler, and F. Bassani, Electro-optical
properties of semiconductor superlattices in the regime of Franz-
Keldysh oscillations, Phys. Rev. B 55, 5243 (1997).

[37] A. Jaeger and G. Weiser, Excitonic electroabsorption spectra
and Franz-Keldysh effect of In0.53Ga0.47As/InP studied by small
modulation of static fields, Phys. Rev. B 58, 10674 (1998).

[38] G. Czajkowski, F. Bassani, and L. Silvestri, Excitonic optical
properties of nanostructures: Real density matrix approach, Riv.
Nuovo Cimento 26, 1 (2003).

[39] J. R. Madureira, M. Z. Maialle, and M. H. Degani, Franz-Keldysh
effect in semiconductor T-wire in applied magnetic field, Braz.
J. Phys. 34, 663 (2004).

[40] R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards,
and D. A. B. Miller, Indirect absorption in germanium quantum
wells, AIP Adv. 1, 032164 (2011).

[41] S. J. Lee, Ch. W. Sohn, H.-J. Jo, I. S. Han, J. S. Kim, S. K.
Noh, H. Choi, and J.-Y. Leem, Temperature dependence of the
photovoltage from Franz-Keldysh oscillations in a GaAs p+-i-n+

structure, J. Korean Phys. Soc. 67, 916 (2015).
[42] N. Botka, Micro photoreflectance semiconductor wafer ana-

lyzer, US Patent No. 5365334 A, 1994; M. L. Gray, H. F.
Hess, M. S. Hybertsen, and L. J.-P. Ketelsen, Photoreflectance
spectral analysis of semiconductor laser structures, US Patent
No. 6195166 B1, 1999; T. Hideo and Y. Yoshitsugu, Optical
measuring method for semiconductor multiple layer structures
and apparatus therefor, US Patent No. 7038768 B2, 2003.

[43] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. Stegun (Dover, New York, 1965).

[44] E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, 4th ed., Cambridge Mathematical Library (Cambridge
University Press, Cambridge, 1996).

[45] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, 7th ed., edited by A. Jeffrey and D. Zwillinger
(Academic, Amsterdam, 2007).

[46] N. Naka, I. Akimoto, M. Shirai, and K.-i. Kan’no, Time-resolved
cyclotron resonance in cuprous oxide, Phys. Rev. B 85, 035209
(2012).

[47] H. Stolz, F. Schöne, and D. Semkat, Interaction of Rydberg
excitons in cuprous oxide with phonons and photons: Opti-
cal linewidth and polariton effect, New J. Phys. 20, 023019
(2018).

[48] S. Zielińska-Raczyńska, G. Czajkowski, and D. Ziemkiewicz,
Electro-optical properties of Cu2O in the regime of Franz-
Keldysh oscillations, arXiv:1712.02681.

[49] O. Vallée and M. Soares, Airy Functions and Applications to
Physics (Imperial College Press, London, 2004).

165205-11

https://doi.org/10.1103/PhysRevB.93.075203
https://doi.org/10.1103/PhysRevB.93.075203
https://doi.org/10.1103/PhysRevB.93.075203
https://doi.org/10.1103/PhysRevB.93.075203
https://doi.org/10.1103/PhysRevB.93.085203
https://doi.org/10.1103/PhysRevB.93.085203
https://doi.org/10.1103/PhysRevB.93.085203
https://doi.org/10.1103/PhysRevB.93.085203
https://doi.org/10.1103/PhysRevLett.117.133003
https://doi.org/10.1103/PhysRevLett.117.133003
https://doi.org/10.1103/PhysRevLett.117.133003
https://doi.org/10.1103/PhysRevLett.117.133003
https://doi.org/10.1103/PhysRevB.96.125142
https://doi.org/10.1103/PhysRevB.96.125142
https://doi.org/10.1103/PhysRevB.96.125142
https://doi.org/10.1103/PhysRevB.96.125142
https://doi.org/10.1103/PhysRevB.95.195201
https://doi.org/10.1103/PhysRevB.95.195201
https://doi.org/10.1103/PhysRevB.95.195201
https://doi.org/10.1103/PhysRevB.95.195201
https://doi.org/10.1103/PhysRevB.96.245202
https://doi.org/10.1103/PhysRevB.96.245202
https://doi.org/10.1103/PhysRevB.96.245202
https://doi.org/10.1103/PhysRevB.96.245202
https://doi.org/10.1038/s41467-018-03742-7
https://doi.org/10.1038/s41467-018-03742-7
https://doi.org/10.1038/s41467-018-03742-7
https://doi.org/10.1038/s41467-018-03742-7
https://doi.org/10.1103/PhysRevB.94.045205
https://doi.org/10.1103/PhysRevB.94.045205
https://doi.org/10.1103/PhysRevB.94.045205
https://doi.org/10.1103/PhysRevB.94.045205
https://doi.org/10.1103/PhysRevB.95.035202
https://doi.org/10.1103/PhysRevB.95.035202
https://doi.org/10.1103/PhysRevB.95.035202
https://doi.org/10.1103/PhysRevB.95.035202
https://doi.org/10.1103/PhysRevB.95.075204
https://doi.org/10.1103/PhysRevB.95.075204
https://doi.org/10.1103/PhysRevB.95.075204
https://doi.org/10.1103/PhysRevB.95.075204
https://doi.org/10.1038/nmat4622
https://doi.org/10.1038/nmat4622
https://doi.org/10.1038/nmat4622
https://doi.org/10.1038/nmat4622
https://doi.org/10.1103/PhysRevB.96.035207
https://doi.org/10.1103/PhysRevB.96.035207
https://doi.org/10.1103/PhysRevB.96.035207
https://doi.org/10.1103/PhysRevB.96.035207
https://doi.org/10.1103/PhysRevLett.118.046401
https://doi.org/10.1103/PhysRevLett.118.046401
https://doi.org/10.1103/PhysRevLett.118.046401
https://doi.org/10.1103/PhysRevLett.118.046401
https://doi.org/10.1016/j.jlumin.2017.07.060
https://doi.org/10.1016/j.jlumin.2017.07.060
https://doi.org/10.1016/j.jlumin.2017.07.060
https://doi.org/10.1016/j.jlumin.2017.07.060
http://arxiv.org/abs/arXiv:1709.00891
https://doi.org/10.1515/zna-1958-0609
https://doi.org/10.1515/zna-1958-0609
https://doi.org/10.1515/zna-1958-0609
https://doi.org/10.1515/zna-1958-0609
https://doi.org/10.1103/PhysRev.130.2204
https://doi.org/10.1103/PhysRev.130.2204
https://doi.org/10.1103/PhysRev.130.2204
https://doi.org/10.1103/PhysRev.130.2204
https://doi.org/10.1103/PhysRev.143.564
https://doi.org/10.1103/PhysRev.143.564
https://doi.org/10.1103/PhysRev.143.564
https://doi.org/10.1103/PhysRev.143.564
https://doi.org/10.1088/0022-3719/1/2/312
https://doi.org/10.1088/0022-3719/1/2/312
https://doi.org/10.1088/0022-3719/1/2/312
https://doi.org/10.1088/0022-3719/1/2/312
https://doi.org/10.1103/PhysRevB.2.3976
https://doi.org/10.1103/PhysRevB.2.3976
https://doi.org/10.1103/PhysRevB.2.3976
https://doi.org/10.1103/PhysRevB.2.3976
https://doi.org/10.1103/PhysRevB.3.1382
https://doi.org/10.1103/PhysRevB.3.1382
https://doi.org/10.1103/PhysRevB.3.1382
https://doi.org/10.1103/PhysRevB.3.1382
https://doi.org/10.1103/PhysRevB.52.9003
https://doi.org/10.1103/PhysRevB.52.9003
https://doi.org/10.1103/PhysRevB.52.9003
https://doi.org/10.1103/PhysRevB.52.9003
https://doi.org/10.1016/S0038-1098(97)00084-7
https://doi.org/10.1016/S0038-1098(97)00084-7
https://doi.org/10.1016/S0038-1098(97)00084-7
https://doi.org/10.1016/S0038-1098(97)00084-7
https://doi.org/10.1063/1.360131
https://doi.org/10.1063/1.360131
https://doi.org/10.1063/1.360131
https://doi.org/10.1063/1.360131
https://doi.org/10.1103/PhysRevB.55.5243
https://doi.org/10.1103/PhysRevB.55.5243
https://doi.org/10.1103/PhysRevB.55.5243
https://doi.org/10.1103/PhysRevB.55.5243
https://doi.org/10.1103/PhysRevB.58.10674
https://doi.org/10.1103/PhysRevB.58.10674
https://doi.org/10.1103/PhysRevB.58.10674
https://doi.org/10.1103/PhysRevB.58.10674
https://doi.org/10.1393/ncr/i2003-10002-2
https://doi.org/10.1393/ncr/i2003-10002-2
https://doi.org/10.1393/ncr/i2003-10002-2
https://doi.org/10.1393/ncr/i2003-10002-2
https://doi.org/10.1590/S0103-97332004000400036
https://doi.org/10.1590/S0103-97332004000400036
https://doi.org/10.1590/S0103-97332004000400036
https://doi.org/10.1590/S0103-97332004000400036
https://doi.org/10.1063/1.3646149
https://doi.org/10.1063/1.3646149
https://doi.org/10.1063/1.3646149
https://doi.org/10.1063/1.3646149
https://doi.org/10.3938/jkps.67.916
https://doi.org/10.3938/jkps.67.916
https://doi.org/10.3938/jkps.67.916
https://doi.org/10.3938/jkps.67.916
https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1088/1367-2630/aaa396
https://doi.org/10.1088/1367-2630/aaa396
https://doi.org/10.1088/1367-2630/aaa396
https://doi.org/10.1088/1367-2630/aaa396
http://arxiv.org/abs/arXiv:1712.02681



