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Time-dependent generalized Gibbs ensembles in open quantum systems
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Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable
many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically
that they can be used for a much broader class of problems. We consider integrable systems in the presence of
weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these
conditions, we show that the steady state and the time evolution on long timescales can be accurately described
by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple
rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a
theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs
ensemble containing only a small number of approximately conserved quantities, using the one-dimensional
Heisenberg model with perturbations described by Lindblad operators as an example.
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I. INTRODUCTION

In recent years, the thermalization of closed quantum
systems has been intensively studied [1–3]. A typical setup is
the quantum quench: a system, initialized in the ground state of
a Hamiltonian Hi , undergoes a nonequilibrium dynamics due
to evolution with another Hamiltonian Hf . In the long-time
limit, generic ergodic many-particle systems are expected [4]
to reach a thermal Gibbs state ρ ∼ e−βHf . The approach to this
state can, however, be slow and is generically characterized by
power laws [5–7].

In contrast, in integrable systems the existence of macro-
scopically many local conserved quantities restricts the dy-
namics and prohibits conventional thermalization [8–11]. It
has, however, been conjectured [12] that generalized Gibbs
ensembles (GGEs) provide an accurate thermodynamic de-
scription of steady states in this case, at least for local
observables. For each (quasi)local conserved quantity, a La-
grange parameter is introduced, generalizing the concept of
temperature or chemical potential. The Lagrange parameters
are thereby determined from the value of conserved quantities
in the initial state. Exact local equivalence of GGEs and
diagonal ensembles can be proven only after a complete set
of local conserved quantities is included into the GGE, and
is for noninteracting models equivalent to including all mode
occupation numbers [12,13]. For the Heisenberg model, as a
prototypical interacting quantum integrable model, quenches
were first studied by [14,15]. A vast improvement in agreement
has been achieved [16] only after the discovery of additional
quasilocal conserved quantities [17–19], by systematically
including families of quasilocal conservation laws. Using
the quenched action approach [20,21], it was possible to
demonstrate that GGEs indeed describe the steady state at
least for certain initial conditions [22–26]. It has also been
suggested that convergent approximations to the steady state
are obtained when more and more conservation laws are
included [27].

Using ultracold atoms, integrable models can be realized
with such a high precision, that one can neglect integrability
breaking terms at least up to some time [28–31]. In spectacular
experiments, Langen et al. [32] succeeded to demonstrate
that a truncated GGE can describe high-order steady-state
correlation functions of an interacting Bose gas after a quench
with a high precision. Integrability breaking perturbations can
also be controllably tuned [33] to display the crossover from
integrable dynamics to thermalization.

In condensed matter systems, for example, one can realize
approximately integrable systems in spin-chain materials. In
this case, however, one cannot neglect integrability breaking
terms arising, e.g., from phonons, intrachain coupling, or other
terms not described by simple spin- 1

2 one-dimensional Heisen-
berg model. Due to the proximity to integrable points, the heat
conductivity in such systems can be strongly enhanced [34,35],
but the steady state is expected to become thermal after a quan-
tum quench. Nevertheless, it was shown that a static weak inte-
grability breaking induces thermalization only on the longest
timescale [36–43], while the transient dynamics dwells on the
so-called prethermal plateaus [44,45] that can be described by
a GGE with Lagrange multipliers fixed by the initial state using
approximately conserved quantities, possibly perturbatively
readjusted according to the weak integrability breaking [46].

After a quantum quench, all exotic conserved quantities
decay in the presence of integrability breaking perturbation.
The situation is completely different for another class of
problems: (weakly) driven systems. These are systems where
time-dependent perturbations or the coupling to nonthermal
reservoirs drive the system towards a nonequilibrium state.
For example, we considered in Ref. [47] the coupling of a spin
chain to laser light and phonons. In this case, the decay of con-
served quantities due to integrability breaking can be balanced
by gain terms arising from the driving terms. Generically, a
macroscopic set of approximate conservation laws is activated
despite the presence of integrability breaking. Contrary to the
case of quench problems, the value of the conserved quantities
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in the steady state is not determined by initial conditions but
by the balance of driving terms, the coupling to thermal and
nonthermal baths, and other integrability breaking terms. We
argued in [47] that the resulting states are far from equilibrium
and one can use a GGE to describe them quantitatively as long
as all driving and integrability breaking terms are weak. These
ideas lead to realization of novel spin or heat pumps.

The main goal of this paper is to demonstrate numerically
that GGEs with time-dependent Lagrange parameters accu-
rately describe both the time evolution and the steady state of
weakly driven approximately integrable many-particle quan-
tum systems. As an example, we chose a one-dimensional spin-
1
2 Heisenberg model coupled to a nonthermal bath described
by Lindblad operators. We have chosen this model because it
is better suited for numerical analysis compared to the much
more complicated case considered in Ref. [47]. Our approach
based on time-dependent GGEs covers both the physics of
prethermalization and the relaxation towards a steady state,
potentially far from thermal equilibrium. The concept of time-
dependent GGE has been suggested earlier, to our knowledge
in Refs. [3,38,48,49]. Reference [38] uses it only implicitly
while constructing an effective quantum Boltzmann equa-
tion that captures prethermal-to-thermal regime for weakly
interacting systems (a Boltzmann equation was also analyzed
by us in Refs. [50,51]). Reference [48] addresses quenches
from superintegrable (containing additional symmetries) to
post-quench noninteracting integrable models (that weakly
break those symmetries). Observed prethermalization and
subsequent equilibration to a GGE spanned by the conservation
laws of the final model was also captured by a time-dependent
GGE. Unlike in our setup, in this case integrability is preserved
throughout the whole evolution and the time dependence arises
because the additional symmetries do not commute with the
local conserved quantities of the final Hamiltonian. A similar
condition also applies for [49], which studied weakly inter-
acting integrable models with and without weak integrability
breaking and showed that mean-field equation capture the
dynamics at intermediate times. Reference [3] suggests to use
time-dependent GGEs to describe the relaxation of a system
with integrability breaking terms towards thermal equilibrium.
Similar to our approach, they argue that one should track the
equation of motion of approximately conserved quantities to
describe equilibration.

In the following, we will first introduce our model, a
Heisenberg model with small perturbations described by Lind-
blad operators. Then, we derive equations of motion for a
time-dependent GGE and similar equations for block-diagonal
density matrices. We then compare three types of approaches:
the exact evolution of the density matrix, an approximate time
evolution in the subspace of block-diagonal density matrices,
and the evolution described by truncated GGEs.

II. MODEL

We consider the one-dimensional spin- 1
2 Heisenberg model

H0 = J
∑

j

Sj · Sj+1, (1)

arguably the most studied integrable system. In [47] we
investigated the case where a Heisenberg model was coupled

to Hamiltonian perturbations arising from phonons and os-
cillating fields. This situation is, however, too complicated
for a detailed numerical study on the validity of GGEs.
Therefore, we consider a numerically more tractable case and
describe the (weak) integrability breaking by the coupling
to nonequilibrium Markovian baths described by Lindblad
dissipators D̂(i) acting on the density matrix ρ prepared at time
t = 0 in ρ(0):

∂tρ = (L̂0 + L̂1) ρ,

L̂0ρ = −i[H0,ρ], L̂1ρ = ε((1 − γ )D̂(1) + γ D̂(2))ρ (2)

with

D̂(i) = J
∑

k

(
L

(i)
k ρL

(i)
k

† − 1

2

{
L

(i)
k

†
L

(i)
k ,ρ

})
, (3)

where Lk are so-called Lindblad operators and the prefactor
J has been included to obtain a dimensionless ε. As Lindblad
operators we chose

L
(1)
k = Sz

k and L
(2)
k = 1

2 (S+
k S−

k+1 + iS−
k+1S

+
k+2). (4)

L
(1)
k represents dephasing and, considered alone, heats up the

system to an infinite temperature state. L
(2)
k has been chosen

to break all relevant symmetries (up to Sz conservation) as we
want to study below the generation of heat currents. It also
provides a cooling mechanism. We have checked that similar
agreement is also obtained for other Lindblad operators. Our
analysis will be performed as a function of the relative strength
of both terms, γ ∈ [0,1]. Using the conservation of the total
magnetization Sz, we study in the following only the sector
with Sz = 0.

III. TIME-DEPENDENT GENERALIZED
GIBBS ENSEMBLES

The main goal of our paper is to provide numerical evidence
for the following claim: The time evolution of a translationally
invariant integrable many-particle system in the presence
of weak integrability breaking perturbation is generically
described by a time-dependent generalized Gibbs ensemble
[3,38,48,49]

lim
ε→0

ρ(t)
loc= ρGGE(t) for t = 1

εJ
τ,

ρGGE(t) = e− ∑
i λi (t)Ci

Tr[e−∑
i λi (t)Ci ]

, (5)

where Ci are the (quasi)local conservation laws of the inte-
grable system [19,52]. Equation (5) holds only in the thermody-

namic limit and the
loc= symbol is used to indicate that it applies

only to local observables A for which limε→0 Tr[Aρ(t)] =
Tr[AρGGE(t)]. We assume that starting from an arbitrary local
initial state ρ(0) (having cluster decomposition property [8])
the dynamics is switched on at t = 0. We introduce the dimen-
sionless time τ > 0 to indicate that the the time-dependent
description (5) applies only for times t of the order of 1/ε and
larger. The λj (t) are determined from Eq. (7) derived below.
For the validity of Eq. (5) we furthermore demand that Eq. (7)
is well behaved, leading to a unique steady state (see below).
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In the limit τ � 1 (with τ/ε � 1 such that t � 1/J ),
the effect of the Lindblad perturbation can be ignored and
one recovers the standard quench problem for an integrable
system, for which the emergence of a GGE has been firmly
established (see, e.g., [16]). The initial values Tr[Ci ρ(0)]
determine the value of the initial Lagrange parameters λj (τ →
0), Tr[Ci ρ(0)]

!=Tr[Ci ρGGE(τ → 0)]. The symbol
!= stands for

“must be equal.” This regime is closely associated to the so-
called prethermalization plateau, where approximate conser-
vation laws fix a transient state before perturbations set in (see,
e.g., [36]). The dynamics for τ > 0 is the focus of our study.

The dynamics of the Lagrange parameters is obtained by
demanding that

Tr[Ci ρ̇(t)]
!= Tr[Ci ρ̇GGE(t)] (6)

up to corrections which vanish for small ε. Ap-
proximating on the left-hand side of the equation
ρ̇ = (L̂0 + L̂1)ρ ≈ (L̂0 + L̂1)ρGGE = L̂1ρGGE and using
ρ̇GGE(t) = −∑

j λ̇j ρGGE(t) (Cj − 〈Cj 〉GGE) with 〈A〉GGE =
Tr[AρGGE(t)] on the right-hand side, one obtains a simple
differential equation

λ̇i = Fi(t), (7)

where the generalized forces Fi(t) are functions of λj (t)
obtained from

Fi(t) ≈ −
∑

j

(
χ (t)−1)

ij
Tr[Cj L̂1ρGGE(t)]

= −
∑

j

(χ−1)ij 〈Ċj 〉GGE,

χij (t) = 〈CiCj 〉GGE − 〈Ci〉GGE〈Cj 〉GGE. (8)

Note that the forces Fi are of order ε [correction to Eq. (7)
are of order ε2]. Therefore, the time evolution after the initial
prethermalization is slow and set by a timescale of order 1/ε.
More precisely, this is valid for perturbations of the Lindblad
type studied in this paper. For Hamiltonian perturbations, the
linear order perturbation theory vanishes. As is well known
from Fermi’s golden rule, transition rates arise only in second-
order perturbation theory. The formulas given above can easily
be generalized to this case (see Methods section of Ref. [47]).

An alternative, slightly more formal derivation of Eq. (7)
is obtained by setting ρ(t) = ρGGE(t) + δρ(t) where ρGGE(t)
has to be chosen in such a way that δρ ∼ ε vanishes in the
limit ε → 0. The essential idea is now to separate the slow
dynamics within the GGE manifold arising from L̂1 ∼ ε from
the fast dynamics in the perpendicular space. One therefore
introduces a projection operator [51,53–57]

P̂ (t)X := −
∑
i,j

∂ρGGE(t)

∂λi

(
χ (t)−1)

ij
Tr[CjX] (9)

which projects density matrices onto the space tangential to
the GGE manifold, spanned by ∂ρGGE(t)/∂λi . We apply P̂ (t)
to Eq. (2) and use that P̂ (t)ρ̇GGE(t) = ρ̇GGE(t), L̂0ρGGE =
0, P̂ (t)L̂0δρ = 0, and L̂1δρ ∼ ε2. From this we obtain

P̂ (t)δρ̇ + ρ̇GGE = P̂ (t)L̂1ρGGE + O(ε2). (10)

Demanding that P̂ (t)δρ̇ is of order ε2 leads to ρ̇GGE =
P̂ (t)L̂1ρGGE which is equivalent to Eq. (7).

The arguments given above strongly suggest that the GGE
ansatz fulfills the time-evolution equation (2) projected on the
conservation laws up to corrections of order ε2. This does,
however, not yet guarantee the validity of the much stronger
claim that the time-dependent GGE is also valid in the long-
time limit. For this we have to demand that errors do not pile
up during time evolution but decay exponentially. This is the
case in situations where Eq. (7) predicts a unique and stable
steady state (see Appendix B). In all examples considered by
us so far, we have never found that this condition is violated.

We will show that in practical implementations it is not
necessary to take all O(N ) (quasi)local conservation laws
into account. Accurate results can already be obtained for
a truncated GGE (tGGE), including only a small number of
approximately conserved quantities and Lagrange parameters.

IV. TIME-DEPENDENT BLOCK-DIAGONAL
DENSITY MATRICES

The GGE approach is only valid in the thermodynamic limit
where the (quasi)local approximately conserved Ci determine
the dynamics. For smaller systems, one has, however, to take
into account that the set of conservation laws of H0 is much
larger, and given by Q = {|n〉〈m| with E0

n = E0
m} where |n〉

and |m〉 are eigenstates of H0 with the same energy. Note that
the elements of Q are in general noncommuting and highly
nonlocal operators. In the limit of small ε, one can, however,
derive the dynamics in the space spanned by the elements ofQ.
Such approaches are well described in literature [57] and we
briefly sketch the relevant formulas, emphasizing the analogy
to the GGE approach.

The role of the GGE density matrix is taken over by the
block-diagonal density matrix

ρBD(t) =
∑

En=Em

λnm(t) |n〉〈m| (11)

with normalization
∑

n λnn = 1. In analogy to Eq. (6), we

demand that Tr[|m〉〈n| ρ̇(t)]
!= Tr[|m〉〈n| ρ̇BD(t)] up to correc-

tions vanishing for ε → 0. Using ρ̇(t) ≈ L̂1ρBD(t), we obtain
a linear differential equation for λnm(t):

λ̇nm(t) =
∑

En′=Em′

Mnm,n′m′ λn′m′ (t), (12)

where M is an effective Liouvillian acting on the space of
block-diagonal density matrices (En = Em,En′ = Em′ )

Mnm,n′m′ = Tr[ |m〉〈n| L̂1 |n′〉〈m′| ]. (13)

M is linear in ε and therefore all ε dependence can be absorbed
in a rescaling of the time axis within this approximation
which is valid only for small ε and covers the dynamics after
prethermalization. The initial condition for the time evolution
is simply set by λnm(0) = 〈n|ρ(0)|m〉.

Compared to the GGE approach which uses only a few
(maximally O(N )) Lagrange parameters, the block-diagonal
matrix uses O(2N ) parameters and is therefore much less effi-
cient. For N = 14 and Sz = 0 we have to use 6752 parameters.
The block-diagonal approach is, however, numerically much
more efficient than an approach using the full density matrix
which has O(4N ) parameters.
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V. NUMERICAL RESULTS

To test the validity of the GGE approach, we have to
face the problem that the GGE approach is only valid in
the thermodynamic limit while the exact results for driven
nonequilibrium systems at finite ε can only be obtained for tiny
systems. We therefore use the following two-step approach:
We first show numerically that for small systems (N = 8)
the numerically exact results obtained from the exact time-
dependent density matrices for small ε are well described
by time-dependent block-diagonal density matrices. We then
compare for larger systems (up to N = 14) the block-diagonal
density matrices to truncated GGEs based on only a small
number of approximately conserved quantities.

A. Time evolution for small systems

As an initial state, we consider a classical Néel configuration
|ψN 〉, ρ(0) = |ψN 〉〈ψN |. In Fig. 1 we show the time evolution
of the nearest-neighbor spin correlation 〈σ z

i σ z
i+1〉 and of the

FIG. 1. Exact time evolution of a weakly perturbed Heisenberg
model (N = 8, γ = 0.8, J = 1) for three small values of ε. The
dashed lines show the result for the time evolution of the block-
diagonal density matrix using Eqs. (11) and (12). (a) Decay of the
nearest-neighbor spin correlation. (b) For the heat current, rapid
oscillations on a timescale of order 1/J = 1 are absent as JH is
a conservation law of H0. For the values of ε shown in the plot,
the dashed lines follow the solid lines: the block-diagonal density
matrices correctly describe the time evolution with high precision.
Inset: at large ε = 1.0, discrepancies are visible.

heat current,

JH = J 2
∑

j

(Sj × Sj+1) · Sj+2 (14)

for a small system with N = 8 sites. We compare the nu-
merically exact results, calculated from the exact density
matrix evolution, to the approximate results based on the
block-diagonal density matrix. Starting from 1 at t = 0 the
spin correlation rapidly decays on a timescale of order 1/J =
1 to a value around −0.45. Due to the smallness of the
system, rapid oscillations persist and are only slowly damped.
Subsequently, both the average value of the spin correlation
and the oscillations decay on a timescale set by 1/ε. The block-
diagonal density matrix correctly captures the decay of the spin
correlations quantitatively. The time dependence of the heat
current, in contrast, is much smoother as the heat current is a
conserved quantity [JH ,H0] = 0. The expectation value of the
heat current in the initial state is zero, however, a large current
builds up on a timescale set by 1/ε. The heat current obtained
in the long-time limit is large and the system is therefore far out
of equilibrium. Its value is approximately independent of ε for
small ε and is predicted by the time-dependent block-diagonal
density matrices and the GGE approach (see below). The
main result of this section is, however, that for small ε the
time evolution for times large compared to 1/J is accurately
described by the block-diagonal ensemble.

B. Time evolution of truncated GGE

For a system with N = 14 sites, we compare in Fig. 2 the
time evolution of the block-diagonal ensemble with the results
obtained for a truncated GGE based on only Nc = 4 conserved
quantities C2, . . . ,C5, where C2 = H0 is the Hamiltonian,
C3 = JH is the heat current, andC4 = [Ob,C3], C5 = [Ob,C4]
are conservation laws constructed as a sum of operators with
maximal nontrivial support on four and five sites, respectively.
Here, Ob = −i

∑
j j Sj · Sj+1 is the so-called boost operator

[52]. C1 = Sz, the total spin in z direction, does not play a
role in our study which focuses on the Sz = 0 sector. The
heat current operators C3 and C5 have the same symmetry
properties. Despite of the rather small system size, the small
number of conservation laws and the omission of quasilocal
conservation laws [17,19], a surprisingly accurate description
of the time evolution is obtained. Note that the block-diagonal
matrix approach keeps track of 6752 approximately conserved
quantities to be compared to just 4 approximately conserved
quantities in the truncated GGE.

The largest discrepancies are visible for the spin-spin corre-
lation function at t = 0. Note that this limit is completely inde-
pendent of the integrability breaking perturbations. It only tests
whether diagonal ensemble and GGE coincide after a quantum
quench of the pure Heisenberg model. It therefore tests the
ability of the GGE to describe the steady state after a quantum
quench in an integrable system. Many previous numerical and
analytical studies have shown that for this problem the GGE
approach applies, e.g., [16,23,26]. It is important to note that
using our tGGE with only four Ci a stronger disagreement for
less local observables, i.e., 〈σ z

i σ z
j 〉with |i − j | > 1, is expected

at all times. Systematic improvement would be achieved by
including further (quasi)local conservation laws, however, on
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FIG. 2. Comparison of the results obtained from the truncated
GGE (solid line) and the block-diagonal density matrix (dashed
line). (a) Antiferromagnetic nearest-neighbor spin correlations.
(b) Approximate conservation laws C5,−JH ,−H0, and (2/3)C4. All
quantities change on a timescale of order 1/ε. Parameters: γ =
0.8, J = 1, N = 14.

small systems accessible by our approach this yields severe
finite-size effects.

The lower panel of Fig. 2 shows the time evolution of
the conserved quantities. In this case, by construction the
value at t = 0 are the same for the truncated GGE and the
block-diagonal approach. All conserved quantities change on
timescales of order 1/ε compared to their prethermalized value
and show an exponential decay towards their steady-state
value. Note that features like the small overshooting of C5

at intermediate times are well reproduced by the numerical
approach.

The agreement obtained for γ = 0.8 in Fig. 2 is also
observed for other values of the parameter γ controlling the
nature of the dissipative terms. This is shown in Fig. 3, where
the steady-state value of the conservation laws is shown as
function of γ . The largest deviations are visible for γ close to 1.

C. Finite-size, finite-ε, and truncation effects

Formally, the description of the driven many-particle quan-
tum system by a time-dependent GGE is only accurate in the
limit of weak perturbations ε → 0 for large systems N → ∞,
and taking all (quasi)local conservation laws into account
Nc → ∞. The results presented above already suggest that
one can, nevertheless, obtain surprisingly accurate results for
moderate values of ε, rather small system sizes and a tiny
number of conservation laws.

FIG. 3. Expectation values of conservation laws in the stationary
state (t → ∞) as a function of γ , which controls the nature of the
dissipative terms (N = 14, J = 1). As in Fig. 2, a comparison of
the truncated GGE (solid lines) the block-diagonal density matrix
(dashed) is shown. For γ = 0, the system heats up to infinite
temperature and all conservation laws vanish in the thermodynamic
limit. Due to finite-size effects, small finite values are obtained from
H and C4.

In Fig. 4 the expectation value of the energy density and the
heat current in the steady state (t → ∞) are shown as function
of 1/N for the exact density matrix, for the block-diagonal
ensemble (exact for ε → 0) and for two truncated GGEs with
Nc = 2 and 4. One clearly sees that in the thermodynamic limit,
the truncated GGEs become more and more accurate. Already
for the largest system (N = 14) for which we were able to
evaluate the block-diagonal ensemble, a satisfactory agreement
is obtained. Also, Nc = 4 is more accurate than Nc = 2 but
the errors arising from finite-size effects are dominating.
We are therefore not showing results for larger values of Nc as
those are spoiled by finite-size effects which tend to become
more severe for more complicated approximate conservation
laws.

The effects of finite ε for steady-state expectation values are
displayed in Fig. 5 for N = 8. We find that the ε dependence
of the steady state is not strongly pronounced and is described

FIG. 4. Steady-state expectation value of the energy 〈H0〉 and the
heat current 〈JH 〉 as function of the inverse system size 1/N (N =
6,8,10,12,14), for the truncated GGE with 2 and 4 conservation laws
and the block-diagonal ensemble. For the smallest system size N =
6,8, we also show the exact results for ε = 0.01, which practically
coincides with the block-diagonal ensemble, and for ε = 1.0 (γ = 1).
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FIG. 5. Steady-state expectation value of the energy 〈H0〉 and the
heat current 〈JH 〉 as function of the strength ε of the integrability
breaking Lindblad terms (N = 8, J = 1, γ = 1). For ε → 0, the
result of the block-diagonal ensemble (dashed line) is recovered.

by a smooth function. In the ε → 0 limit, the block-diagonal
ensemble is exact (as expected from the analytical arguments).
It also captures with high accuracy the properties for small ε.

The results obtained in the limit ε → 0 can be system-
atically improved using perturbation theory in ε, developed
for the steady state in Ref. [51]. Here, it is important to
distinguish the perturbation theory for finite-size systems (ε
smaller than the dimensionless level spacing 1/N or even
2−N ) from the perturbation theory in the thermodynamic limit
(1/N � ε � 1). The numerical results show indeed a different
behavior in the regime ε � 0.1 and 0.1 � ε � 1, but the system
size is too small to extract reliable results for the perturbation
theory in the thermodynamic limit. A more detailed discussion
of this issue can be found in Appendix A.

VI. CONCLUSION AND OUTLOOK

We have demonstrated that time-dependent generalized
Gibbs ensembles can be used to describe quantitatively the
dynamics of approximately integrable systems where small
perturbations drive the system far from equilibrium. While this
study has focused on perturbations arising from Lindblad oper-
ators describing the coupling to Markovian baths, it can also be
used to investigate Hamiltonian perturbations. Our example, a
Heisenberg model coupled to two types of Lindblad dissipa-
tors, was chosen for numerical convenience but one can think
of a wide range of experimental systems where our approach
is applicable. In practically all cold-atom experiments, there
are atomic loss processes. An interesting question is therefore
how atomic loss processes affect experimental ultracold-atom
realization integrable models, e.g., of the fermionic Hubbard
model in one dimension. It is reasonable to assume that the loss
processes will activate some of the exotic conservation laws of
this model. An experimental setup, particularly suitable for our
theoretical proposal, is also that of trapped ions where openness
can be directly simulated [58] by realizing Lindblad driving
[59], currently using a few tens of atoms [60]. Another inter-
esting class of systems are spin-chain materials, well described
by one-dimensional Heisenberg models. Here, phonons and the
coupling to lasers take over the role of the integrability breaking
perturbations. We have studied steady-state properties of such
models in Ref. [47].

We have used exact diagonalization of Lindblad operators to
be able to compare the time-dependent GGE approach to exact
results. A key advantage of the time-dependent GGE approach
is that it can be combined with other, more powerful numerical
approaches. For Markovian dynamics, it is sufficient to evalu-
ate simple expectation values of operators to calculate effective
forces. Many different numerical or analytical methods can
therefore be used to obtain the nonequilibrium dynamics.
This includes Monte Carlo approaches, transfer-matrix DMRG
methods, or high-temperature expansions. Using methods that
are not restricted to small system sizes, one could study the
accuracy of tGGE for expectation values of local operators with
larger support. For the model considered by us, all Lagrange pa-
rameters remain rather small during time evolution. Therefore,
it should be possible to calculate the dynamics of a truncated
GGE using a rather straightforward high-temperature expan-
sion (or, more precisely, small-Lagrange-parameter expansion)
directly in the thermodynamic limit N = ∞.

There are many interesting open questions. For example,
for the Lindblad driving studied by us, the solution of the rate
equation for Lagrange parameters, Eq. (7), shows a simple
exponential relaxation to a single steady state. Out of equilib-
rium, however, other types of behavior can also occur: several
steady states, cyclic solutions, or even chaotic solutions. It is
an interesting open question as to how our approach has to be
modified in these cases. Another interesting class of problems
concern situations which are not translationally invariant and
where Lagrange parameters depend on space and time. For
exactly integrable models, such a hydrodynamics description
has recently been developed [61–63], and we expect that it
can be generalized in a straightforward way to models where
integrability is broken by small perturbations which drive the
system out of equilibrium.
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APPENDIX A: PERTURBATION THEORY
FOR STEADY STATE

We have argued that in the limit of small but finite pertur-
bation strength ε a time-dependent GGE or an approach based

FIG. 6. Left panel: derivative of energy and heat current, d〈H 〉
dε

and d〈JH 〉
dε

, as function of the strength of perturbation ε calculated for
γ = 1, J = 1, and N = 8. Right panel: calculation of the coefficient
linear in ε from perturbation theory [51] as function of the broadening
η for the same parameters.
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FIG. 7. Effective force field (F2,F3) in the vicinity of the steady
state (red point) in the plane spanned by the Lagrange parameters
λ2 = β and λ3 using e−βH−λ3JH as an ansatz for ρGGE (N = 8). Left:
for γ = 0 the system approaches an infinite temperature state since
the Lindblad operator L(1) is constantly heating the system up. Right:
at γ = 1 the system is attracted towards a nonequilibrium state with
finite stationary values of both λ2 and λ3.

on block-diagonal density matrices correctly describes both
the dynamics and the steady state of the perturbed integrable
model.

In this Appendix we discuss the leading-order correction to
the steady state for finite ε. In Ref. [51] we have shown how
one can formulate a perturbation theory in powers of ε around
such a state. Here, it is important to distinguish the perturbation
theory in the thermodynamic limit from the perturbation theory
for finite-size systems. The latter is only valid for ε small
compared to the level spacing � = δJ of the system, where δ

is the dimensionless level spacing. We are mainly interested in
the opposite limit δ � ε � 1.

As is well known from standard perturbation theory (Kubo
formula), it is essential to include a small imaginary decay rate
iη in all calculations. For η � � one recovers the perturbation
theory for a finite-size system, while in the thermodynamic
limit one chooses η � � but smaller than all other relevant
energy scales.

As our goal is to compare numerically exact results with
the formulas of Ref. [51], we have to face the problem that
exact results are only available for rather small system sizes
and, therefore, the regimes δ � ε � 1 and � � η � J are
difficult to achieve.

As we are interested in the correction linear in ε, we plot
in Fig. 6 (left panel) the derivative of energy and heat current
d〈H 〉/dε and d〈JH 〉/dε. This is compared to the perturbation
theory result to linear order in ε (based on the formulas derived
in Ref. [51]), shown in the right panel as function of the
broadening η. Both panels show that the linear slope vanishes
in a finite-size system. For finite N and in the steady state the
leading correction is of order ε2/δ. In the analytic treatment this

FIG. 8. Steady-state expectation values of the energy and the heat
current JH as a function of γ parametrizing the type of Markovian
coupling. For a system of N = 8 sites the steady state is shown at
J = 1 for several values of ε and also for the limit ε → 0 where the
block-diagonal ensemble becomes exact.

can be shown by observing that the corrections to the steady
state are proportional to the imaginary part of 1

En−Em−iη
with

En �= Em [51] which vanishes for η � �.
In the thermodynamic limit 1 � ε � δ, we expect instead

that a linear correction does exist. Unfortunately, we cannot
extract a well-defined linear slope from the exact result shown
in Fig. 6 (left panel) due to the small size of the system. The
same issue arises also in the dependence of the perturbative
result of η. The fact that qualitatively similar results are
obtained for the η and ε dependencies is not an accident
but reflects that the Lindblad coupling effectively leads to a
broadening of levels.

In conclusion, our analysis has shown that it is very
important to distinguish perturbations for finite-size systems
and in the thermodynamics limit. At least semiquantitatively,
the analysis also confirms the perturbative approach suggested
in Ref. [51].

APPENDIX B: EFFECTIVE FORCES AND γ DEPENDENCE
OF STEADY-STATE EXPECTATION VALUES

In Fig. 7 we show the effective forces which determine the
dynamics of the time-dependent GGE according to Eq. (7). For
the chosen Lindblad dynamics we find that the system is always
attracted to a unique, well-defined fixed point. Therefore, also
small errors in, e.g., the initial state do not grow over time but
are damped out.

In Fig. 8 we show the steady-state expectation value of the
energy and the heat current as function of γ . The figure shows
that the block-diagonal density matrix quantitatively describes
for all values of γ the steady state for moderate values of ε.
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