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Chiral pair of Fermi arcs, anomaly cancellation, and spin or valley Hall effects
in Weyl metals with broken inversion symmetry
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Anomaly cancellation has been shown to occur in broken time-reversal symmetry Weyl metals, which explains
the existence of a Fermi arc. We extend this result in the case of broken inversion symmetry Weyl metals.
Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancellation
explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in broken inversion symmetry Weyl
metals. In particular, we find that this pair of Fermi arcs gives rise to either “quantized” spin Hall or valley Hall
effects, which corresponds to the “quantized” version of the charge Hall effect in broken time-reversal symmetry
Weyl metals.
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I. INTRODUCTION

Anomaly cancellation is the mechanism to explain the
existence of a gapless surface state, topologically protected [1].
For example, the existence of a chiral edge mode in the integer
quantum Hall effect is understood as follows [2]. The chiral
edge state suffers gauge anomaly, which means that the U(1)
current is not conserved. On the other hand, the Chern-Simons
term is not invariant under the gauge transformation in the
presence of a boundary. It turns out that the gauge anomaly
at the boundary is canceled exactly by the gauge noninvariant
term of the Chern-Simons theory in the bulk. As a result, a
topological term with a gapless boundary mode consists of a
topological field theory consistently.

A Weyl metal state may be regarded as a three-dimensional
generalization of an integer quantum Hall phase [3–11]. The
Chern-Simons term is replaced with a topological-in-origin E ·
B term. The “axion” θ field corresponding to the Hall conduc-
tance in the integer quantum Hall effect is proportional to the
displacement from a reference point and its gradient is nothing
but an applied magnetic field to describe the momentum-space
distance between a pair of Weyl points in the case of time-
reversal symmetry breaking. A Fermi arc state corresponds
to the chiral edge mode, responsible for the existence of an
anomalous Hall effect. As the gauge anomaly from the edge
state must be canceled by the gauge noninvariant term from the
Chern-Simons term in the integer quantum Hall state, the gauge
anomaly from the Fermi arc is also canceled by a gauge nonin-
variant contribution at the boundary from the inhomogeneous
axion term. As a result, the topological-in-origin inhomoge-
neous θ term with the Fermi arc state gives a consistent “topo-
logical” field theory for the broken time-reversal symmetry
Weyl metal phase, where contributions from massless Weyl-
fermion excitations should be taken into account, of course.

In this study, we extend the anomaly cancellation of a broken
time-reversal symmetry Weyl metal state into that of a broken
inversion symmetry Weyl metal phase. The minimal model of
the broken time-reversal symmetry Weyl metal state is given
by a pair of Weyl points, where the momentum-space distance
between the pair of Weyl points is the gradient θ proportional

to the applied magnetic field. On the other hand, that of the
broken inversion symmetry Weyl metal phase is given by
a double pair of Weyl points, where the momentum-space
distance between each pair of Weyl points is determined by
the strength of the inversion symmetry breaking. Based on
this minimal model, we demonstrate the anomaly cancellation
explicitly. This demonstration explains why a “chiral” pair of
Fermi arcs instead of a Fermi arc with definite chirality appear
in broken inversion symmetry Weyl metals.

One may point out that the explicit demonstration for
the anomaly cancellation in the broken inversion symmetry
Weyl metal phase does not give any novel conceptual aspect,
compared with that in the broken time-reversal symmetry
Weyl metal state. However, we claim that there are no
concrete calculations to show the anomaly cancellation
in the broken inversion symmetry Weyl metal state. In
addition, we emphasize that there exists novel physics in the
anomaly cancellation of the broken inversion symmetry Weyl
metal phase. Since time-reversal symmetry is preserved, a
“quantized” version of the anomalous Hall effect resulting
from the Fermi arc cannot appear. Instead, we find that this
pair of Fermi arcs give rise to either a “quantized” spin
Hall or valley Hall effects, which may be regarded to be a
“generalized” version of the two-dimensional quantum spin
or valley Hall effect. In this respect, we believe that our
explicit demonstration serves as a meaningful reference in
understanding the “chiral” pair of Fermi arc states in various
inversion symmetry-breaking Weyl metals [12–18].

II. A REVIEW ON THE ANOMALY CANCELLATION
IN THE BROKEN TIME-REVERSAL SYMMETRY

WEYL METAL STATE

A. An effective minimal model for broken time-reversal
symmetry Weyl metals

A minimal model for abroken time-reversal symmetry Weyl
metals is given by [19,20]

SWM =
∫

d4x�̄(x)(γ0∂0 + iγ k∂k − μγ 0 − cμγ μγ 5)�(x),

(1)
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where γ 0 = (0 1
1 0

)
, γ k = ( 0 σ k

−σ k 0

)
, and γ 5 = iγ 0γ 1γ 2γ 3.

cμ = (c0,c) is the chiral gauge field, where c0 is the chiral
chemical potential and c is the momentum-space distance
between a pair of Weyl points. μ is the chemical potential.
Here, we focus on μ = 0 and c0 = 0.

Introducing γ 4 = −iγ 0 into the above action, we have a
simplified form

SWM =
∫

d4x�̄(x)iγ μ(∂μ + iAμ + icμγ 5)�(x). (2)

Here, we have μ = 1,2,3,4. γ μ is anti-Hermitian, satisfying
{γ μ,γ ν} = −2δμν . We take into account the U(1) gauge
field Aμ.

B. An axion term

The Weyl-metal action (2) suffers chiral anomaly [21],
given by

∂μ�̄(x)iγ μγ 5�(x) = 1

16π2
εμναβFμνFαβ. (3)

Although it is straightforward to derive this anomaly equation
based on the Fujikawa’s method [22,23], we show our deriva-
tion explicitly in Appendix A in order to clarify the way of
regularization. The resulting axionic action is

Sax = − i

16π2

∫
d4x(cμxμ)εμναβFμνFαβ. (4)

C. Surface states

Following Goswami and Tewari [24], we obtain a localized
wave function at one surface of the Weyl metal phase. Here,
the surface is defined by changing the chiral gauge field c →
c(x), where (x) is a step function in x coordinate:

ψky,kz
(x,y,z) = Aeikyy+ikzz

⎛
⎜⎜⎜⎝

1
i

− m√
k2
z +m2−kz

i m√
k2
z +m2−kz

⎞
⎟⎟⎟⎠

× e(−cθ(x)+
√

k2
z +m2)x, (5)

where A =
(

(
√

k2
z +m2−kz)2

√
k2
z +m2(c−

√
k2
z +m2)

2c(k2
z +m2−kz

√
k2
z +m2)

)1/2

is a normal-

ization constant and Eky
= ky is an eigenvalue of this surface

state. y and z define the surface coordinate and x describe the
coordinate perpendicular to the surface. The chiral gauge field
c is given along the z direction. For a state localized near the
surface to exist, kz should satisfy the following condition of
−√

c2 − m2 < kz <
√

c2 − m2. If m2 > c2 is fulfilled, there
are no surface states. It is important to realize that this surface
state has definite chirality, given by γ̄ ψky,kz

= −ψky,kz
with the

chirality operator γ̄ = γ 0γ 2.

D. An effective Hamiltonian for the Fermi arc

Let us now establish an effective Hamiltonian for the Fermi
arc state. We introduce a surface projection operator as follows:

Pedge ≡
∑
ky

∑
−√

c2−m2<kz<
√

c2−m2

|ψky,kz
〉〈ψky,kz

|, (6)

where we have 〈x,y,z|ψky,kz
〉 = ψky,kz

(x,y,z). Then, we con-
struct an effective surface Hamiltonian in the following way:

Heff = PedgeHPedge =
∑
ky

∑
k̃z

|ψky,kz
〉ky〈ψky,kz

|

=
∫

dx ′
∫

dy ′
∫

dx

∫
dy

∑
ky

∑
k̃z

× |x,y〉〈x,y|ψky,kz
〉ky〈ψky,kz

|x ′,y ′〉〈x ′,y ′|

≈
∫

dx ′
∫

dy ′
∫

dx

∫
dy

∑
ky

∑
k̃z

× |x,y,kz〉(−i)∂ye
iky (y−y ′)δ(x)δ(x ′)〈x ′,y ′,kz|

=
∫

dy
∑
k̃z

|x = 0,y,kz〉(−i)∂y〈x = 0,y,kz|, (7)

where k̃z means kz satisfying −√
c2 − m2 < kz <

√
c2 − m2.

For simplicity, we assumed that the surface wave function is
localized perfectly at the surface, i.e., 〈x,y|ψky,kz

〉 ∼ δ(x). This
expression can be translated into

Heff =
∑

−√
c2−m2<kz<

√
c2−m2

∫
dyψ

†
kz

(y)(−i)∂yψkz
(y) (8)

in the second quantization language.

E. Gauge anomaly in the Fermi arc state

(1 + 1) dimensional Dirac theory is given by

S =
∫

d2x�̄(x)(γ0∂0 + iγ 1∂1)�(x) (9)

in the Euclidean signature. Here, we have γ 0 = σ 1 and
γ 1 = iσ 2. If we set γ 2 = −iγ 0, we obtain

S =
∫

d2x�̄(x)iγ μ∂μ�(x) (10)

with μ = 1,2. Here, we have gμν = −δμν .
Let us gauge the above theory with the chiral gauge. Then,

we obtain

S =
∫

d2x�̄(x)iγ μ(∂μ + ieAμP−)�(x), (11)

where P− = 1
2 (1 − γ̄ ) is a projection operator to select the

chirality and γ̄ = γ 0γ 1 = iγ 2γ 1 = −σ 3 is the chirality ma-
trix. Notice that we couple the U(1) gauge field only to the
negative chirality sector. Recall that the edge mode in the above
section has the negative chirality, i.e., γ̄ φky,kz

= −φky,kz
. This

effective action is invariant under the particular or “partial”
gauge transformation:

Aμ(x) → Aμ + ∂μθ,

� → eiθP−�(x), �̄(x) → �̄(x)e−iθP+ . (12)

The U(1) gauge current, which is a Noether current resulting
from the above partial gauge symmetry, is given by

jμ = �̄(x)γ μP−�(x). (13)
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Classically, i.e., in the action level this gauge current is con-
served. However, it turns out that this conservation law breaks
down in the partition function level because of a quantum
correction, referred to as gauge anomaly. This anomaly can be
understood perturbatively in the one-loop quantum correction
for the gauge-field propagator. See Appendix B for more
details. The result is well known [22], given by

∂μjμ(x) = i

4π
εμν∂μAν(x) = i

8π
εμνFμν. (14)

One can express the gauge anomaly in terms of an effective
action of the U(1) gauge field as follows:

δW [A]

δAμ

= −〈�̄(x)γ μP−�(x)〉 = −〈jμ〉, (15)

where the generating function is defined by Z = ∫
D�̄

D�e−S[�̄,�,A] ≡ e−W [A]. Under the gauge transformation
Aμ → Aμ + ∂μη(x), the generating function changes in the
following way:

δηW [A] ≡ W [A + dη] − W [A]

=
∫

d2x∂μη(x)
δW [A]

δAμ

= −
∫

d2x∂μη(x)〈jμ〉

=
∫

d2xη(x)
i

8π
εμνFμν, (16)

where the gauge anomaly equation has been used.
Since W [A] is an effective action of only one kz sector, we

should include all kz sectors in order to get the effective surface
action of the Weyl metal phase

W
edge
WM [A] =

∑
−c<kz<c

W [A] = 2cW [A]. (17)

Here, we set m = 0 for simplicity. As a result, we find the gauge
anomaly of the Fermi arc state in the broken time-reversal
symmetry Weyl metal phase

δηW
edge
WM [A] = ic

4π

∫
dtdzη(x)εμνFμν

= ic

2π

∫
dtdzη(x)Fzt . (18)

Here, we did not take into account the role of disorder scattering
for this gauge anomaly contribution. It would be quite an
interesting study to investigate the role of disorder scattering
for the Fermi arc state.

F. Anomaly cancellation: Callan-Harvey mechanism

Breakdown of the gauge invariance in the effective chiral
surface state can be cured by anomaly inflow from the bulk
effective action of the Weyl metal phase. This mechanism
of anomaly cancellation is known as Callan-Harvey mech-
anism [1]. The Callan-Harvey mechanism has been already
discussed in the broken time-reversal symmetry Weyl metal
phase [24]. However, we found a subtle issue for the derivation
of the anomaly cancellation. Here, we provide a rigorous

FIG. 1. Geometry of a Weyl metal sample.

derivation for the anomaly cancellation based on the original
paper [1].

First, let us point out the subtle problem. One may start
from an effective axionic action Eq. (4) with setting the chiral
gauge field as c = c(x1)ẑ. Here, (x1) is the step function.
The axion term is

Sax[A] = i

16π2

∫
d4xc · xεμναβFμνFαβ

= i

16π2

∫
d4xcx3(x1)εμναβFμνFαβ

= − i

8π2

∫
d4xcεμναβ [x3AνFαβδ(x1)δ1μ

+(x1)δ3μAνFαβ], (19)

where ∂x(x) = δ(x) has been used. Under the gauge trans-
formation Aμ → Aμ + ∂μη(x), the variation of the effective
action (δηSax ≡ Sax[Aμ + ∂μη] − Sax[Aμ]) is given by

δηSax = − ic

8π2

∫
d4x[ε1ναβx3Fαβδ(x1)

+ ε3ναβ(x1)Fαβ]∂νη

= ic

8π2

∫
d4x[ε1ναβFαβ(δν3δ(x1) + x3∂1δ(x1)δν1)

+ ε3ναβδν1Fαβδ(x1)]η

= 0. (20)

There does not exist the anomaly inflow to cancel the gauge
anomaly of the Fermi arc state in this derivation.

In order to resolve this subtle point, we consider a geometry
of the Weyl metal sample as shown in Fig. 1. We use the
differential form since it is independent of the coordinate
system and it is easier to calculate the anomaly inflow. The
axion term is represented in the following way:

WBulk
WM [A,F] = −

∫
M

iθ

4π2
F ∧ F

= −
∫
M

iθ

4π2
d(A ∧ F)

= − i

4π2

∫
M

[d(θA ∧ F) − dθ ∧ A ∧ F]

= i

4π2

∫
M

dθ ∧ A ∧ F , (21)

where θ ∝ cμxμ is an “axion” field, A = Aμdxμ, and F =
1
2Fμνdxμ ∧ dxν . M denotes an infinite space, where the Weyl
metal sample is embedded. The boundary of the Weyl metal
sample is defined by the function θ (x).
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Under the gauge transformation A → A + dη, the varia-
tion of the effective bulk action is given by

δηW
Bulk
WM [A,F] = i

4π2

∫
M

dθ ∧ dη ∧ F

= i

4π2

∫
M

[−d(ηdθ ∧ F) + ηd2θ ∧ F]

= i

4π2

∫
M

ηd2θ ∧ F . (22)

In the cylindrical coordinate (ρ,φ,z), we can set θ (x) =
−cφ(ρ − ρ0), where ρ = ρ0 represents the boundary of the
Weyl-metal sample (Fig. 1). We emphasize that θ (x) is not a
single-valued function. As a result, d2θ �= 0. When ρ > ρ0,

∇θ (x) = − 1
ρ
cφ̂. Therefore we have

∮
C(ρ>ρ0) ∇θ (x) · dl =

−2πc. However, if ρ < ρ0, we have
∮
C(ρ<ρ0) ∇θ (x) · dl = 0.

These equations are translated into ∇ × ∇θ (x) = − c
ρ
δ(ρ −

ρ0)ẑ = ẑ(∂x∂y − ∂y∂x)θ .
Inserting this equation into the above, we find the anomaly

inflow from the bulk state∫
M

ηd2θ ∧ F =
∫
M

η

2
(∂μ∂νθ )Fαβdxμ ∧ dxν ∧ dxα ∧ dxβ

=
∫
M

d4x
η

4
εμναβ(∂μ∂ν − ∂ν∂μ)θFαβ

=
∫

d4xη(∂x∂y − ∂y∂x)θFzt

= −2πc

∫
dtdzηFzt . (23)

The variation of the effective action under the gauge transfor-
mation is

δηW
Bulk
WM [A,F] = − ic

2π

∫
dtdzη(x)Fzt . (24)

Comparing Eq. (18) with Eq. (24), we confirm the anomaly
cancellation

δηW
edge
WM + δηW

Bulk
WM = 0. (25)

III. BROKEN INVERSION SYMMETRY WEYL METALS

Since time-reversal symmetry is preserved, Berry flux
should satisfy the following constraint: BI(k) = −BII(−k),
where band indexes I and II are used to label the bands, which
are time-reversal partner to each other(spin-full case). This
implies that there should be an even number of pairs of Weyl
points in the broken inversion symmetry Weyl metal state.
Here, we apply the Callan-Harvey mechanism to the broken
inversion symmetry Weyl metal state. We find that a pair of
Fermi arcs appear to give rise to a “quantized” version of either
spin or valley Hall effects.

A. An effective minimal model for broken inversion
symmetry Weyl metals

Following Ref. [25], we start from

H = σxszkx − σyky + (−m1 + m2k
2
z

)
σ z + ασx. (26)

Parity and time-reversal transformation operators are given
by P = σ z and T = isyK, respectively, where K perform the

kx

kz

2α

2k0

FIG. 2. Band structure of an effective Hamiltonian (26). Four blue
dots denote four Weyl points in the ky = 0 plane. Here, k0 = √

m1/m2

and α is the strength of inversion symmetry breaking.

operation of complex conjugation. Then, it is straightforward to
see the time-reversal symmetry of this effective Hamiltonian.
On the other hand, the last term with the coefficient α breaks
inversion symmetry. One can find that there are more terms
which give rise to breaking the inversion symmetry while
preserving the time-reversal symmetry: σysx, σ ysy , and σysz.
The first and the second terms result in two nodal rings in
momentum space. The third term makes a Weyl point along
the ky direction while the α term causes the Weyl point along
the kx direction. We can consider only the ασx term without
loss of generality.

We start to consider the inversion symmetric case with
α = 0. Since both the time-reversal and the inversion symme-
try are preserved, two bands must be degenerate. Eigenvalues
are given by

E± = ±
√

k2
x + k2

y + (
m2k2

z − m1
)2

. (27)

There are two Dirac points at (0,0, ± √
m1/m2).

Turning on α, the band structure evolves into

E1,± = ±
√

(kx − α)2 + k2
y + (

m2k2
z − m1

)2
, (28)

E2± = ±
√

(kx + α)2 + k2
y + (

m2k2
z − m1

)2
. (29)

Each Dirac point splits into a pair of Weyl points. As a result,
we have a double pair of Weyl points at (α,0,

√
m1/m2), (α,0,

−√
m1/m2), (−α,0,

√
m1/m2), and (−α,0,−√

m1/m2) as
shown in the Fig. 2. Here, the definition of “pair” will be
clarified below.

B. Low-energy effective Hamiltonian with inversion
symmetry breaking

In order to discuss anomaly cancellation, we write down a
low-energy effective Hamiltonian near the double pair of Weyl
points shown in Fig. 2. Expanding the momentum near the
two Dirac points at (0,0, ± √

m1/m2) ≡ (0,0, ± k0) ≡ ±k0,
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we obtain

H+(k) = H (k0 + δk) ≈ H (k0) + δk · ∇kH (k)|k0

= σxszkx − σyky + ασx + σ z(kz − k0), (30)

H−(k) = H (−k0 + δk) ≈ H (−k0) + δk · ∇kH (k)|−k0

= σxszkx − σyky + ασx − σ z(kz + k0), (31)

where we set 2
√

m1m2 = 1 for simplicity. Then, the original
Hamiltonian can be approximated in the low-energy limit as
follows:

H (k) ≈ H+(k)f (|k − k0|) + H−(k)f (|k + k0|). (32)

Here, the function f (x) is introduced to play the role of a UV
cutoff for this low-energy effective Hamiltonian. Accordingly,
the Bloch state is represented as

|k,σ,s〉 ≈
{|k,σ,s,+〉 (k ∼ k0)
|k,σ,s,−〉 (k ∼ −k0). (33)

Now, we rewrite this low-energy effective Hamiltonian as
one reducible representation in the following way:

H̃ (k) ≈
(

H+(k) 0
0 H−(k)

)
= (σxszkx − σyky + ασx − σ zk0)

⊗ τ 0 + σ z ⊗ τ zkz. (34)

Accordingly, we have |k,σ,s〉 → |k,σ,s,τ 〉, where an addi-
tional quantum number is identified with a valley index. H̃ (k)
is an eight-band Hamiltonian, which originates from the four-
band one, Eq. (26), in the low-energy limit.

The inversion and time-reversal transformation operators
are redefined consistently as follows:

P̃ = σ z ⊗ τ x, T̃ = isy ⊗ τ xK. (35)

See Appendix C for the derivation. It is easy to check out that
the time-reversal symmetry is preserved for this low-energy
effective Hamiltonian, i.e., T̃ H̃ (k)T̃ −1 = H̃ (−k) while the
inversion symmetry is not respected due to the α term, i.e.,
P̃ H̃ (k)P̃ −1 �= H̃ (−k).

C. Gamma matrix description

It is straightforward to write down the low-energy effective
Hamiltonian with Gamma matrices. Taking into account the
eight-component spinor

� = (φ1,1,1, φ1,1,−1, φ1,−1,1, φ1,−1,−1, φ−1,1,1,

φ−1,1,−1, φ−1,−1,1, φ−1,−1,−1)T , (36)

where φa,b,c = φτz,sz,σ z , we obtain the low-energy effective
Hamiltonian

H =
∑

k

�†(k)(σxszkx −σyky + ασx + σ zτ zkz−σ zk0)�(k)

=
∫

d3r�†(r)(σxszi∂x − σyi∂y

+ σ zτ zi∂z + σxα − σ zk0)�(r). (37)

This gives rise to the following effective action:

S =
∫

d4x�†(x)[∂0 + σxszi∂x − σyi∂y

+ σ zτ zi∂z + σxα − σ zk0]�(x)

=
∫

d4x�̄(x)[�0∂0 + i�1∂x + i�2∂y + i�3∂z

−α�1�5τ z + k0�
3�5sz]�(x), (38)

where �̄(x) = �†(x)�0 and Gamma matrices are given by

�0�1 = σxsz, �0�2 = −σy, �0�3 = σ zτ z (39)

⇒ �5 = i�0�1�2�3 = −szτ z, (40)

satisfying {�μ,�ν} = 2gμν18×8 with gμν = (1,−1,−1,

−1)δμν . We observe that there are two different representations
of �μ satisfying Eq. (39) with conditions: {�μ,�ν} =
2gμν18×8 and {�μ,�5} = 0.

1. [τ z,�μ] = 0 and {sz,�μ} = 0

The first representation for �μ is

�0 = sxσ x, �1 = −isy, (41)

�2 = −isxσ z, �3 = −isxσ yτ z. (42)

These eight by eight gamma matrices can be rewritten as a
product of four by four gamma matrices and two by two pauli
matrices as follows:

�0 = γ 0
v τ 0, �1 = γ 1

v τ 0, �2 = γ 2
v τ 0, (43)

�3 = γ 3
v τ z, �5 = γ 5

v τ z, (44)

where

γ 0
v = sxσ x, γ 1

v = −isyσ 0, γ 2
v = −isxσ z, (45)

γ 3
v = −isxσ y, γ 5

v = iγ 0
v γ 1

v γ 2
v γ 3

v = −szσ 0. (46)

γ μ
v matrices are four by four matrix, which consist of σμ and

sμ, satisfying {γ μ
v ,γ ν

v } = 2gμν14×4.

2. {τ z,�μ} = 0 and [sz,�μ] = 0

The other representation for �μ is

�0 = σ zτ x, �1 = iσ yszτ x, (47)

�2 = iσ xτ x, �3 = −iτ y. (48)

These eight by eight gamma matrices can be also rewritten as a
product of four by four gamma matrices and two by two pauli
matrices as follows:

�0 = γ 0
s s0, �1 = γ 1

s sz, �2 = γ 2
s s0, (49)

�3 = γ 3
s s0, �5 = γ 5

s sz, (50)
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where

γ 0
s = σ zτ x, γ 1

s = iσ yτ x, γ 2
s = iσ xτ x, (51)

γ 3
s = −iσ 0τ y, γ 5

s = iγ 0
s γ 1

s γ 2
s γ 3

s = −σ 0τ z. (52)

γ
μ
s matrices are four by four matrix, which consist of σμ and

τμ, satisfying {γ μ
s ,γ ν

s } = 2gμν14×4.
As a result, we have two types of low-energy effective

Hamiltonians:

S1st =
∫

d4x�̄(x)
[
γ 0

v ∂0 + iγ 1
v ∂x + iγ 2

v ∂y

+ iγ 3
v τ z∂z − αγ 1

v γ 5
v − k0γ

3
v

]
�(x), (53)

S2nd =
∫

d4x�̄(x)
[
γ 0

s ∂0 + iγ 1
s sz∂x + iγ 2

s ∂y

+ iγ 3
s ∂z + αγ 1

s + k0γ
3
s γ 5

s

]
�(x). (54)

It is not possible to find the representation satisfying both
[τ z,�μ] = 0 and [sz,�μ] = 0. If �μ fulfills both conditions,
[�μ,�5] = 0 must be satisfied because of �5 = −τ zsz. This
is contradictory to the condition of {�μ,�5} = 0. It turns out
that this property of �μ is related to the Fujikawa’s uncertainty
principle [26], which plays an important role in the following
discussion.

D. An effective axionic action for broken inversion
symmetry Weyl metals

Since the total Berry flux is zero for broken inversion
symmetry Weyl metals, the Hall conductivity must vanish.
As a result, the conventional effective axionic action does
not exist for this Weyl metal state. However, we find other
types of effective axionic actions, introducing two kinds of
fictitious gauge fields into the effective action: one is a spin
gauge field Sμ and the other is a valley gauge field Vμ, which
are coupled with a spin current j

μ
s = �̄�μsz� and a valley

current jμ
v = �̄�μτ z�, respectively. Both spin and valley

currents are Noether currents, involved with the symmetry
under � → eiszθ� and � → eiτ zθ�, respectively.

We start from the low-energy effective action with both spin
and valley gauge fields,

S =
∫

d4x�̄(x)[i�μ(∂μ + iAμ + iszSμ + iτ zVμ)

−α�1�5τ z + k0�
3�5sz]�(x), (55)

where μ = 1,2,3,4 and �4 = −i�0. It turns out that both
spin and valley currents can not be conserved simultaneously
when quantum corrections are taken into account. In other
words, one of both symmetries related to either spin or
valley current should be anomalous in the quantum level. The
problem on which symmetry becomes anomalous should be
determined by the UV condition. The UV condition fixes
the possible representation for the low-energy effective field
theory. Physically, this determines the formation of a pair of
Fermi arcs.

1. [τ z,�μ] = 0 and {sz,�μ} = 0

Action in the first representation Eq. (53) is symmetric under
the following three kinds of transformations:

� → eiα(x)�, �̄ → �̄e−iα(x), (56)

� → eiτ zβ(x)�, �̄ → �̄e−iτ zβ(x), (57)

� → eiszη(x)�, �̄ → �̄eiszη(x)
(
∵ sz = −γ 5

v

)
. (58)

The first, second, and third transformations are related to the
charge, valley, and spin current, respectively. We note that
the third transformation related to the spin current is the
chiral transformation in terms of the γv matrix. Therefore
this low-energy effective action is not invariant under the
third transformation when quantum corrections are included.
In mathematical terms, the integral measure of the partition
function is not invariant under the third transformation. As a
result, the spin current is not a conserved current. Resorting to
the Fujikawa’s method, one can obtain an effective axion term
as we did in the case of broken time-reversal symmetry Weyl
metals. Detailed calculations are shown in Appendix D. Here,
we quote the result only

S1st
eff ≡ Sv

eff = − i

4π2

∫
d4xαx1εμναβFv,μνFαβ, (59)

where Fv,μν = ∂μVν − ∂νVμ is the field strength tensor, given
by the valley gauge field Vμ.

Following the same method as the case of broken time-
reversal symmetry Weyl metals, it is straightforward to find
the valley Hall current from this axion term. Performing the
integration by part as follows:

Sv
eff = −

∫
d4x

iαx1

4π2
εμναβFv,μνFαβ ≡

∫
M

iθv(x1)

π2
Fv ∧ F

=
∫

M

i

π2
[d(θvV ∧ F) − dθv ∧ V ∧ F]

= − i

π2

∫
M

dθv ∧ V ∧ F

= − i

2π2

∫
d4xεαβμν∂αθvVβFμν, (60)

we obtain

jμ
v = δSv

eff

δVμ

= i

2π2
εμναβ(∂νθv)Fαβ

= − i

2π2
εμ1ηξαFηξ . (61)

Since this current is evaluated in the Euclidean signa-
ture, we have to change it into the Lorentzian signature;
(v1

L,v2
L,v3

L,v0
L) = (v1

E,v2
E,v3

E,iv4
E). Then, we have

j 0
L,v = α

π2
F23, (62)

jk
L,v = α

2π2
εk1ηξFηξ . (63)

This valley Hall current may be regarded as an anomaly inflow
from the bulk to the pair of Fermi arcs. Performing essentially
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kx

kz

FIG. 3. A double pair of Fermi arcs (red and green lines) for the
valley Hall current case; [τ z,�μ] = 0 and {sz,�μ} = 0. Here, each
color of Fermi arcs represents where they are located in real space
(green: the upper terminated plane and red: the lower terminated
plane).

the same task as the case of the broken time-reversal symmetry
Weyl metal, we find that the pair of Fermi arcs is given in Fig. 3.

2. {τ z,�μ} = 0 and [sz,�μ] = 0

The low-energy effective action Eq. (54) is symmetric under
the following three types of transformations as the case of the
first representation:

� → eiα(x)�, �̄ → �̄e−iα(x), (64)

� → eiτ zβ(x)�, �̄ → �̄eiτ zβ(x)
(
∵ τ z = −γ 5

s

)
, (65)

� → eiszη(x)�, �̄ → �̄e−iszη(x). (66)

In this representation, the second transformation related to the
valley current is the chiral transformation in terms of the γ 5

s

matrix. Therefore the valley current is not conserved because of
the chiral anomaly. The corresponding axionic effective action
derived from the chiral rotation is given by

S2nd
eff ≡ Ss

eff = i

4π2

∫
d4xk0x

3εμναβFs,μνFαβ, (67)

where Fs,μν = ∂μSν − ∂νSμ is the field strength of the spin
gauge field Sμ. We refer all details to Appendix D.

It is straightforward to find the spin Hall current from this
effective action, taking into account the integration by part:

Ss
eff =

∫
d4x

ik0x
3

4π2
εμναβFs,μνFαβ =

∫
M

iθs(x1)

π2
Fs ∧ F

=
∫

M

i

π2
[d(θsS ∧ F) − dθs ∧ S ∧ F]

= − i

π2

∫
M

dθs ∧ S ∧ F

= − i

2π2

∫
d4xεαβμν∂αθsSβFμν, (68)

kx

kz

FIG. 4. A double pair of Fermi arcs (red and green lines) for the
spin Hall current case; {τ z,�μ} = 0 and [sz,�μ] = 0. Here, each color
of Fermi arcs denotes where they are located in real space (green: the
upper terminated plane and red: the lower terminated plane).

and resulting in

jμ
s = δSv

eff

δSμ

= i

2π2
εμναβ(∂νθs)Fαβ

= i

2π2
εμ3ηξ k0Fηξ . (69)

In the Lorentizan signature, we have

j 0
L,s = − k0

π2
F12, (70)

jk
L,s = − k0

2π2
εk3ηξFηξ . (71)

This spin Hall current may be also regarded as an anomaly
inflow from the bulk to the pair of Fermi arcs. Performing
essentially the same task as the case of the broken time-reversal
symmetry Weyl metal, we find that the pair of Fermi arcs is
given in Fig. 4.

3. Discussion: Valley Hall effect versus spin Hall effect

So far, we discussed that two different representations
give two different physical situations. Then, what is the right
physical picture? We cannot answer which is correct within
only the low energy effective Hamiltonian. We need more
information which should be introduced from the UV structure
of the dispersion relation. However, the analysis based on the
low energy effective action tells us that only one of these two
different choices exists at least. These two representations take
two different regularization schemes. The first representation
or regularization scheme preserves the charge symmetry and
the valley symmetry, but breaks the spin symmetry while the
second representation or regularization scheme preserves the
charge symmetry and the spin symmetry, but breaks the valley
symmetry. One important thing is that there is no regular-
ization scheme which preserves all the symmetry involved
with charge, spin, and valley simultaneously as we pointed
out in the Sec. III C. Although we have shown this aspect
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with a specific Hamiltonian, this argument can be generalized.
See Appendix G for more general discussions on this point.
Involved with the issue of the regularization scheme, recent
studies [27,28] have shown that structure of Fermi arcs can
be changed by tuning the Weyl band structure in the UV level,
which does not affect the emergent symmetry of the low-energy
effective Hamiltonian.

E. Callan-Harvey mechanism in broken inversion
symmetry Weyl metals

1. Gauge transformation of the axion term

Effective axionic actions of Sv
eff [Aμ,Vμ] and Ss

eff [Aμ,Sμ]
have anomaly with respect to the valley gauge transformation
of Vμ → Vμ + ∂μη and the spin gauge transformation of
Sμ → Sμ + ∂μη, respectively. Taking into account these gauge
transformations, we find

δηS
v
eff [A,V] = 2iα

π

∫
dtdxηFxt , (72)

δηS
s
eff [A,S] = −2ik0

π

∫
dtdyηFzt . (73)

Of course, this anomaly inflow should be canceled by the
anomaly of a pair of Fermi arcs, which is nothing but the
Callan-Harvey mechanism.

2. Valley Hall current

Following the case of broken time-reversal symmetry Weyl
metals and setting α → αθ (z), one can find the edge state
localized near the boundary from the low-energy effective
Hamiltonian. We show all detailed calculations in Appendix E.
An effective surface Hamiltonian in the |τ z,kx,ky〉 basis is
given by

H =
∑
k̃z

∑
ky

�†(kx,ky)

(
ky 0
0 −ky

)
�(kx,ky)

=
∑
k̃z

∫
dy�

†
kx

(y)

(−i∂y 0
0 i∂y

)
�kx

(y)

=
∑
k̃z

∫
dy�

†
kx

(y)(−i∂yτ
3)�kx

(y), (74)

where k̃z → −√
α2 − m2 < kx <

√
α2 − m2. Then, the cor-

responding effective surface action is

S =
∑
k̃z

∫
dτ

∫
dy�

†
kx

(y)(∂τ − iτ 3∂y)�kx
(y)

=
∑
k̃z

∫
dτ

∫
dy�̄kx

(y)(γ 0∂τ + iγ 1∂y)�kx
(y), (75)

where γ 0 = τ 1, γ 1 = iτ 2, and γ̄ = γ 0γ 1 = −τ 3. Setting
γ 2 = −iγ 0, we have

S =
∑

−√
α2−m2<kx<

√
α2−m2

∫
d2x�̄kx

(y)iγ μ∂μ�kx
(y), (76)

where μ = 1,2, ∂0 = ∂2, and {γ μ,γ ν} = −δμν .

In order to show the anomaly cancellation, we introduce
both charge and valley gauge fields to the above boundary
action:

S =
∑

−√
α2−m2<kx<

√
α2−m2

∫
d2x�̄kx

(y)iγ μ

× (∂μ + iAμ + iVμγ̄ )�kx
(y). (77)

The surface valley current is given by

jμ
v ≡ δW [A,V ]

δVμ

= −
∑

−√
α2−m2<kx<

√
α2−m2

〈�̄kx
γ μγ̄�kx

〉, (78)

where W [A,V ] is an effective free energy defined by Z =
e−W [A,V ] = ∫

D�̄D�e−S[�̄,�,A,V ].
This boundary effective action is invariant under the fol-

lowing valley gauge transformation:

�kx
→ eiγ̄ θ�kx

, �̄kx
→ �̄kx

eiγ̄ θ , Vμ → Vμ + ∂μθ. (79)

However, we find that the expectation value for the valley
current jμ

v becomes anomalous in the one-loop order. All
details are shown in Appendix F. Here, we quote the result
only

∂μ

〈
jμ

reg(x)
〉 = 2iα

π
εμν∂μAν(x) = iα

π
εμνFμν(x). (80)

This anomaly equation implies

δηW
edge
WM,valley = − iα

π

∫
d2xη(x)εμνFμν(x). (81)

δηW
edge
WM,valley is canceled exactly by δηS

v
eff , which is nothing

but the Callan-Harvey mechanism.

3. Spin Hall current

Following the case of the valley Hall effect, we can obtain a
localized surface solution for the case of the spin Hall current.
See Appendix E for details. From these solutions, we can
construct the surface effective action. The surface Hamiltonian
in terms of the |sz,ky,kz〉 basis is given by

H =
∑
k̃z

∑
ky

�†(ky,kz)

(
ky 0
0 −ky

)
�(ky,kz)

=
∑
k̃z

∫
dy�

†
kz

(y)

(−i∂y 0
0 i∂y

)
�kz

(y)

=
∑
k̃z

∫
dy�

†
kz

(y)(−is3∂y)�kz
(y), (82)

where k̃z is the momentum to satisfy −
√

k2
0 − m2 < kz <√

α2 − m2. Then, the corresponding effective action is

S =
∑
k̃z

∫
dτ

∫
dy�

†
kz

(y)(∂τ − is3∂y)�kz
(y)

=
∑
k̃z

∫
dτ

∫
dy�̄kz

(y)(γ 0∂τ + iγ 1∂y)�kz
(y), (83)
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where γ 0 = s1, γ 1 = is2, and γ̄ = γ 0γ 1 = −s3. If we set
γ 2 = −iγ 0, we have

S =
∑

−
√

k2
0−m2<kz<

√
α2−m2

∫
d2x�̄kz

(y)iγ μ∂μ�kz
(y), (84)

where μ = 1,2, ∂0 = ∂2, and {γ μ,γ ν} = −δμν .
Following the case of the valley Hall effect, we also gauge

the above surface action. While we gauged the action with
charge and valley gauge fields in the valley Hall case, here we
gauge the effective action with charge and spin gauge fields in
the following way:

S =
∑

−
√

k2
0−m2<kz<

√
k2

0−m2

∫
d2x�̄kz

(y)iγ μ

× (∂μ + iAμ − iSμγ̄ )�kz
(y). (85)

Now, the spin current is given by

jμ
s ≡ δW [A,S]

δSμ

=
∑

−
√

k2
0−m2<kz<

√
k2

0−m2

〈�̄kz
γ μγ̄�kz

〉, (86)

where W [A,S] is an effective free energy defined by Z =
e−W [A,S] = ∫

D�̄�e−S[�̄,�,A,S].
This boundary effective action is invariant in the classical

level under the following spin gauge transformation:

�kz
→ eiγ̄ θ�kz

, �̄kz
→ �̄kz

eiγ̄ θ , Sμ → Sμ + ∂μθ. (87)

On the other hand, we find that the expectation value of the
spin current j

μ
s becomes anomalous in the one-loop order. All

procedures are completely identical to those for the case of
the valley Hall current. The variation of the effective surface
action with respect to the change of the spin gauge field is

δηW
edge
WM,spin = ik0

π

∫
d2xη(x)εμνFμν(x). (88)

δηW
edge
WM,spin is also canceled perfectly by δηS

s
eff .

IV. DISCUSSION ON THE VALLEY HALL CURRENT

A. Is the valley quantum number physical?

Up to now, we demonstrated the anomaly cancellation for
the broken inversion symmetry Weyl metal phase, described
by a specific model, where the spin quantum number sz is
conserved. Since sz is conserved, it is natural to consider the
spin Hall current mediated by the Fermi arc state. Actually, the
spin Hall effect has been proposed in TaAs, which is an broken
inversion symmetry Weyl metal material [29]. On the other
hand, one may criticize the physical realization of the valley
Hall current since the valley quantum number is not conserved
in the UV level. Here, we argue that an emergent symmetry,
which appears at low energies, plays a central role in the
quantum anomaly and the anomaly cancellation, reflected in
the existence of gapless surface states, even if such a symmetry
does not exist in the UV level.

Generally speaking, spin is not conserved, either, because of
the spin-orbit interaction. For a generic Hamiltonian of broken
inversion symmetry Weyl metals, there are no conserved
quantities such as spin. In this case we can introduce two
kinds of “valley” indexes in the low energy effective theory
to describe the broken inversion symmetry Weyl metal phase.
We may apply the same argument of the anomaly cancellation
as the above to this case, where sz is replaced to another valley
index. Then, we ask the following question: is the valley Hall
current physical? Here, we confirm the existence of Fermi
arc states even if there do not appear such symmetries in the
UV lattice Hamiltonian. Then, one can guess that there are
corresponding Hall currents mediated by such Fermi arc states.

B. The valley Hall effect in graphene

We start from reviewing the valley Hall effect in
graphene [30]. The band structure of graphene consists of two
Dirac points, referred to as valleys, K and K ′, respectively,
where an effective Hamiltonian near each valley is given by

H (k) = v(τzkxσx + kyσy). (89)

Here, kx and ky are the momentum measured from each Dirac
point. σx and σy are Pauli matrices, involved with the pseudo-
spin (A and B sublattices), and τz is a valley indexing matrix,
the eigenvalue +1 (−1) of which is assigned to the K (K ′)
valley.

Let us break the inversion symmetry in this effective
Hamiltonian. Then, such gapless Dirac points become gapped.
When the chemical potential is located at a position inside the
gap, one may expect quantized Hall responses based on the
Berry curvature. Considering the existence of time-reversal
symmetry, the sign of the Berry curvature is assigned to be
opposite at each valley and the Hall conductivity is canceled
to vanish. On the other hand, one can introduce the valley Hall
conductivity, given by σvalley = στz=1 − στz=−1, similar to the
spin Hall conductivity, where στz=±1 is the Hall conductivity
for each valley. For the concept of the valley Hall current to be
well defined, the valley quantum number should be a conserved
quantity. One may wonder how the valley quantum number,
which is just an index for labeling the different k-points, can
be considered as a conserved physical quantity. In order to
answer this question, we take into account another quantity
“coupled to” each valley, which is physically meaningful. That
is the pseudo-spin or chirality quantum number, given by the
sublattice degree of freedom [31]. Then, the valley index can
be considered as a conserved quantity in some specific cases.

For example, the existence of edge states in graphene, which
depends on the shape of the edge (armchair or zigzag), can
be understood with the presence or suppression of intervalley
scattering [30]. Considering the conservation of the crystal-
momentum component parallel with the edge and the conser-
vation of the pseudospin vector, we can determine whether the
intervalley scattering is suppressed or not [32,33]. In the case
of the armchair edge, two valleys of K and K ′ are projected
onto the same point in the surface 1D Brillouin zone. There-
fore the edge-parallel component of the crystal momentum
is conserved for the case when an in-going electron and an
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(a) (b)

FIG. 5. Surface band structure (a) and Fermi arc structure (b) with 20 unit cells along y axis for α = 1 and β = 2.

out-going electron belong to different valleys. In addition, the
direction of the pseudospin vector for in-going and out-going
fermions is the same when they belong to different valleys.
As a result, scattering between different valleys is dominant
for the armchair-edge case. The intervalley scattering does
not protect surface states for the armchair edge. In contrast
to the armchair edge, two valleys K and K ′ are projected
onto different points in the surface 1D Brillouin zone for
the zigzag-edge case. Therefore the edge-parallel component
of the crystal momentum is not conserved for in-going and
out-going fermions belonging to different valleys. As a result,
there exist surface states in the zigzag-edge case, which is
consistent with the valley Hall conductivity calculation based
on the fact that the valley is a good quantum number. For
details, we would like to refer to [32,33].

C. Valley Hall current in a spinless broken inversion
symmetry Weyl metal phase

We apply the same argument to the case of broken inversion
symmetry Weyl metals. We start from the following effective
Hamiltonian for a spinless broken inversion symmetry Weyl
metal:

H (k) = t1 sin kyσy + 2t2[cos kx + α(cos ky − 1)]σx

+ 2t3[cos kz + β(cos ky − 1)]σz. (90)

Here, σi are Pauli matrices related to orbital or sublattice
degrees of freedom. Taking into account t1 = t2 = t3 = 1 and
|α| > 1/2, |β| > 1/2, this effective Hamiltonian gives rise to
four Weyl points with the linear dispersion at (kx,ky,kz) =
(±π/2,0, ± π/2). Then, the low-energy effective Hamiltonian
for the above lattice model is given by

Happrox(k) = kyσy + 2szσxkx + 2τzσzkz + πσx + πσz (91)

near the Weyl points, where sz and τz are Pauli matrices
involved with valley quantum numbers.

The form of this low-energy effective Hamiltonian is quite
similar to Eq. (34). Repeating the same procedure performed
previously, we can derive two types of valley Hall currents and
the anomaly cancellation, respectively. Here, we note that there
are no α− and β− involved terms in this effective Hamiltonian.

It means that such UV parameters as α and β do not affect
the emergent symmetry of the low-energy effective theory. In
this low-energy effective Hamiltonian, both valley indexes of
sz = ±1 and τz = ±1 are good quantum numbers. However,
they were not in the UV level. Valley indexes do not have any
physical meaning intrinsically. It can have their own physical
meaning by other quantities.

As discussed in graphene, the other quantity is nothing
but the pseudo-spin vector, given by h(k)/|h(k)|, where
H (k) = h(k) · �σ . For our spinless broken inversion symme-
try Weyl metal, we obtain h(k) = (2[cos kx +α(cos ky −1)],
sin ky,2[cos kz + β(cos ky − 1)]). Based on the same argument
as that in graphene, which determines the existence of surface
states, we can find that there are no surface states for xy and
yz planes. Only the xz plane can host the surface state since
the intervalley scattering is suppressed. This result agrees with
the previous arguments [34,35] for the existence of surface
states.

We confirm the above statement based on our slab-
calculation for the microscopic lattice Hamiltonian, Eq. (90).
More precisely, we calculated surface (xz plane) band (Fermi
arc) structures for two different cases, given by Figs. 5 and 6.
Subfigures (a) in Figs. 5 and 6 show the band structure of
gapless surface states in the xz plane. In this respect, we
can regard the valley index as a conserved quantity when
we are considering the xz plane. There exist two types of
gapless surface states, depending on α and β. Fermi arc states
in subfigures (b) in Figs. 5 and 6 reveal these aspects more
clearly. An essential point is that α and β do not affect
anything on the low-energy effective Hamiltonian near the
Weyl points, Eq. (91). This demonstration confirms that we
can not determine which Weyl points are connected to form
a pair within the low-energy effective Hamiltonian only, as
discussed in Sec. III D.

Here, we have shown that the valley index in the spinless
broken inversion symmetry Weyl metal phase can be con-
sidered as a physically conserved quantity, depending on the
orientation of a surface. Although we have shown the existence
of surface states based on the intervalley scattering argument,
one can show it based on more general arguments given by
Wan et al. [34]. Based on this argument, we can show that the
same result holds for the spinfull broken inversion symmetry
Weyl metal phase.
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(a) (b)

FIG. 6. Surface band structure (a) and Fermi arc structure (b) with 20 unit cell along y axis for α = 2 and β = 1.

V. CONCLUSION

In conclusion, we applied the Callan-Harvey mechanism
to the case of broken inversion symmetry Weyl metals, and
found either the spin Hall effect or the valley Hall effect,
depending on the UV condition. Turning on charge, spin, and
valley U(1) gauge fields, we derived two types of axion terms
from two kinds of low-energy effective actions, based on the
Fujikawa’s method. This explicit demonstration clarifies the
anomaly inflow in either spin or valley currents from the Weyl
metal bulk to the surface state. Solving Weyl metal equations
with a surface boundary condition, we found normalizable
surface zero modes, which consist of a chiral pair of Fermi
arcs. Constructing the corresponding effective surface action
and calculating both spin and valley surface currents, we found
the gauge anomaly involved with either spin or valley U(1)
gauge fields. We proved explicitly that this spin-gauge or
valley-gauge anomaly at the surface is canceled exactly by
the anomaly inflow from the bulk action. We would like to
emphasize that our demonstration is the first concrete calcula-
tion for broken inversion symmetry Weyl metals although it is
certainly expected in a conceptual point of view.

In the present study, we focused on the case that the
chemical potential locates at the Weyl point. However, it is
not the case in real experiments. It turns out that the chiral
anomaly does not change as a function of either temperature
or the presence of a chemical potential [36]. This means
that “quantized” responses given by topologically protected
surface states do not change even if both temperature and
chemical potential are turned on. On the other hand, there
would be nonquantized responses given by electrons near
Fermi surfaces in the presence of Berry curvatures. Actually,
the anomalous Hall effect in a Weyl metal phase with time-
reversal symmetry breaking consists of contributions from not
only surface states but also Fermi-surface electrons [3]. It
turns out that the unbounded linear band structure of Weyl
electrons does not allow the nonquantized part from Fermi-
surface electrons [24]. In order to find such Fermi-surface
contributions, we should take into account a more realistic
dispersion of electrons, given by lattice regularization, for
example. Following Sec. V of Ref. [24], one can evaluate
the nonquantized part for the valley Hall effect numerically

if he/she resorts to the lattice-regularized band structure of
Eq. (90). However, these quantized and nonquantized re-
sponses in the presence of lattice regularization should be in-
vestigated more deeply beyond the numerical analysis in order
to understand the role of the Fermi surface in the topological
structure.

We believe that our explicit demonstration casts various
interesting questions, involved with generalizations of the
present ideal case. As far as we know, the role of disorder
scattering has never been discussed clearly, particularly, in
the view of anomaly cancellation. Disorder scattering gives
rise to mixing between each Fermi point in the Fermi arc
state, expected to spoil the present simple calculation at
least when disorder strength exceeds a critical value. The
role of electron correlations in the anomaly cancellation
would be more important and difficult. Recently, a topological
Fermi-liquid theory has been proposed to describe anomalous
transport phenomena in broken time-reversal symmetry Weyl
metals, where the concept of Landau’s Fermi-liquid theory
is generalized to incorporate both the Berry curvature and
the chiral anomaly [37,38]. However, the issue on anomaly
cancellation has not been discussed within such a topological
Fermi-liquid theory. When inversion symmetry is broken
instead of time-reversal symmetry, the situation would be
much more complicated. Not only the spin current but also
the valley current should be taken into account. This is
somewhat analogous to the relationship between the integer
quantum Hall phase and the quantum spin-Hall state in two
dimensions.
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APPENDIX A: DERIVATION OF AN AXIONIC
ACTION FOR BROKEN TIME-REVERSAL

SYMMETRY WEYL METALS

1. Chiral transformation

We introduce the chiral rotation as follows:

�(x) → eiα(x)γ 5
�(x), �̄(x) → �̄(x)eiα(x)γ 5

. (A1)

Under this chiral transformation, the effective action (2) for a
Weyl metal state changes as

SWM →
∫

d4x�̄(x)iγ μ[∂μ + iAμ

+ i(cμ + ds∂μθ (x))γ 5]�(x). (A2)

Here, we set α(x) = dsθ (x). Multiple steps of chiral rotations
result in

SWM →
∫

d4x�̄(x)iγ μ[∂μ+iAμ+i(cμ+s∂μθ (x))γ 5]�(x)

≡
∫

d4x�̄(x)i /D
(s)

�(x), (A3)

where

/D
(s) ≡ γ μ[∂μ + iAμ + i(cμ + s∂μθ (x))γ 5], (A4)

/D
(s)† ≡ γ μ[∂μ + iAμ − i(cμ + s∂μθ (x))γ 5]. (A5)

Since /D
(s) is not Hermitian because of the chiral gauge field,

we choose a basis which differs from the conventional case of
the chiral anomaly [22],

�(x) =
∑

n

anϕ
(s)
n (x), �̄(x) =

∑
n

φ(s)†
n (x)b̄n, (A6)

where the eigenvectors ϕ(s)
n (x) and φ

(s)†
n (x) are determined by

/D
(s)† /D

(s)
ϕ(s)

n = λ2
nϕ

(s)
n , /D

(s) /D
(s)†

φ(s)
n = λ2

nφ
(s)
n , (A7)

/D
(s)

ϕ(s)
n = λnφ

(s)
n , /D

(s)†
φ(s)

n (x) = λnϕ
(s)
n , (A8)

where λn is an eigenvalue. Then, the path-integral measure is

D�̄(x)D�(x) = [detU ]−1
∏
n

db̄ndan, (A9)

where [U−1]nm = φ
(s)†
n (x)ϕ(s)

m (x).
Now, we can see how the integral measure changes under

the chiral transformation. Since the wave function changes in
the following way:

� ′(x) = eidsθ(x)γ 5
�(x), �̄ ′(x) = �̄(x)eidsθ(x)γ 5

⇒
{∑

n a′
nϕn(x) = ∑

n eidsθ(x)γ 5
anϕn(x),∑

n φ
(s)†
n b̄′

n = ∑
n φ

(s)†
n (x)b̄ne

idsθ(x)γ 5
,

(A10)

we obtain

a′
n =

∑
m

Cnmam, b̄′
n =

∑
m

Dnmb̄m, (A11)

Cnm =
∫

ddxϕ(s)†
n (x)eidsθ(x)γ 5

ϕ(s)
m (x), (A12)

Dnm =
∫

ddxφ(s)†
m eidsθ(x)γ 5

φ(s)
n (x). (A13)

As a result, the integral measure is given by

D�̄ ′(x)D� ′(x) = [detU ]−1
∏
n

db̄′
nda′

n

= [detU ]−1[det C]−1[det D]−1
∏
n

db̄ndan

= [det C]−1[det D]−1D�̄(x)D�(x) (A14)

under the chiral transformation, where

[det C]−1 = exp

[
−ids

∫
ddxθ (x)

∑
n

ϕ(s)†
n (x)γ 5ϕ(s)

n (x)

]
,

[det D]−1 = exp

[
−ids

∫
ddxθ (x)

∑
n

φ(s)†
n (x)γ 5φ(s)

n (x)

]
.

(A15)

Finally, the partition function changes as follows:

Z =
∫

D�̄(x)D�(x)e−SWM

→
∫

D�̄(x)D�(x) exp

[
−
∫

ddx

{
�̄(x)i /D

(s)
�(x)

+
∫ s

0
ds θ (x)i

(∑
n

ϕ(s)†
n (x)γ 5ϕ(s)(x)

+
∑

n

φ(s)†
n (x)γ 5φ(s)

n (x)

)}]

≡
∫

D�̄(x)D�(x) exp
[−S

(s)
WM

]
. (A16)

2. Regularization

In order to calculate the part that changes under the chiral
transformation, we follow the standard way of regulariza-
tion [22], given by∑

n

[
ϕ(s)†

n (x)γ 5ϕ(s)
n + φ(s)†γ 5φ(s)

n

]

= lim
M→∞

∑
n

[
ϕ(s)†

n γ 5ϕ(s)
n + φ(s)†

n γ 5φ(s)
n

]
e
− λ2

n

M2

= lim
M→∞

∑
n

[
ϕ(s)†

n γ 5e
− /D(s)† /D(s)

M2 ϕ(s)
n + φ(s)†

n γ 5e
− /D(s) /D(s)†

M2 φ(s)
n

]
.

(A17)

One can show∑
n

φ(s)†
n (x)γ 5e

− /D(s) /D(s)†
M2 φ(s)

n (x)

=
∫

d4k

(2π )4
e−ik·x tr

[
γ 5e

− /D(s) /D(s)†
M2

]
eik·x. (A18)

As a result, we obtain∑
n

[
ϕ(s)†

n (x)γ 5ϕ(s)
n (x) + φ(s)†

n γ 5φ(s)
n (x)

]

= lim
M→∞

∫
d4k

(2π )4
e−ik·x tr

[
γ 5
(
e
− /D(s)† /D(s)

M2 + e
− /D(s) /D(s)†

M2

)]
eik·x.

(A19)
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3. Chirality splitting

In order to perform the momentum integration in the above
expression, we consider chirality splitting given by

/D
(s) = (/∂ + i /A

(s)
+ )P+ + (/∂ + i /A

(s)
− )P−

≡ /D
(s)
+ P+ + /D

(s)
− P−, (A20)

/D
(s)† = /D

(s)
+ P− + /D

(s)
− P+, (A21)

where

A
(s)
μ+ ≡ Aμ + cμ + s∂μθ (x), (A22)

A
(s)
μ− ≡ Aμ − (cμ + s∂μθ (x)), (A23)

P± = 1
2 (1 ± γ 5), (A24)

/D
(s)
± = /∂ + i /A

(s)
± . (A25)

Then, we obtain

/D
(s) /D

(s)† = ( /D
(s)
+ )2P− + ( /D

(s)
− )2P+, /D

(s)† /D
(s)

= ( /D
(s)
+ )2P+ + ( /D

(s)
− )2P−, (A26)

giving rise to

e
− /D(s)† /D(s)

M2 = P+e
− ( /D

(s)
+ )2

M2 + P−e
− ( /D

(s)
− )2

M2 , (A27)

e
− /D(s) /D(s)†

M2 = P−e
− ( /D

(s)
+ )2

M2 + P+e
− ( /D

(s)
− )2

M2 . (A28)

Now, it is straightforward to perform the momentum inte-
gration in the following way:

∑
n

[
ϕ(s)†

n (x)γ 5ϕ(s)
n (x) + φ(s)†

n γ 5φ(s)
n (x)

] = lim
M→∞

∫
d4k

(2π )4
e−ik·xtr

[
γ 5

(
e
− ( /D

(s)
+ )2

M2 + e
− ( /D

(s)
− )2

M2

)]
eik·x

= lim
M→∞

∫
d4k

(2π )4
tr

[
γ 5

(
e
− −(D(s)

+μ+ikμ)2+ i
4 [γμ,γ ν ]F (s)

+,μν

M2 + e
− −(D(s)

−μ+ikμ)2+ i
4 [γμ,γ ν ]F (s)

−,μν

M2

)]

= lim
M→∞

∫
d4k

(2π )4
M4e−k2

μ tr

[
γ 5

(
− 1

8M4
γ μγ νγ αγ βF

(s)
+,μνF

(s)
+,αβ

− 1

8M4
γ μγ νγ αγ βF

(s)
−,μνF

(s)
−,αβ

)]

=
∫

d4k

(2π )4
e−k2

μ
1

2
εμναβ

[
F

(s)
+,μνF

(s)
+,αβ + F

(s)
−,μνF

(s)
−,αβ

]
= 1

32π2
εμναβ

[
F

(s)
+,μνF

(s)
+,αβ + F

(s)
−,μνF

(s)
−,αβ

]
, (A29)

where

tr[γ 5] = tr[γ 5γ μγ ν] = 0,

tr[γ 5γ μγ νγ αγ β] = −4εμναβ (A30)

have been used.
Setting θ (x) = −cμxμ, we have

A
(s)
μ+ = Aμ + cμ(1 − s), A

(s)
μ− = Aμ − cμ(1 − s), (A31)

F
(s)
+,μν = F

(s)
−,μν = ∂μAν − ∂νAμ = Fμν. (A32)

Then, we obtain∑
n

[
ϕ(s)†

n (x)γ 5ϕ(s)
n (x) + φ(s)†

n γ 5φ(s)
n (x)

]

= 1

16π2
εμναβFμνFαβ. (A33)

Finally, the effective action changes as

SWM → S
(s)
WM =

∫
d4x

[
�̄(x)i /D

(s)
�(x)

−
∫ s

0
dscμxμ i

16π2
εμναβFμνFαβ

]
(A34)

under the chiral transformation, where /D
(s) = γ μ(∂μ + iAμ +

icμ(1 − s)γ 5). Setting s = 1, we obtain

S
(0)
WM =

∫
d4x[�̄(x)iγ μ(∂μ + iAμ + icμγ 5)�(x)] (A35)

⇒ S
(1)
WM =

∫
d4x

[
�̄(x)iγ μ(∂μ + iAμ)�(x)

− icμxμ

16π2
εμναβFμνFαβ

]
. (A36)

APPENDIX B: GAUGE ANOMALY OF THE U(1) SURFACE
CURRENT IN BROKEN TIME-REVERSAL

SYMMETRY WEYL METALS

We introduce a bosonic “spinor” φ(x) into an effective
action of the surface Fermi-arc state as follows:

S =
∫

d2x[�̄(x)iγ μ(∂μ + ieAμP−)�(x) + φ̄(x)iγ μ

× (∂μ + ieAμP−)φ(x) + φ̄(x)Mφ(x)], (B1)
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where M is the mass of the bosonic spinor field. Recall that
P− is the chirality projection operator. This is referred to as
the Pauli-Villars regularization [22]. If we consider the chiral
gauge transformation for φ̄(x) andφ(x), they transform as �̄(x)
and �(x) and the mass term breaks the chiral gauge symmetry
explicitly.

Performing the Fourier transformation, we obtain

S =
∫

d2k

(2π )2

[
�̄(k)/k�(k) + φ̄(k)(/k + M)φ(k)

−
∫

d2q

(2π )2
(�̄(k + q) /A(q)P−�(k)

+ φ̄(k + q) /A(q)P−φ(k))

]
, (B2)

where

�(x) =
∫

d2k

(2π )2
e−ik·x�(x), �̄(x) =

∫
d2k

(2π )2
eik·x�̄(k),

(B3)

φ(x) =
∫

d2k

(2π )2
e−ik·xφ(x), φ̄(x) =

∫
d2k

(2π )2
eik·xφ̄(k),

(B4)

Aμ(q) =
∫

d2xeiq·xAμ(x). (B5)

Accordingly, Green functions are given by

G(k) = 〈�(k)�̄(k)〉 = /k

k2
,

G̃(k) = 〈φ(k)φ̄(k)〉 = /k − M

k2 − M2
. (B6)

The current operator is

jμ(q) =
∫

d2xe−iq·xjμ(x) =
∫

d2xe−iq·x�̄(x)γ μP−�(x)

=
∫

d2k

(2π )2
�̄(k + q)γ μP−�(k) (B7)

under the Fourier transformation. Applying the Pauli-Villars
regularization into the above expression, we obtain

jμ
reg(q) =

∫
d2k

(2π )2
[�̄(k + q)γ μP−�(k)

+ φ̄(k + q)γ μP−φ(k)]. (B8)

Up to the one-loop order, we find

〈
jμ

reg(q)
〉 = lim

M2→∞

∫
d2k

(2π )2
[−tr(G(k)γ μP−G(k + q)γ νP−)

+ tr(G̃(k)γ μP−G̃(k + q)γ νP−)]Aν(−q)

= −
[

2(2qμqν − gμνq2) + iεμν
(
q2

μ − q2
ν

)

+ 2i
∑

α

δμνqαεανqμ

]
Aν(−q)

4πq2
. (B9)

The difference in the sign comes from the fact whether the
particle is a fermion or a boson. Here, we have used the
following properties of γ μ and the integral identity:

tr(γ μ) = tr(γ̄ ) = 0, tr(γ μγ ν) = 2gμν, (B10)

tr(γ μγ νγ α) = 0, tr(γ μγ νγ̄ ) = εμν2i (εzt = 1), (B11)

tr(γ αγ βγ μγ ν) = 2(gαβgμν − gαμgβν + gανgβμ), (B12)

tr(γ μγ̄ ) = tr(γ αγ βγ μγ̄ ) = 0, (B13)

tr(γ αγ βγ μγ νγ̄ )

= −2i[εμνδαβ(δβμ + δβν) + εαβδμν(δαμ + δβμ)], (B14)∫
d2k

(2π )2

1

(k2 − �)n
= (−1)n

4π

1

n − 1

1

�n−1
(n > 1). (B15)

As a result, we find that the surface U(1) current given by the
Fermi-arc state is not conserved:

q · 〈jreg(q)〉 = iεμνqμAν(−q)

4π
⇒ ∂μjμ(x) = i

8π
εμνFμν.

(B16)

APPENDIX C: INVERSION AND TIME-REVERSAL
TRANSFORMATION OPERATORS FOR THE
LOW-ENERGY EFFECTIVE HAMILTONIAN

We point out that the inversion transformation operator is
represented in the original-basis state |k,σ,s〉 as follows:

PHP−1 =
∑

k

∑
i,j

P|k,i〉Hij (k)〈k,j |P−1

=
∑

k

∑
i,j

| − k,i〉Hij (−k)〈−k,j | = H

⇒ Pij = 〈−k,i|k,j 〉, PiαHαβ(k)P −1
βj = Hij (−k)

(C1)

⇒P = σz :

(
P|k,σ = +,s〉 = | − k,σ = +,s〉
P|k,σ = −,s〉 = −| − k,σ = −,s〉

)
. (C2)

Note that the operator P relates |k,i〉 with | − k,i〉. Here, we
find the representation for P in the enlarged Hilbert space
|k,σ,s,τ 〉.

Considering

P|k,σ,s〉 ≈ P|k,σ,s,+〉 ∝ |−k,σ,s〉 ≈ |−k,σ,s,−〉, (C3)

we obtain the representation ofP in the enlarged Hilbert space,
given by

P

⎛
⎜⎝

|k,σ = +,s,τ = +〉
|k,σ = −,s,τ = +〉
|k,σ = +,s,τ = −〉
|k,σ = −,s,τ = −〉

⎞
⎟⎠ =

⎛
⎜⎝

|−k,σ = +,s,τ = −〉
−|−k,σ = −,s,τ = −〉
|−k,σ = +,s,τ = +〉

−|−k,σ = −,s,τ = +〉

⎞
⎟⎠

⇒ P̃ = σ z ⊗ τ x. (C4)

In the same way, we find the representation for the time-reversal
transformation as well:

T̃ = isy ⊗ τ xK. (C5)
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APPENDIX D: DERIVATION OF AN EFFECTIVE
AXIONIC ACTION FOR BROKEN INVERSION

SYMMETRY WEYL METALS

1. [τ z,�μ] = 0 and {sz,�μ} = 0

The procedure is quite similar to the case of broken time-
reversal symmetry Weyl metals. Since any explicit calculations
have not been shown for broken inversion symmetry Weyl
metals as far as we know, we report all detailed steps in this
appendix. Taking into account the chiral gauge transformation
in this case [Eq. (38)], we obtain

� → ei�5τ zβ(x), �̄ → �̄ei�5τ zβ(x) (∵ [τ z,�μ] = 0), (D1)

S → S −
∫

d4x�̄(x)�μ�5τ z∂μβ(x)�(x) (D2)

⇒ S ′ =
∫

d4x�̄(x)[i�μ∂μ − (α + ∂1β)�1�5τ z

+ k0�
3�5sz]�(x), (D3)

where we set ∂μβ = δμ1∂1β. Considering β(x) = dsθv(x) and
performing multiple steps of chiral rotations as discussed in
the Appendix A, we obtain

S(s) =
∫

d4x�̄(x)[i�μ∂μ − (α + s∂1θv)�1�5τ z

+ k0�
3�5sz]�(x)

≡
∫

d4x�̄(x)i /D
(s)

�(x), (D4)

/D
(s) = �μ∂μ + i(α + s∂1θv)�1�5τ z − ik0�

3�5sz. (D5)

In order to find an effective action involved with the α

term, we introduce two types of gauge fields in addition to
the conventional U(1) gauge field Aμ: the spin gauge field Sμ

and the valley gauge field Vμ as follows:

/D
(s) = �μ(∂μ + iAμ + iszSμ + iτ zVμ)

+ i(α + s∂1θv)�1�5τ z − ik0�
3�5sz. (D6)

Following the Appendix A, we calculate the change of
the integral measure under this chiral rotation and obtain an
effective action

S
(s)
eff = S(s) +

∫
d4x

∫ s

0
dsθv(x)i

×
∑

n

(
ϕ(s)†

n �5τ zϕ(s)
n + φ(s)†

n �5τ zφ(s)
n

)
, (D7)

where

/D
(s)† /D

(s)
ϕ(s)

n (x) = λ2
nϕ

(s)
n (x),

/D
(s) /D

(s)†
φ(s)

n (x) = λ2
nφ

(s)
n (x), (D8)

/D
(s)

ϕ(s)
n (x) = λnφ

(s)
n (x), /D

(s)†
φ(s)

n (x) = λnϕ
(s)
n (x). (D9)

The change of the integral measure can be evaluated in the
following way:

∑
n

[
ϕ(s)†

n (x)γ 5
v ϕ(s)

n (x) + φ(s)†
n γ 5

v φ(s)
n (x)

]

= lim
M→∞

∫
d4k

(2π )4
e−ik·x tr

[
γ 5

v

(
e
− ( /D

(s)
+ )2

M2 + e
− ( /D

(s)
− )2

M2

)]
eik·x

= lim
M→∞

∫
d4k

(2π )4
e
− k2

μ

M2 tr

[
γ 5

v

(
e
− −(D(s)

+μ)2−2ikμD
(s)
+μ+ i

4 [�μ,�ν ]F (s)
+,μν

M2 + e
− −(D(s)

−μ)2−2ikμD
(s)
−μ+ i

4 [�μ,�ν ]F (s)
−,μν

M2

)]

= lim
M→∞

∫
d4k

(2π )4
e−k2

μ tr

[
− 1

16
γ 5

v ([�μ,�ν](Fμν + τ zFv,μν))2

]

= −1

4
lim

M→∞

∫
d4k

(2π )4
e−k2

μ tr
[
γ 5

v �μ�ν�α�βτ z
(
Fv,μνFμν + FμνFv,αβ

)] = 1

4π2
εμναβFv,μνFαβ, (D10)

where

/D
(s) = /D

(s)
+ Pv,+ + /D

(s)
− Pv,−, (D11)

/D
(s)
± = �μ

(
∂μ + iA

(s)
±,μ

)
, (D12)

A
(s)
±,μ = Aμ + τ zVμ + k0δ

μ3τ z ± [−Sμ + δμ1(α + s∂1θv)], (D13)

F
(s)
±,μν = ∂μA

(s)
±,ν − ∂νA

(s)
±,μ = Fμν + τ zFv,μν ∓ Fs,μν, (D14)

Pv,± = 1 ± γ 5
v

2
. (D15)

Fμν is the field strength tensor of the U(1) gauge field and Fv,μν is that of the valley gauge field. Here, we have used the
representation of �μ matrices in terms of γ μ and τμ matrices (γ 4

v = −iγ 0
v ) since it is more convenient for calculations. We also
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used

tr
[
γ 5

v

] = tr
[
γ 5

v γ μ
v γ ν

v

] = 0, (D16)

tr
[
γ 5

v γ μ
v γ ν

v γ α
v γ β

v

] = −4εμναβ, (D17)

tr[A ⊗ B] = tr[A]tr[B]. (D18)

Finally, we reach the following expression after the chiral transformation:

∴ S
(s)
eff =

∫
d4x�̄(x)[i�μ∂μ − (α + s∂1θv)�1�5τ z + k0�

3�5sz]�(x) + i

∫
d4x

∫ s

0
ds

θv

4π2
εμναβFv,μνFαβ. (D19)

If we set θv = −αx1 with s = 1, we obtain

S
(1)
eff =

∫
d4x�̄(x)[i�μ∂μ + k0�

3�5sz]�(x) − i

∫
d4x

αx1

4π2
εμναβFv,μνFαβ. (D20)

In other words, we find

Sv
eff ≡ −

∫
d4x

iαx1

4π2
εμναβFv,μνFαβ, (D21)

where both charge and valley gauge fields are involved. Note that the coefficient of the effective action is four times larger than
that of the broken time-reversal symmetry Weyl metal.

2. {τ z,�μ} = 0 and [sz,�μ] = 0

Now, we consider the other chiral rotation and obtain

� → ei�5szβ(x), �̄ → �̄ei�5szβ(x) (∵ [τ z,�μ] = 0), (D22)

S → S −
∫

d4x�̄(x)�μ�5sz∂μβ(x)�(x) (D23)

⇒ S ′ =
∫

d4x�̄(x)[i�μ∂μ − α�1�5τ z + (k0 − ∂3β)�3�5sz]�(x), (D24)

where we set ∂μβ = δμ3∂3β. Taking β(x) = dsθs(x) and performing essentially the same steps of chiral rotations before, we
obtain

S(s) =
∫

d4x�̄(x)[i�μ∂μ − α�1�5τ z + (k0 − s∂3θs)�
3�5sz]�(x) ≡

∫
d4x�̄(x)i /D

(s)
�(x), (D25)

/D
(s) = �μ∂μ + iα�1�5τ z − i(k0 − s∂3θv)�3�5sz. (D26)

We also introduce the whole set of U(1) gauge fields, given by

/D
(s) = �μ(∂μ + iAμ + iszSμ + iτ zVμ) + iα�1�5τ z − i(k0 − s∂3θs)�

3�5sz. (D27)

Considering the change of the integral measure under this chiral rotation, we find the following effective action:

S
(s)
eff = S(s) +

∫
d4x

∫ s

0
dsθv(x)i

∑
n

(
ϕ(s)†

n �5szϕ(s)
n + φ(s)†

n �5szφ(s)
n

)
, (D28)

where

/D
(s)† /D

(s)
ϕ(s)

n (x) = λ2
nϕ

(s)
n (x), /D

(s) /D
(s)†

φ(s)
n (x) = λ2

nφ
(s)
n (x), (D29)

/D
(s)

ϕ(s)
n (x) = λnφ

(s)
n (x), /D

(s)†
φ(s)

n (x) = λnϕ
(s)
n (x). (D30)
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It is essentially the same procedure to evaluate the change of the integral measure as follows:∑
n

[
ϕ(s)†

n (x)γ 5
s ϕ(s)

n (x) + φ(s)†
n γ 5

s φ(s)
n (x)

]

= lim
M→∞

∫
d4k

(2π )4
e−ik·x tr

[
γ 5

s

(
e
− ( /D

(s)
+ )2

M2 + e
− ( /D

(s)
− )2

M2

)]
eik·x

= lim
M→∞

∫
d4k

(2π )4
e
− k2

μ

M2 tr

[
γ 5

s

(
e
− −(D(s)

+μ)2−2ikμD
(s)
+μ+ i

4 [�μ,�ν ]F (s)
+,μν

M2 + e
− −(D(s)

−μ)2−2ikμD
(s)
−μ+ i

4 [�μ,�ν ]F (s)
−,μν

M2

)]

= lim
M→∞

∫
d4k

(2π )4
e−k2

μ tr

[
− 1

16
γ 5

s ([�μ,�ν](Fμν + szFs,μν))2

]

= −1

4
lim

M→∞

∫
d4k

(2π )4
e−k2

μ tr
[
γ 5

s �μ�ν�α�βsz
(
Fs,μνFμν + FμνFs,αβ

)] = 1

4π2
εμναβFs,μνFαβ, (D31)

where

/D
(s) = /D

(s)
+ Ps,+ + /D

(s)
− Ps,−, (D32)

/D
(s)
± = �μ

(
∂μ + iA

(s)
±,μ

)
, (D33)

A
(s)
±,μ = Aμ + sz(Sμ − αδμ1) ∓ [Vμ + (k0 − s∂3θv)δμ3], (D34)

F
(s)
±,μν = ∂μA

(s)
±,ν − ∂νA

(s)
±,μ = Fμν + szFs,μν ∓ Fv,μν, (D35)

Ps,± = 1 ± γ 5
s

2
. (D36)

Here, Fs,μν is the field strength tensor of the spin gauge field.
As a result, we find

S
(s)
eff =

∫
d4x�̄(x)[i�μ∂μ − α�1�5τ z + (k0 − s∂3θs)�

3�5sz]�(x)

+ i

∫
d4x

∫ s

0
ds

θs

4π2
εμναβFs,μνFαβ. (D37)

Setting θs = k0x
3 and s = 1, we obtain

S
(1)
eff =

∫
d4x�̄(x)[i�μ∂μ − α�1�5τ z]�(x) + i

∫
d4x

∫ s

0
ds

k0x
3

4π2
εμναβFs,μνFαβ, (D38)

where the topological-in-origin θ term is given by

Ss
eff ≡

∫
d4x

ik0x
3

4π2
εμναβFs,μνFαβ. (D39)

APPENDIX E: DERIVATION OF A PAIR OF
FERMI-ARC SURFACE STATES FOR INVERSION

SYMMETRY-BREAKING WEYL METALS

1. Valley Hall current

If we express the Hamiltonian in terms of γ μ
v matrices, we

have

HWM =
∫

d3x�̄(x)
[
iγ 1

v ∂1 + iγ 2
v ∂2 + iγ 3

v τ z∂3 − αγ 1
v γ 5

v

− k0γ
3
v + mτz

]
�(x)

=
∫

d3x�†(x)
[
iγ 0

v γ 1
v ∂1 + iγ 0

v γ 2
v ∂2 + iγ 0

v γ 3
v τ z∂3

−αγ 0
v γ 1

v γ 5
v − k0γ

0
v γ 3

v + mγ 0
v τ z

]
�(x), (E1)

where

γ 0
v = sxσ x, γ 1

v = −isy, γ 2
v = −isxσ z,

γ 3
v = −isxσ y, γ 5

v = −sz. (E2)

Here, we introduced a term mτzγ 0
v �†� that gives a mass to

each valley. Since this mass term preserves the time-reversal
symmetry, it is allowed.

The above Hamiltonian looks quite similar to the Hamilto-
nian of the broken time-reversal symmetry Weyl metal except
for the representation of gamma matrices. In this respect, we
may use the boundary solution of the broken time-reversal
symmetry Weyl metal in order to find that of the broken
inversion symmetry Weyl metal. Unfortunately, it is not much
straightforward to apply the case of the time-reversal symmetry
breaking to that of the inversion symmetry breaking directly
since the representations of gamma matrices are different from
each other. Therefore we perform the canonical transformation
to change the representation into Weyl one. Since the canonical
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transformation in the particle-number conserving system is
nothing but the unitary transformation, we have

H = �†H� = �†U †UHU †U� ≡ � ′†H ′� ′, (E3)

� ′ = U�, H ′ = UHU †. (E4)

Here, unitary matrix U should satisfy the following relations:

Uγ 0
v γ 1

v U † = γ 0γ 1, Uγ 0
v γ 2

v U † = γ 0γ 2, (E5)

Uγ 0
v γ 3

v U † = γ 0γ 3, Uγ 0
v γ 5

v U † = γ 0γ 5, (E6)

where γ 0 = (0 1
1 0

)
, γ k = ( 0 σ k

−σ k 0

)
, and γ 5 = iγ 0γ 1γ 2γ 3.

Then, the resulting unitary matrix U is given by

U = ησ 2 ⊗ 1 + s3

2
+ ξσ 3 ⊗ 1 − s3

2

=
(

ησ 2 0
0 ξσ 3

)
,

{
η∗η = 1
ξ ∗ξ = 1 , (E7)

where ηξ ∗ = i ans Uγ i
vU

† = γ i are satisfied.
Under this canonical transformation, we note that both

time-reversal symmetry and inversion symmetry operators are
changed as well:

P̃ = σ z ⊗ τ x → P̄ = Uσz ⊗ τ xU † = −σ z ⊗ sz ⊗ τ z, (E8)

T̃ = isy ⊗ τ xK → T̄ = Uisy ⊗ τ xKU †

= −ηξσ x ⊗ sy ⊗ τ xK. (E9)

Rewriting the Hamiltonian in terms of this Weyl represen-
tation of gamma matrices, we obtain

HWM =
∫

d3x� ′†(x)[iγ 0γ 1∂1 + iγ 0γ 2∂2 + iγ 0γ 3τ z∂3

−αγ 0γ 1γ 5 − k0γ
0γ 3 + mγ 0τ z]� ′(x), (E10)

where � ′(x) = U�(x). Since we do not take into account any
scattering terms between different valleys (τ z = 1 and τ z =
−1), τ z must be a good quantum number. As a result, we can
divide the above Hamiltonian into two sectors of τ z = 1 and
τ z = −1, given by

HWM = HWM,τ z=1 + HWM,τ z=−1, (E11)

HWM,τ z=±1 =
∫

d3x�
′†
±[iγ 0γ 1∂1 + iγ 0γ 2∂2 ± iγ 0γ 3∂3

−αθ (z)γ 0γ 1γ 5 − k0γ
0γ 3 ± mγ 0]� ′

±, (E12)

� ′
± = � ′

τ z=±1, � ′ =
(

� ′
τ z=+1

� ′
τ z=−1

)
. (E13)

In the above, we set α = αθ (z) to get a boundary solution at
the z = 0 plane. Then, the Dirac equation is also separated and
given by

Hsurfψ(x,y,z) = Eψ(x,y,z),

Hsurf = Hsurf,τ z=1 ⊕ Hsurf,τ z=−1 (E14)

⇒ ψ(x,y,z) =
(

ψτz=1

ψτz=−1

)
,

{
Hsurf,τ z=1ψτz=1 = E+ψτz=1,

Hsurf,τ z=−1ψτz=−1 = E−ψτz=−1.
(E15)

First, we consider
(i) τ z = 1

Hsurf,τ z=1ψτz=1 = E+ψτz=1, (E16)(−i �σ · ∇ − αθ (z)σ 1 + k0σ
3 m

m i �σ · ∇ − αθ (z)σ 1 − k0σ
3

)
×ψτz=1(x,y,z) = E+ψτz=1(x,y,z). (E17)

Since there are translational symmetries along the x and y axes,
we set ψτz=1(x,y,z) = eikxx+ikyyφτz=1,kx ,ky

(z) and obtain

(
σ 1(kx − αθ (z)) + σ 2ky + σ 3(−i∂z + k0) m

m −σ 1(kx + αθ (z)) − σ 2ky + σ 3(i∂z − k0)

)
φτz=1,kx ,ky

(z) = E+φτz=1,kx ,ky
(z).

(E18)

In order to solve this equation, we use the following ansatz:

φ+,kx ,ky
(z) = u+(z)

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠ + v+(z)

⎛
⎜⎝

0
0
1
−i

⎞
⎟⎠. (E19)

We note that both eigenstates have the eigenvalue −1 for γ 0γ 2.
Then, we obtain

(ikx − (iαθ (z) + i∂z − k0))u+(z) + mv+(z) = 0, (E20)

mu+(z) + (ikx + (iαθ (z) + i∂z − k0))v+(z) = 0, (E21)

E+ = ky (E22)

⇒
{

i(kx − ∂z)ũ+(z) + mṽ+(z) = 0

mũ+(z) + i(kx + ∂z)ṽ+(z) = 0
,

{
u+(z) = e−ik0z−αθ(z)zũ+(z)

v+(z) = e−ik0z−αθ(z)zṽ+(z)
(E23)

⇒ (
∂2
z − (

k2
x + m2

))
ũ+(z)/ṽ+(z) = 0 (E24)

⇒
⎧⎨
⎩

ũ+(z) = A1
+e−

√
k2
x+m2z + A2

+e
√

k2
x+m2z

ṽ+(z) = B1
+e−

√
k2
x+m2z + B2

+e
√

k2
x+m2z

. (E25)
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Boundary conditions for ũ+ and ṽ+ are given as follows:

lim
ε→0+

ũ+(ε)= lim
ε→0−

ũ+(ε), lim
ε→0+

ṽ+(ε)= lim
ε→0−

ṽ+(ε), (E26)

lim
ε→0+

ũ
′
+(ε)= lim

ε→0−
ũ

′
+(ε), lim

ε→0+
ṽ

′
+(ε)= lim

ε→0−
ṽ

′
+(ε), (E27)

where the prime symbol represents a derivative with resect to
the argument.

Considering the boundary conditions and normalizabil-
ity of the wave functions, we find

−
√

α2 − m2 < kx <
√

α2 − m2 (E28)

φ+,kx ,ky
(z) = A2

+e−ik0ze−αθ(z)ze
√

k2
x+m2z

⎛
⎜⎜⎜⎝

1
i

i m√
k2
x+m2+kx

m√
k2
x+m2+kx

⎞
⎟⎟⎟⎠ (E29)

|A2
+|2 = m2

m2 + (√
k2
x +m2−kx

)2

√
k2
x +m2

(
α−√

k2
x +m2

)
α

,

(E30)

E+ = ky. (E31)

Next, we consider
(ii) τ z = −1

Hsurf,τ z=−1ψτz=−1 = E−ψτz=−1 (E32)(−i �σ · ∇⊥ + iσ 3∂z − αθ (z)σ 1 + k0σ
3 −m

−m i �σ · ∇⊥ − iσ 3∂z − αθ (z)σ 1 − k0σ
3

)
ψτz=−1(x,y,z) = E−ψτz=−1(x,y,z). (E33)

Setting ψτz=−1(x,y,z) = eikxx+ikyyφτz=−1,kx ,ky
(z), we have(

σ 1(kx − αθ (z)) + σ 2ky + σ 3(i∂z + k0) −m

−m −σ 1(kx + αθ (z)) − σ 2ky + σ 3(−i∂z − k0)

)
×φτz=−1,kx ,ky

(z) = E−φτz=−1,kx ,ky
(z). (E34)

Now, we consider the ansatz of

φτz=−1,kx ,ky
(z) = u−(z)

⎛
⎜⎝

1
−i

0
0

⎞
⎟⎠ + v−(z)

⎛
⎜⎝

0
0
1
i

⎞
⎟⎠, (E35)

where both eigenstates have the eigenvalue 1 for γ 0γ 2. Then,
we obtain

(i∂z + k0 + iαθ (z) − ikx)u−(z) − mv−(z) = 0, (E36)

mu−(z) + (i∂z + k0 + iαθ (z) + ikx)v−(z) = 0, (E37)

E− = −ky (E38)

⇒
{
i(∂z − kx)ũ−(z) − mṽ−(z) = 0
mũ− + i(∂z + kx)ṽ−(z) = 0 ,

{
u(z) = eik0z−αθ(z)zũ−(z)
v(z) = eik0z−αθ(z)zṽ−(z)

(E39)

⇒ (
∂2
z − (

k2
x + m2

))
ũ−(z)/ṽ−(z) = 0 (E40)

⇒
{

ũ−(z) = A1
−e−

√
k2
x+m2z + A2

−e
√

k2
x+m2z

ṽ−(z) = B1
−e−

√
k2
x+m2z + B2

−e
√

k2
x+m2z

. (E41)

Considering the boundary conditions and normalizability of
the wave functions, we obtain

−
√

α2 − m2 < kx <
√

α2 − m2, (E42)

φ−,kx ,ky
(z) = A2

−eik0ze−αθ(z)ze
√

k2
x+m2z

⎛
⎜⎜⎜⎝

1
−i

i m√
k2
x+m2+kx

− m√
k2
x+m2+kx

⎞
⎟⎟⎟⎠,

(E43)

|A2
−|2 = m2

m2 + (√
k2
x + m2 − kx

)2

×
√

k2
x + m2

(
α − √

k2
x + m2

)
α

, (E44)

E− = −ky. (E45)

In summary, we find a pair of Fermi-arc surface states:

−
√

α2 − m2 < kx <
√

α2 − m2, (E46)

ψτz=1,kx ,ky
= A(kx)eikxxeikyye−ik0ze−αθ(z)ze

√
k2
x+m2z

×

⎛
⎜⎜⎝

1
i

C(kx)

−iC(kx)

⎞
⎟⎟⎠, E+ = ky, (E47)

ψτz=−1,kx ,ky
= A(kx)eikxxeikyyeik0ze−αθ(z)ze

√
k2
x+m2z

×

⎛
⎜⎝

1
−i

C(kx)
iC(kx)

⎞
⎟⎠, E− = −ky, (E48)

165201-19



IKSU JANG AND KI-SEOK KIM PHYSICAL REVIEW B 97, 165201 (2018)

|A(kx)|2 = m2

m2 + (√
k2
x + m2 − kx

)2

×
√

k2
x + m2

(
α − √

k2
x + m2

)
α

, (E49)

C(kx) = i
m√

k2
x + m2 + kx

, (E50)

where they are characterized by opposite chirality quantum
numbers given by

γ 0γ 2ψτz=1,kx ,ky
= −ψτz=1,kx ,ky

,

γ 0γ 2ψτz=−1,kx ,ky
= +ψτz=−1,kx ,ky

. (E51)

2. Spin Hall current

The effective Hamiltonian in the γ
μ
s representation is

HWM =
∫

d3x�†(x)
[
iγ 0

s γ 1
s sz∂x + iγ 0

s γ 2
s ∂y + iγ 0

s γ 3
s ∂z

+αγ 0
s γ 1

s + k0γ
0
s γ 3

s γ 5
s + mγ 0

s

]
�(x), (E52)

where

γ 0
s = σ zτ x, γ 1

s = iσ yτ x, γ 2
s = iσ xτ x,

γ 3
s = −iτ y, γ 5

s = −τ z. (E53)

Here, we also introduced a term mγ 0
s �†� that gives a mass

to to each spin sector. This mass term also respects the time-
reversal symmetry.

Following the previous section, we find the canonical
transformation

U = ησ 2 ⊗ 1 + τ 3

2
+ ξσ 1 ⊗ 1 − τ 3

2
=
(

ησ 2 0
0 ξσ 1

)
,

ηη∗ = ξξ ∗ = 1, (E54)

where η∗ξ = i and Uγ i
s U

† = γ i are satisfied.
Under this canonical transformation, both the time-reversal

symmetry and inversion symmetry operators are also changed

as follows:

P̃ = σ z ⊗ τ x → P̄ = Uσz ⊗ τ xU † = τ x, (E55)

T̃ = isy ⊗ τ xK → T̄ = Uisy ⊗ τ xKU †

= ηξsy ⊗ σ z ⊗ τ xK. (E56)

Now, we start from

HWM =
∫

d3x� ′†(x)[iγ 0γ 1sz∂x + iγ 0γ 2∂y + iγ 0γ 3∂z

+αγ 0γ 1 + k0γ
0γ 3γ 5 + mγ 0]� ′(x), (E57)

where � ′(x) = U�(x). Since we do not consider any scatter-
ing terms between different spin sections (sz =1 and sz =−1),
sz is a good quantum number. As a result, the above Hamil-
tonian is separated into two spin sectors with sz = 1 and
sz = −1:

HWM = HWM,sz=1 + HWM,sz=−1, (E58)

HWM,sz=±1 =
∫

d3x�
′†
±[±iγ 0γ 1∂x + iγ 0γ 2∂y + iγ 0γ 3∂z

+αγ 0γ 1 + k0θ (x)γ 0γ 3γ 5 + mγ 0]� ′
±, (E59)

� ′
± = � ′

sz=±1, � ′ =
(

� ′
sz=+1

� ′
sz=−1

)
. (E60)

Here, we set k0 = k0θ (x) to get a boundary solution at the
x = 0 plane. Accordingly, the Dirac equation is

Hsurfψ(x,y,z) = Eψ(x,y,z),

Hsurf = Hsurf,sz=1 ⊕ Hsurf,sz=−1 (E61)

⇒ ψ(x,y,z) =
(

ψsz=1

ψsz=−1

)
,

{
Hsurf,sz=1ψsz=1 = E+ψsz=1,

Hsurf,sz=−1ψsz=−1 = E−ψsz=−1
. (E62)

First, we consider
(i) sz = 1.

Hsurf,sz=1ψsz=1 = E+ψsz=1, (E63)(−i �σ · ∇ − ασ 1 + k0θ (x)σ 3 m

m i �σ · ∇ + ασ 1 + k0θ (x)σ 3

)
ψsz=1(x,y,z) = E+ψsz=1(x,y,z). (E64)

Since there are translational symmetries along the y and z axes, we set ψsz=1(x,y,z) = eikyy+ikzzφsz=1,ky ,kz
(x) and obtain(

σ 1(−i∂x − α) + σ 2ky + σ 3(kz + k0θ (x)) m

m σ 1(i∂x + α) − σ 2ky − σ 3(kz − k0θ (x))

)
φsz=1,ky ,kz

(x) = E+φsz=1,ky ,kz
(x). (E65)

Following the previous section, we use the ansatz of

φ+,ky ,kz
(x) = u+(x)

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠ + v+(x)

⎛
⎜⎝

0
0
1

−i

⎞
⎟⎠. (E66)
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Here, both eigenstates have the eigenvalue γ 0γ 2 = −1. Then, we obtain

(∂x − iα + k0θ (x) + kz)u+(x) + mv+(x) = 0, (E67)

mu+(x) + (∂x − iα + k0θ (x) − kz)v+(x) = 0, (E68)

E+ = ky (E69)

⇒
{

(∂x + kz)ũ+(x) + mṽ+(x) = 0
mũ+(x) + (∂x − kz)ṽ+(x) = 0 ,

{
u+(x) = eiαx−k0θ(x)xũ+(x)
v+(x) = eiαx−k0θ(x)x ṽ+(x)

(E70)

⇒ (
∂2
x − (

k2
z + m2

))
ũ+(x)/ṽ+(x) = 0 (E71)

⇒
{

ũ+(x) = A1
+e−

√
k2
z +m2x + A2

+e
√

k2
z +m2x

ṽ+(x) = B1
+e−

√
k2
z +m2x + B2

+e
√

k2
z +m2x

. (E72)

Considering the boundary conditions and normalizability of the wave functions, we find

−
√

k2
0 − m2 < kz <

√
k2

0 − m2, (E73)

φ+,ky ,kz
= A2

+eiαxe−k0θ(x)xe
√

k2
z +m2

⎛
⎜⎜⎜⎜⎝

1
i

− m√
k2
z +m2−kz

im√
k2
z +m2−kz

⎞
⎟⎟⎟⎟⎠, (E74)

E+ = ky. (E75)

Here, A2
+ is the same as that of the previous section.

Next, we consider
(ii) sz = −1.

Hsurf,sz=−1ψsz=−1 = E−ψsz=−1, (E76)(
iσ 1∂x − i �σ · ∇⊥ − ασ 1 + k0θ (x)σ 3 m

m −iσ 1∂x + i �σ · ∇⊥ + ασ 1 + k0θ (x)σ 3

)
ψsz=−1(x,y,z) = E−ψsz=−1(x,y,z). (E77)

Taking ψsz=−1(x,y,z) = eikyy+ikzzφsz=−1,ky ,kz
, we have(

σ 1(i∂x − α) + σ 2ky + σ 3(kz + k0θ (x)) m

m σ 1(−i∂x + α) − σ 2ky − σ 3(kz − k0θ (x))

)
φsz=−1,ky ,kz

(x) = E−φsz=−1,ky ,kz
(x).

(E78)

Now, the ansatz is

φsz=−1,ky ,kz
(x) = u−(x)

⎛
⎜⎝

1
−i

0
0

⎞
⎟⎠ + v−(x)

⎛
⎜⎝

0
0
1
i

⎞
⎟⎠, (E79)

where both eigenstates have the eigenvalue γ 0γ 2 = 1. As a result, we obtain

(∂x + iα + k0θ (x) + kz)u−(x) + mv−(x) = 0, (E80)

mu−(x) + (∂x + iα + k0θ (x) − kz) = 0, (E81)

E− = −ky (E82)

⇒
{

(∂x + kz)ũ−(x) + mṽ−(x) = 0

mũ−(x) + (∂x − kz)ṽ−(x) = 0
,

{
u−(x) = e−iαx−k0θ(x)xũ−(x)

v−(x) = e−iαx−k0θ(x)x ṽ−(x)
(E83)

⇒ (
∂2
x − (

k2
z + m2))ũ−(x)/ṽ−(x) = 0 (E84)

⇒
{
ũ−(x) = A1

−e−
√

k2
z +m2x + A2

−e
√

k2
z +m2x

ṽ−(x) = B1
−e−

√
k2
z +m2x + B2

−e
√

k2
z +m2x

. (E85)
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Considering the boundary conditions and normalizability of the wave functions, we find

−
√

k2
0 − m2 < kz <

√
k2

0 − m2, (E86)

φ−,ky ,kz
= A2

−eiαxe−k0θ(x)xe
√

k2
z +m2x

⎛
⎜⎜⎜⎜⎝

1

−i

− m√
k2
z +m2−kz

− im√
k2
z +m2−kz

⎞
⎟⎟⎟⎟⎠. (E87)

Here, A2
− is the same as that of the previous section.

In summary, we find a pair of Fermi-arc surface states

−
√

k2
0 − m2 < kz <

√
k2

0 − m2, (E88)

ψsz=1,ky ,kz
= A(kz)e

ikyy+ikzzeiαxe−k0θ(x)xe
√

k2
z +m2x

⎛
⎜⎜⎜⎝

1

i

C(kz)

−iC(kz)

⎞
⎟⎟⎟⎠, E+ = ky, (E89)

ψsz=−1,ky ,kz
= A(kz)e

ikyy+ikzzeiαxe−k0θ(x)xe
√

k2
z +m2x

⎛
⎜⎜⎜⎝

1

−i

−C(kz)

−iC(kz)

⎞
⎟⎟⎟⎠, E− = −ky, (E90)

C(kz) = m√
k2
z + m2 − kz

, (E91)

where they are characterized by opposite chirality quantum numbers given by

γ 0γ 2ψsz=1,ky ,kz
= −ψsz=1,ky ,kz

, γ 0γ 2ψsz=−1,ky ,kz
= +ψsz=−1,ky ,kz

. (E92)

APPENDIX F: CALCULATION OF THE ONE-LOOP QUANTUM CORRECTION TO THE U(1) SURFACE CURRENT
IN THE CASE OF INVERSION SYMMETRY-BREAKING WEYL METALS

1. Valley Hall current

Since we do not take into account any interactions between fields with different kx momentum, we will not include the
summation over kx from now on. Introducing the Pauli-Villars regularization field into the effective action, we start from the
following surface action

S =
∫

d2x[�̄(x)iγ μ(∂μ + iAμ + iVμγ̄ )�(x) + φ̄(x)iγ μ(∂μ + iAμ + iVμγ̄ )φ(x) + φ̄(x)Mφ(x)]. (F1)

If we consider the valley gauge transformation of φ̄(x) and φ(x) like that of �̄(x) and �(x), the mass term breaks the valley
gauge symmetry explicitly.

Under the Fourier transformations

�(x) =
∫

d2k

(2π )2
e−ik·x�(x), �̄(x) =

∫
d2k

(2π )2
eik·x�̄(k), (F2)

φ(x) =
∫

d2k

(2π )2
e−ik·xφ(x), φ̄(x) =

∫
d2k

(2π )2
eik·xφ̄(k), (F3)

Aμ(q) =
∫

d2xeiq·xAμ(x), Vμ(q) =
∫

d2xeiq·xAμ(x), (F4)

we obtain

S =
∫

d2k

(2π )2

[
�̄(k)/k�(k) + φ̄(k)(/k + M)φ(k) −

∫
d2q

(2π )2
(�̄(k + q) /A(q)P+�(k) + φ̄(k + q) /A(q)P+φ(k))

−
∫

d2q

(2π )2
(�̄(k + q) /V (q)γ̄ �(k) + φ̄(k + q) /V (q)γ̄ φ(k))

]
, (F5)
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where both Green’s functions are

G(k) = 〈�(k)�̄(k)〉 = /k

k2
, G̃(k) = 〈φ(k)φ̄(k)〉 = /k − M

k2 − M2
. (F6)

The valley current of

jμ
v (q) =

∫
d2xe−iq·xjμ

v (x) =
∫

d2xe−iq·x�̄(x)γ μγ̄�(x) =
∫

d2k

(2π )2
�̄(k + q)γ μγ̄�(k) (F7)

is regularized as

jμ
reg(q) =

∫
d2k

(2π )2
[�̄(k + q)γ μγ̄�(k) + φ̄(k + q)γ μγ̄ φ(k)]. (F8)

Up to the one-loop order, there are two contributions from Aμ and Vμ, respectively, in the following way:

〈
jμ

reg(q)
〉 =

∫
d2k

(2π )2
[−tr(G(k)γ μγ̄G(k + q)γ ν) + tr(G̃(k)γ μγ̄ G̃(k + q)γ ν)]Aν(−q)

+
∫

d2k

(2π )2
[tr(G(k)γ μγ̄G(k + q)γ νγ̄ ) − tr(G̃(k)γ μγ̄ G̃(k + q)γ νγ̄ )]Vν(−q). (F9)

As a result, we find

∴
〈
jμ

reg(q)
〉 = ∑

ν

[
i
(
εμν

(
q2

μ − q2
ν

) + 2δμν

∑
α εαμqμqα

)
2πq2

− i

2π
εμν

]
Aν(−q) +

∑
ν

qμqν

πq2
Vν(−q) (F10)

⇒ qμ

〈
jμ

reg(q)
〉 = ∑

μ,ν

[
i

2πq2

(
εμνqμ

(
q2

μ − q2
ν

) + 2qμδμν

∑
α

εαμqμqα

)
− i

2π
εμνqμ

]
Aν(−q) +

∑
ν

1

π
qνVν(−q)

= i

2π

∑
μ,ν

[
εμνqμ

(
q2

μ + q2
ν

)/
q2 − εμνqμ

]
Aν(−q) +

∑
ν

2

π
qνVν(−q) = − i

π

∑
μ,ν

εμνqμAν(−q) +
∑

ν

1

π
qνVν(−q). (F11)

If we ignore the contribution from the Vν field considering that it is a fictitious gauge field, we obtain the anomaly

qμ

〈
jμ

reg(q)
〉 = − i

π

∑
μ,ν

εμνqμAν(−q) (F12)

⇒ ∂μ

〈
jμ

reg(x)
〉 = − i

π
εμν∂μAν(x) = − i

2π
εμνFμν(x). (F13)

One can show that this anomaly is canceled by the anomaly inflow of the bulk, considering

δηW [V,A] ≡ W [V + dη,A] − W [V,A] =
∫

d2x∂μη(x)
δW

δVμ

=
∫

d2x∂μη(x)jμ
v (x)

= −
∫

d2xη(x)∂μjμ
v (x) = i

2π

∫
d2xη(x)εμνFμν(x). (F14)

2. Spin Hall current

Since we do not take into account any interactions between fields with different kz momentum, we will not include the
summation over kz from now on. Introducing the Pauli-Villars regularization field into the effective action, we start from the
following surface action:

S =
∫

d2x[�̄(x)iγ μ(∂μ + iAμ − iSμγ̄ )�(x) + φ̄(x)iγ μ(∂μ + iAμ − iSμγ̄ )φ(x) + φ̄(x)Mφ(x)]. (F15)

If we consider the spin gauge transformation of φ̄(x) and φ(x) like that of �̄(x) and �(x), the mass term breaks the spin gauge
symmetry explicitly. Since the form of action is completely same as that of valley Hall case except for that Vμ is changed to Sμ,
all calculation is same. Therefore we give only the result here:

δηW [S,A] = − i

2π

∫
d2xη(x)εμνFμν(x). (F16)
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FIG. 7. (a) Position of four Weyl points in kx − ky plane; color (red, blue) refers the chiral charge (+1,−1) of each Weyl fermion, (b) Two
pairs of Weyl points classified according to eigen value of sz, (c) Two pairs of Weyl point classified according to eigen value of τz.

APPENDIX G: GENERALIZATION FOR THE EXISTENCE OF TWO DIFFERENT REGULARIZATION
SCHEMES IN BROKEN INVERSION SYMMETRY WEYL METALS

Consider a Hamiltonian that has four Weyl points, shown in Fig. 7, for example. In the diagonalized basis, we obtain

H =
∑

k

�†(k)diag(−Ekx0,ky0 ,Ekx0,ky0 , − E−kx0,ky0 ,E−kx0,ky0 , − Ekx0,−ky0 ,Ekx0,−ky0 , − E−kx0,−ky0 ,E−kx0,−ky0 )�(k)

≡
∑

k

�†(k)H (k)�(k), (G1)

where E±kx0,±ky0 = √
(kx ∓ kx0)2 + (ky ∓ ky0)2 + k2

z . This diagonalized Hamiltonian commutes with two matrices; Osz
and Oτz

given by

Osz
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Oτz
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G2)

Here, τ and s do not mean the valley and spin necessarily but denote two different quantum numbers.
One can find that these different two observables turn out to commute with the Hamiltonian for any broken inversion symmetry

Weyl metals. If we classify the energy bands according to the eigenvalues of Oτz
and Osz

, we find

sz = 1: diag(−Ekx0,ky0 ,Ekx0,ky0 ,−E−kx0,ky0 ,E−kx0,ky0 )

sz = −1: diag(−Ekx0,−ky0 ,Ekx0,−ky0 ,−E−kx0,−ky0 ,E−kx0,−ky0 ), (G3)

τz = 1: diag(−Ekx0,ky0 ,Ekx0,ky0 ,−Ekx0,−ky0 ,Ekx0,−ky0 )

τz = −1: diag(−E−kx0,ky0 ,E−kx0,ky0 ,−E−kx0,−ky0 ,E−kx0,−ky0 ). (G4)

Each sector is composed of two Weyl points.
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For one sz sector, one can apply the unitary transformation to the Hamiltonian which gives the following transformed one:

H̃ (k) =
(

H̃sz=1(k) 0

0 H̃sz=−1

)
= Usz

(k)H (k)U †
sz

(k), Usz
=
(

Usz=1|4×4 0

0 Usz=−1|4×4

)
, (G5)

H̃sz
(k) = −iγ 0(γ 1kx + γ 2(ky − szky0) + γ 3kz − szγ

1γ 5kx0), (G6)

where γ 0 = (0 1
1 0

)
, γ i = i

( 0 −σ i

σ i 0

)
with i = 1,2,3, which satisfy {γ μ,γ ν} = 2δμν14×4 and γ 5 = −γ0γ1γ2γ3 = (1 0

0 −1

)
. Here,

σ i represent Pauli matrices. The representation of gamma matrices is the Weyl one in the Euclidean signature. One can always
find the unitary transformation Usz

which gives gamma matrices in this Weyl representation. Since we changed the basis by the
unitary transformation, we need to change the representation ofOsz

andOτz
coherently, Õi = Usz

OiU
†
sz

. Recall thatOsz
commutes

with Usz
, and thus the representation of Osz

is not changed, Õsz
= Osz

. How about the representation of Oτz
? Interestingly, Õτz

is

also the same as Oτz
; Õτz

= Oτz
. This can be verified easily. An important point is that Õτz

= (
γ 5 0
0 γ 5

) = γ 5 ⊗ 1τ . As a result,

the transformation eiÕτz θ becomes anomalous in this representation (chiral anomaly).
There can exist other representations of gamma matrices even though the Hamiltonian H̃ (k) is the same. If we denote another

representation of gamma matrices as γ̄ μ, it should satisfy the following properties:

γ 0γ i = γ̄ 0γ̄ i (i = 1,2,3), {γ̄ μ,γ̄ ν} = 2δμν14×4, (G7)

γ̄ 5 = −γ̄ 0γ̄ 1γ̄ 2γ̄ 3. (G8)

From the properties of γ 0γ i = γ̄ 0γ̄ i and {γ̄ μ,γ̄ ν} = 2δμν14×4, one can find the following identity: γ̄ 5 = γ 5. Therefore we obtain
Õτz

= γ 5 ⊗ 1τ = γ̄ 5 ⊗ 1τ . As a result, any Õτz
related transformation is still anomalous in any other representations. One may

consider additional unitary transformations such as Ũsz
(k); ˜̃H (k) = Ũsz

(k)H̃ (k)Ũsz
(k). Even in this case, ˜̃Oτz

is still anomalous
since antiunitary relation is preserved under the unitary transformation. Therefore we conclude that if we choose gamma matrices
which commute withOsz

,Oτz
should be proportional γ 5. This is also true for the opposite case: if we choose γ matrices commuting

with Oτz
, then Osz

is proportional to γ 5, which should be anomalous. In our specific model for broken inversion symmetry Weyl
metals, τ and s correspond to valley and spin, respectively.
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