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First-order metal-insulator transitions in the extended Hubbard model due to
self-consistent screening of the effective interaction
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While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to
what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are
always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb
interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally
stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths
to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the
metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as
well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems
in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction
is arbitrarily small; otherwise, it is finite.
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I. INTRODUCTION

The Hubbard model [1–5] is a central model for under-
standing various aspects of strongly correlated electrons. It
incorporates the competition between kinetic and interaction
energies in the most basic way and exhibits phenomena
such as magnetism and metal-insulator transitions with or
without magnetic transitions [6–9]. However, particularly due
to neglecting nonlocal interaction, the Hubbard model can be
quite far from describing real materials whenever nonlocal in-
teractions are not efficiently screened, e.g., in two-dimensional
materials. One example is the plasmon dispersion in metals,
which differs qualitatively in models with and without nonlocal
interactions [10,11]. Most obviously, in insulating systems,
where screening is by definition incomplete, prominent nonlo-
cal interaction effects should be expected. It is thus unclear
whether the Hubbard model can describe the Mott metal-
insulator transition (MIT) even qualitatively correctly.

Indeed, the question about the order of the MIT has been
controversial for about five decades [12–14]. In the Hubbard
model with strictly local interaction, the order of the MIT
depends on the degree of magnetic frustration in the system. If
magnetic order is fully suppressed, the transition is of first order
below a critical temperature Tc as, e.g., dynamical mean-field
theory (DMFT) [15] and related quantum cluster theories [16–
18] have demonstrated. Otherwise, the MIT is accompanied by
magnetic (quasi)order and is continuous [19–21]. Thus, Hub-
bard models on bipartite lattices, like the honeycomb, square,
diamond, and cubic lattices, as well as higher-dimensional
generalizations thereof, feature continuous MITs. Due to the
various simplifications implied by the Hubbard model, it is,
however, unclear how well this picture of the MIT relates
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to the experimentally realized one. Already in his original
work, Mott, for instance, argues that the physically realized
MIT should, due to the long-range nature of the Coulomb
interaction, be of first order [12], which is indeed found
experimentally in many transition-metal oxides [22–24]. In
this context, the question of how the Hubbard model’s MIT
is connected to that of the extended Hubbard model, which
includes nonlocal interactions, is highly relevant.

Here, we show that the MIT in the half-filled extended
Hubbard model on bipartite lattices is of first order for nonlocal
interactions larger than a critical Vc, as depicted schematically
in Fig. 1(a). Vc depends on the dimension and lattice topology
and can be even arbitrarily small in cubic systems in d > 2.
The first-order transition can be masked by a charge-density
wave [CDW; Fig. 1(b)], a situation which we find, e.g., in the
honeycomb lattice.

We propose (and later substantiate) the following mech-
anism for how nonlocal interactions induce a discontinuous
MIT: Nonlocal interactions generally decrease correlations
in half-filled extended Hubbard models [25,26]. The amount
of decrease, due to different screening [27], is larger in the
metallic regime than in the insulating regime. Now consider
two systems close to the MIT with initially no non-local inter-
actions, one metallic and one insulating. Nonlocal interactions
V will push the MIT of the formerly metallic system to larger
local interaction Umet.

c > U ins.
c than the formerly insulating

system, resulting in a discontinuous (i.e., first-order) MIT at
sufficiently large V .

II. MODELS AND METHODS

A. Hubbard model

To begin, we briefly review the MIT on bipartite lat-
tices in the Hubbard model [Eq. (2)], i.e., without nonlocal
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FIG. 1. Schematic phase diagram of the extended Hubbard
model: (a) The continuous (solid) and first-order (dotted) metal-
insulator transition lines touch at Vc(U ). A coexistence region sur-
rounds the first-order transition. For large V/U a CDW phase occurs.
(b) The CDW phase can mask the first-order MIT.

interactions. For the systems here, ind > 2 the local interaction
U induces a MIT from a paramagnetic metal to an antiferro-
magnetic insulator [9]. For lattices with perfect nesting the
critical interaction Uc vanishes for zero temperatures [28]. For
lattices with a vanishing density of states (DOS) at the Fermi
energy EF , Uc is finite for T = 0 [19]. In two dimensions
the Mermin-Wagner theorem prevents long-range order and
therefore a magnetic transition [29–31]. However, quasi-long-
range antiferromagnetic fluctuations lead to a similar phase
diagram for the transition from a paramagnetic metal to a
quasiordered insulator. Again, perfect nesting in the square
lattice leads to Uc = 0 for T = 0 [21], while the vanishing
DOS at EF in the honeycomb lattice leads to Uc > 0 for T = 0
[32,33]. In all cases the gap appears continuously; that is, the
MIT is not of first order.

B. Extended Hubbard model

We now turn to the extended Hubbard model,

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

ni↑ni↓ + 1

2

∑
i �=j

Vijninj , (1)

where c
(†)
iσ is the annihilation (creation) operator for electrons

on site i and spin σ , t is the nearest-neighbor hopping
amplitude, U is the local interaction, and Vij is the nonlocal
interaction between electrons at sites i and j . niσ and ni are the
spin-resolved and total occupation operators, respectively. We
focus on nearest-neighbor (NN), V0j = V δ01, and long-range
(L), V0j = V/rj , interactions [34].

In this model repulsive nonlocal interactions decrease cor-
relations [25,26,35–39] and can lead into a CDW phase [40].
Our focus is solely on how nonlocal interactions influence the
order of the MIT.

C. Variational principle

We investigate the U -V -T phase diagram of the extended
Hubbard model by approximating its thermodynamic ground
state using the Peierls-Feynman-Bogoliubov variational prin-
ciple [41–43] with a Hubbard model as the effective system
[25]. The effective Hubbard model, reading

H̃ = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + Ũ

∑
i

ni↑ni↓, (2)

is varied via the effective local interaction Ũ in order to
minimize a free-energy functional. Therefore, Ũ is

Ũ = U +
∑
j �=0

V0j

∂Ũ 〈n0nj 〉H̃
∂Ũ 〈n0n0〉H̃

. (3)

FIG. 2. Effective screening factor α as defined above Eq. (4) for
NN (top panels) and L (bottom panels) interaction. Left (right) panels
show the case of the honeycomb (square) lattice. We show results
from low (red) to high (cyan) inverse temperatures βt .

Although the variational principle provides only an upper
bound of the free energy, it has been found to give an accurate
description of the physics present in the effective reference
Hubbard model [26] and even gives exact double occupancies
for infinitesimal nonlocal interactions [26]. This makes the
approach appropriate for capturing the MIT, a hallmark of
Hubbard model physics, in the extended Hubbard model. We
introduce the effective screening factors αNN(Ũ ) = − ∂Ũ 〈n0n1〉H̃

∂Ũ 〈n0n0〉H̃
and αL(Ũ ) = −∑

j �=0
1
rj

∂Ũ 〈n0nj 〉H̃
∂Ũ 〈n0n0〉H̃ , with which Eq. (3) simpli-

fies to

Ũ = U − V αNN/L(Ũ ) (4)

for the case of NN and L interactions. Here, α(Ũ ) is a property
of the effective Hubbard model and quantifies the above-
mentioned decrease of correlations byV : Nonlocal interactions
shift the transition at ŨMIT to leading order linearly with a
slope of α−1(Ũ = ŨMIT); that is, a positive α leads to nonlocal
interactions stabilizing the metallic phase. Indeed, we find
strictly positive α in our numerical calculations (see Fig. 2).

From Eq. (4) we calculate the change in the effective
interaction Ũ with V and U ,

(∂/∂U, ∂/∂V )Ũ =
(

1 + V
∂α

∂Ũ

)−1

(1, − α). (5)

The derivatives diverge for −1 = Vc∂Ũα. At this point we find
a bifurcation of the solution of Eq. (4); that is, a single point
(U,V ) is mapped to multiple Ũ and thus a jump of the observ-
ables of the effective system. Particularly, discontinuities in
α(Ũ ) lead to arbitrarily small nonlocal Coulomb interactions
inducing a first-order phase transition (Vc = 0).

In the following we numerically determine the critical Vc re-
quired to induce such a first-order phase transition. To this end
we calculate α for different lattice topologies and dimensions:
We choose to investigate the square and honeycomb lattices
and their three-dimensional generalizations, the cubic and
diamond lattices. We rely on quantum Monte Carlo simulations
of all effective Hubbard models.

For the case of two dimensions we use the determinant
quantum Monte Carlo method (DQMC) [44] implemented
in the QUEST code [45]. We alleviate finite-size and Trotter
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FIG. 3. Double occupancy for (a) the honeycomb (βt = 10) and
(b) square lattice (βt = 20) for V/t = 0 (black line), 0.6 (dashed red
line), 1.2 (dotted green line), and 1.8 (thin blue line) for the case of
NN interaction. The inset in (b) shows a close-up of the rectangle
with the thermodynamically unstable states (dotted line), coexistence
region (shaded area), and double occupancy by Maxwell construction
(dashed line).

errors by extrapolating from finite Trotter discretizations of
�τ = 0.2, 0.1, and 0.05 and linear lattice sizes of L = 8,
10, and 12 for the square lattice and L = 6, 9, and 12 for
the honeycomb lattice [46]. We evaluate derivatives in the
definition of α numerically by solving Hubbard models in
steps of �Ũ/t = 0.1 and deal with statistical noise by a
Savitzky-Golay approach. We provide raw data and details on
the DQMC simulations, finite-size and Trotter extrapolations,
and the Savitzky-Golay approach in Appendix A.

III. RESULTS

A. Honeycomb lattice

First, we discuss the case of the honeycomb lattice for
which α(Ũ ) are plotted for βt = 2 to βt = 10 in Figs. 2(a)
and 2(b). For βt � 6 no temperature dependence is observable
due to the linearly vanishing DOS at EF [47]. Thus, we
can draw conclusions for finite temperatures and T → 0. For
low temperatures α shows a minimum at Ũmin/t ∼ 4.6 and a
maximal absolute derivative at Ũkink/t ∼ 3.2. The MIT is in
between at ŨMIT/t ≈ 3.8 [32,33].

Notably, the dependence of the effective screening factor α

on Ũ is rather weak (no steplike features). Hence, there is no Ũ

where the slope ∂α/∂Ũ is particularly large, and from Eq. (5)
we expect that rather large Vc would be needed to push the
MIT to first order here. Clarifying this, we solve Eq. (4) and
calculate the U -dependent double occupancy of an extended
Hubbard model with different nearest-neighbor interaction at
βt = 10 [Fig. 3(a)]. For increasing V the V = 0 line is shifted
towards larger U (i.e., V weakens correlations).

Concerning the influence of nonlocal interactions on the
order of the transition, we calculate Vc from the slope of α. We
find Vc/t ≈ 7.7 and Vc/t ≈ 14.3 for NN and L, respectively.
This is in line with findings that the transition is continuous
up to V/t ∼ 1.5 in the case of nearest-neighbor interaction
[36] since larger V stabilize a CDW phase which we estimate
in strong coupling, as presented in Appendix D. For the
honeycomb lattice Vc is always larger than VCDW such that
no first-order MIT will be observable.

We infer a U -V phase-diagram schematically shown in
Fig. 1(b). The slope of the transition line at V = 0 is given by
1/α(UMIT), with αNN(L)(UMIT) = 0.66(0.60). Quantum Monte
Carlo (QMC) calculations with long-range interactions [35]
reveal a slope compatible to αL � 0.55; For nearest-neighbor

FIG. 4. (a) Dependence of max[|∂α/∂Ũ |] on βt for the square
lattice with linear fit (red line). (b) Corresponding Vc(T ) =
−[∂α/∂Ũ ]−1. Results for NN and L coincide within error bars. The
fading black curve is a weak-coupling estimate of the critical V for
the CDW valid for small V .

interactions dynamical cluster approximation (DCA) calcu-
lations [36] indicate αNN ∼ 0.23, whereas QMC calculations
[37] lead to αNN � 0.52.

B. Square lattice

The case of the square lattice turns out to be different. We
show αNN/L in Figs. 2(c) and 2(d) for βt = 2 to βt = 20. Here,
α is strongly temperature dependent. Prominently, Ũmin and
Ũkink are shifted to smaller Ũ , and the slope at Ũkink gets steeper
with increasing β. The increase in the slope of α(Ũ ) traces back
to the development of a soft kink in 〈n0n0〉(Ũ ). Comparing
Umin and Ukink to the temperature dependent critical interaction
ŨMIT from Ref. [21], we find that Ũmin ≈ ŨMIT and that Ũkink

approaches ŨMIT with lower temperatures.
Concerning the resulting phase diagram [Fig. 1(a)], the

slope of the U -V phase-transition line at V = 0 is 1/α(ŨMIT),
with αNN(L)(ŨMIT) ∼ 0.5 for all temperatures. Results for
nearest-neighbor interaction from DCA [38] at βt = 6 and
combined GW plus extended DMFT [39] at βt = 25 are
compatible with α ∼ 0.8 and α ∼ 0.62.

In order to estimate the smallest nonlocal interaction Vc

leading to a first-order transition we calculate max |∂Ũα(Ũ )|,
which turns out to exhibit a linear β dependence, as can
be seen in Fig. 4(a). Thus, by extrapolating to decreasing
temperatures [Fig. 4(b)] we expect a first-order phase transition
at decreasing nonlocal interaction strengths: Vc → 0 for T →
0. Here, we find Vc/t ≈ 1.15 for βt = 20. For NN interaction
the first-order phase transition is probably not observable for
βt = 20 since it is deeply buried in the CDW phase (see
Appendix D). However, since Vc scales linearly with T but the
nonlocal interaction for the CDW phase scales as VCDW/t =
4π2[ln(8t/T )]−2 [48] [black line in Fig. 4(b)], low enough
temperatures always lead to a favoring of the first-order MIT
over the CDW. Moreover, long-range interactions partially
suppress the CDW phase such that in this case the first-order
MIT will be observable at only slightly lower temperatures
(see Appendix D).

In Fig. 3(b) we present the double occupancy dependent on
U at βt = 20 for different nonlocal interactions. The curves
are shifted to larger U with increasing V , where the different
amounts of shifting are apparent for the metallic and insulating
regimes. This different effective screening on the metallic and
insulating sides of the transition eventually lifts the MIT to
first order here. The soft kink visible for V = 0 (black solid
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line) gets a steplike shape for V > 0, which for V > Vc ≈ 1.2t

eventually leads to unphysical (see below) loops, as shown in
detail in Fig. 3(d) for V = 1.8t . The real double occupancy
in the coexistence region is obtained by Maxwell construction
and shown as a dashed line. This coexistence region is shown
schematically in Fig. 1(a).

The double occupancy D = 〈n0↑n0↓〉 and the local Hubbard
interaction U are conjugate variables in the thermodynamic
sense, i.e., D = 1

N
∂F/∂U , where F is the free energy and N

is the number of lattice sites in the system. Since F is not
only extremal but actually minimal in a stable thermodynamic
state, a small deviation from the thermodynamic ground state
must increase the free energy. The resulting thermodynamic
inequality ∂D/∂U < 0 demands that the double occupancy is
a monotonously decreasing function of the on-site interaction,
as detailed in Appendix E.

This inequality is fulfilled everywhere except for the dashed
part of the D(U ) curve inside the hysteresis region [Fig. 3(d)],
which thus corresponds to thermodynamically unstable states.
This behavior is characteristic of a first-order transition and
signals that the metallic and the insulating sides of the transition
are not linked continuously through a series of thermodynam-
ically stable states.

C. Cubic and diamond lattices

We now turn to higher-dimensional systems with cubic [49]
and diamond [19] lattices, which generalize the square and
honeycomb lattice to three dimensions. While the diamond
lattice preserves the linearly vanishing DOS at EF , the cubic
lattice loses the van Hove singularity at EF but keeps a
nonzero DOS at EF . The main difference with d = 2 is the
absence of the Mermin-Wagner theorem and the presence
of finite-temperature antiferromagnetic long-range order. We
solve the Hubbard models in d = 3 in DMFT using TRIQS

[50,51]. We allow for antiferromagnetic long-range order
to study the thermodynamically relevant transition from a
(semi)metal to an antiferromagnetic insulator [28]. We provide
raw data, details on the simulations, and results for the case of
infinite dimensions in Appendix B. From DQMC simulations
in d = 3 we find that the discontinuous behavior of α is
essentially determined by ∂Ũ 〈n0↑n0↓〉 (see Appendix C for
details) and thus search for discontinuities in ∂Ũ 〈n0n0〉 directly,
circumventing the calculation of ∂Ũ 〈n0nj 〉 for j > 0.

The results for different temperatures are presented in
Fig. 5. The onset of a finite staggered magnetization m

determines the critical effective interaction Ũc at the MIT.
For the diamond lattice, Ũc becomes temperature independent
for small enough temperatures [19] like in d = 2. For the
cubic lattice Uc approaches zero for T → 0 [52]. We find
clear discontinuities in the double occupancies’ derivative
and thus find discontinuities in α for all temperatures only for
the cubic lattice. The size of the discontinuity grows as the
system approaches large Néel temperatures [19,49]. From this
discontinuity we conclude that infinitesimal positive nonlocal
interactions induce a first-order phase transition in three or
more dimensions; that is, we expect Vc = 0 for d > 2 in cubic
systems. The linearly vanishing DOS at EF in the case of the
diamond lattice leads to no discontinuities at low temperatures.
For large enough temperatures (βt � 10) the linearly vanishing

FIG. 5. DMFT results for the cubic (left panels) and diamond
(right panels) lattices. From top to bottom the panels show staggered
magnetization m and ∂Ũ 〈n0n0〉.

DOS is smeared out, such that a discontinuity in ∂Ũ 〈n0n0〉
appears. We conclude that for low temperatures only finite
nonlocal interactions induce first-order phase transitions in
diamondlike lattices in arbitrary dimensions.

This dimensional dependence of the MIT in the cubic
systems can be understood from the nature of the antiferro-
magnetism. An antiferromagnetic phase transition translates to
a kink in the double occupancy since the latter is related to the
magnetic moment as m2 = n − 2n↑n↓. In d = 2, the Mermin-
Wagner theorem forbids conventional (i.e., second order in the
Ehrenfest sense) antiferromagnetic phase transitions at finite
temperature, which leads to a smooth double occupancy and a
finite Vc. For d > 2, on the other hand, an antiferromagnetic
phase transition [9,52] leads to a kink in the double occupancy
and a first-order phase transition at infinitesimal V . The
vanishing DOS for the diamond lattice, on the other hand,
leads to an unusual critical behavior [53], and thus no kink in
the double occupancy and a finite Vc.

IV. CONCLUSION

We showed that nonlocal interactions in bipartite extended
Hubbard models can lead to a first-order MIT. This result is
highly relevant in the context of the question of whether Hub-
bard models describe discontinuous MITs occurring in realistic
materials. The underlying mechanism is governed by nonlocal
interactions screening correlations differently in the insulating
and metallic phases, with the metallic phase being generally
stabilized by the nonlocal interactions. Interestingly, this is
in contrast to the mechanism envisioned by Mott [12], which
is based on nonlocal interactions stabilizing the insulating
phase. We found first-order transitions for nonlocal interactions
larger than a critical Vc(U ). Our calculations indicate Vc = 0
for cubic systems in d > 2, whereas systems with vanishing
DOS at EF (e.g., diamond) and two-dimensional systems in
general show Vc > 0 for low temperatures. With nonlocal
interactions, we found an additional mechanism, in addition to
lattice distortions and multiorbital physics [54–56], explaining
how the continuous MIT in Hubbard models is reconvened with
the discontinuous MIT in real materials.
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FIG. 6. Finite �τ extrapolation for the nearest-neighbor charge
correlator on the square lattice for βt = 10 and L = 10. Left: linear fit
(blue line) to raw data on �τ−2 (black dots) resulting in extrapolated
value at �τ → 0 (blue dot) for Ũ/t = 1.0. Right: Ũ -dependent
results for the extrapolation.
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APPENDIX A: DETAILS OF DQMC SIMULATIONS

We perform simulations at a fixed value of Ũ and at half
filling, i.e., by setting μ = Ũ/2. As discussed in Ref. [57],
simulations of the Hubbard model for U/t � 8 require global
updates in order to explore the phase space in an ergodic
manner. Although we restrict our simulations to U/t � 6, we
include global moves as a precautionary measure and indeed
find no “sticking” behavior of the occupancies described in
Ref. [57]. With 500 warm-up sweeps we perform between
10 000 and 1 million measurement sweeps depending on the
temperature, lattice size, and Trotter discretization. We provide
our raw data together with more equal time measurements
provided by the QUEST software for all lattice sizes, Trotter
discretizations, and temperatures for both the square and hon-
eycomb lattices together with error estimates and a complete
set of input parameters on the Zenodo platform [58].

We deal with finite-size and finite Trotter errors by ex-
trapolating schemes: We simulate effective Hubbard models
in d = 2 with imaginary-time discretizations �τ = 0.05, 0.1,
and 0.2 and extrapolate a linear dependence on �τ 2. We
present an example of this procedure in Fig. 6. The errors for
finite �τ do not exist for Ũ = 0 and increase for larger Ũ . From

FIG. 7. Finite-L extrapolation for the nearest-neighbor charge
correlator on the square lattice for βt = 10 and �τ = 0.2. Left:
linear fit (blue line) to raw data on L−2 (black dots) resulting in
the extrapolated value at �τ → 0 (blue dot) for Ũ/t = 1.0. Right:
Ũ -dependent results for the extrapolation.

FIG. 8. Raw data and smoothed data for on-site and nearest-
neighbor charge correlators (〈n0n0〉, 〈n0n1〉; top panels) and their
derivatives with respect to Ũ (bottom panels) for the square lattice
with L = 12, �τ = 0.2, and βt = 4.0. We show smoothing results of
different fit windows, w = 1.0 and w = 0.4, with cubic polynomials.
Where no error bars are visible, they are hidden behind the markers.

linear system sizes L = 8, 10, and 12 for the square lattice and
L = 6, 9, and 12 for the honeycomb lattice we extrapolate a
linear dependence on L−2. We show an example in Fig. 7. The
finite-size errors in the charge correlation function get smaller
for larger Ũ since the electrons localize.

In order to reduce the inherent noise in the Monte Carlo data,
which poses a serious problem when calculating derivatives
with respect to Ũ , we use a Savitzky-Golay approach [59];
that is, we analytically take derivatives of polynomials which
are locally fitted in a window of width w to the numerical
values of 〈n0nj 〉(Ũ ). We show an example of this procedure
for two different cases: smooth dependence on Ũ with little
noise for high temperatures (βt = 4.0; Fig. 8) and rather large
dependence on Ũ with large noise for low temperatures (βt =
20.0; Fig. 9). We show results for different fit windows (w =
0.4 and w = 1.0) for cubic polynomials. In all cases, the raw
data and the smoothed data are hard to distinguish. However,

FIG. 9. Same as Fig. 8, but for L = 12, �τ = 0.05, and βt =
20.0.
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the derivative with respect to Ũ vastly increases noise for the
raw data. Taking the derivative analytically for the smoothed
data avoids this. The high-temperature data show that the larger
window leads to smoother results. The case of low temperature,
however, exemplifies the drawback of too large windows: The
steep feature in ∂Ũ 〈n0n0〉 at Ũ/t ∼ 1.3, which can be clearly
seen in the raw data, is washed out for w = 1.0. The smaller
window w = 0.4 leads to data which nicely follow the raw
data for small to intermediate Ũ/t but also shows larger noise
for larger Ũ/t . Since the derivative of ∂Ũ 〈n0n0〉 (via that of
α) determines the critical Vc, we have extracted them with
w = 0.4 and cubic polynomials, which is shown in Fig. 4. The
effective screening factors shown in Fig. 2 are obtained with a
window of Ũw/t = 1.0 and quadratic polynomials, such that
the strong noise at large Ũ/t does not obstruct the trends visible
in Fig. 2.

A word on the error bars shown in Figs. 8 and 9: The
quantities (with error bars) actually measured in the DQMC
algorithm are 〈n0↑ni↓〉 and 〈n0↑ni↑〉, such that we obtain
〈n0ni〉 by summing over the two observables. Since the two
constituent observables are correlated (for i �= 0), the error
bar on their sum cannot simply be obtained by Pythagorean
addition. Visual inspection of the raw data [58] at neighboring
values of Ũ shows that error cancellation happens in the
determination of 〈n0ni〉 (equivalently, the statistical errors
in 〈Sz

0S
z
i 〉 are larger than the Pythagorean sum of the error

bars of 〈n0↑ni↓〉 and 〈n0↑ni↑〉). In the figures, we have done
Pythagorean addition and scaled the errors, such that the error
bars enclose 70% of the smoothed data, which leads to visually
reasonable results but overall too large error bars for Ũ/t � 3.
Since the error estimates do not influence the calculations, this
is, however, not a crucial point.

APPENDIX B: DETAILS OF DMFT SIMULATIONS

For our calculations we use the TRIQS package [50] and
the accompanying continuous-time quantum Monte Carlo hy-
bridization expansion solver [51]. We find a critical slowdown
of the DMFT convergence on the paramagnetic side of the
antiferromagnetic transition. For some cases we use more
than 400 DMFT cycles to obtain reasonable convergence. We
subsequently perform some iterations with increased statistics
with up to 4 million sweeps on 80 cores each to obtain data
with little noise. We cannot rely on a smoothing algorithm as in
the case of finite-size DQMC data since the kink in the double
occupancy would vanish with any smoothing algorithm. We
calculate the derivative ∂Ũ 〈n0n0〉 by performing forward and
backward finite differences. If both (forward and backward
differences) are equal within a tolerance of 2%, we take the
mean value (i.e., we perform central difference); if they are
not, we assume the derivative is not defined at that U [i.e.,
there is a kink in 〈n0n0〉(Ũ )].

We present DMFT results similar to the DMFT simula-
tions in d = 3 presented in Fig. 5 for U values close to
the antiferromagnetic phase transition for the corresponding
lattices in d = ∞, i.e., the hypercubic [49] and hyperdiamond
[19] lattices. The case of d = ∞ is interesting since DMFT
provides an exact solution. The results are presented in Fig. 10
in the same way as for d = 3 above. We have performed
calculations for βt = 10, 20, and 40 and βt = 5, 10, 20, and

FIG. 10. DMFT results for the d = ∞ hypercubic (left panels)
and hyperdiamond (right panels) lattices. From top to bottom the
panels show staggered magnetization m and ∂Ũ 〈n0n0〉.

40 for the hypercubic and hyperdiamond lattices, respectively.
The results are qualitatively very similar to the case of d = 3;
that is, we find discontinuities in ∂Ũ 〈n0n0〉 for all temperatures
for the hypercubic case. For the hyperdiamond case we find
a discontinuity only at the highest temperature (βt = 5). The
different values for the critical U in d = 3 and d = ∞ can be
understood in terms of different bandwidths. Using effective
half bandwidths of 2.2t and 2.8t for the hypercubic and
hyperdiamond lattice, respectively, the values of Uc/w (w is
the bandwidth) for d = 3 and d = ∞ match nearly perfectly.

We provide raw data (Greens function and self-energy of
Matsubara frequencies, occupancy, and double occupancy) for
the last DMFT iteration for all temperatures and all four lattices
[cubic, diamond, hypercubic (d = ∞), and hyperdiamond
(d = ∞)] together with a complete set of input parameters
on the Zenodo platform [60].

APPENDIX C: DQMC RESULTS FOR THE CUBIC
LATTICE AND COMPARISON WITH DMFT

A DQMC treatment of the Hubbard model on the cubic
lattice suffers from the scaling of computational time with the
linear lattice size, which is ∝ L9 and limits the calculations to
L � 10. To assess the finite-size scaling we have performed
simulations for βt = 10 at fixed Trotter discretization of �τ =
0.1. We do not perform an extrapolation to �τ = 0 since our
results for the square lattice and test calculations at βt = 4 for
the cubic lattice show that results for �τ = 0.1 are reasonably
close to the extrapolated value (see Fig. 6). In Fig. 11 we present
calculations for L = 4, 6, 8, and 10 for interaction strengths
between Ũ/t = 2 and Ũ/t = 3.78 in steps of 0.02 in terms of
derivatives of the local and nearest-neighbor charge correlators
with respect to Ũ as well as αNN. We smooth the data with
w = 0.3 and quadratic polynomials. From the analysis of the
data we will answer two questions: First, does a discontinuity in
∂Ũ 〈n0n0〉 translate into a discontinuity in αNN, or is it canceled
by a respective discontinuity in ∂Ũ 〈n0n1〉? Second, what do we
learn from the comparison of DMFT and DQMC data?

To answer the first question, we investigate the finite-size
scaling of ∂Ũ 〈n0n0〉 and ∂Ũ 〈n0n1〉. As can be seen from,
e.g., the position of the minimum of ∂Ũ 〈n0n0〉, the finite-size
behavior is nonmonotonous, which makes an extrapolation
to L → ∞ impossible based on these data. However, we
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FIG. 11. Results for the derivative of the (a) local and (b) nearest-
neighbor charge correlators with respect to Ũ and (c) αNN as defined
in the main text from the DQMC simulation of the cubic lattice at
βt = 10 for lattices with linear sizes L = 4 (solid blue line), L = 6
(dashed yellow line), L = 8 (dash-dotted green line), and L = 10
(dotted red line). Results for the local correlator in the thermodynamic
limit L → ∞ in the DMFT approximation are presented as purple
crosses in (a).

can observe that the steplike feature visible in ∂Ũ 〈n0n0〉 gets
monotonously sharper for larger L. For the nearest-neighbor
case, no steplike feature is observed for any L. Consequently,
we find steplike features in αNN which get sharper in the same
way as they do for the derivative of the local correlator. If
we take for granted that this behavior holds for L = ∞, i.e.,
discontinuities exist only for the on-site case and not for the
nearest-neighbor case, a discontinuity in ∂Ũ 〈n0n0〉 directly
translates to one in αNN and thus signals a first-order phase
transition for arbitrarily small nonlocal interactions.

The result of the DMFT solution of the cubic lattice is
presented in Fig. 11(a). Although DMFT provides only an
approximate solution for the cubic lattice, it does give a result
in the thermodynamic limit and can thus be seen as a crude
finite-size extrapolation of the DQMC data. From a superficial
inspection of the data the finite-size DQMC data seem to
converge against the DMFT result. A detailed comparison
of DMFT with DCA [61], dynamical vertex approximation
(D
A) [52], and DQMC [62] for the cubic Hubbard model
suggest that for small interaction strengths (U/t � 3.5) the
DMFT result coincides rather well with the results obtained
with more sophisticated methods. This is in line with the
finding that the second-order correlation energies in d = 3
and d = ∞ do not differ strongly [63]. Finally, results in the
thermodynamic limit for the U -dependent double occupancy
using the numerical linked-cluster expansion show a kink in
the double occupation in line with our DMFT results [64].

In summary, the DQMC data suggest that, first, a discontinu-
ity in ∂Ũ 〈n0n0〉 sufficiently signals a first-order phase transition
at arbitrary small V and, second, the DMFT approximation
leads to reasonable results in the three-dimensional case,
especially for small interaction strengths.

APPENDIX D: STRONG-COUPLING CALCULATION
OF THE CDW PHASE

We calculate the CDW phase with a strong-coupling ap-
proach and identify a CDW instability by a negative Fourier

component of the Coulomb interaction. For the CDW transition
line in the case of the honeycomb lattice we find U = 3V

and U ≈ 1.53V for nearest-neighbor and long-range inter-
actions, respectively. For the case of the square lattice we
find U = 4V and U ≈ 1.61V for nearest-neighbor and long-
range interactions, respectively. For the interaction strengths of
interest (U/t ∼ 8 and U/t ∼ 2 for the honeycomb and square
lattices, respectively), the strong-coupling result coincides
well with more sophisticated calculations for nearest-neighbor
interactions [36,38].

APPENDIX E: PROOF OF THERMODYNAMIC
INEQUALITY

Let H = H0 + U
∑

i Di − μ
∑

i ni , where Di is the double
occupancy of site i, ni is the occupancy of site i, and H0

contains all other terms in the Hamiltonian. Then−U andμ can
be interpreted as the Lagrange multipliers fixing the average
double occupancy, D = 1/N

∑
i Di , and the average particle

number, n = 1/N
∑

i ni , respectively. The free energy per site
of a state with density matrix ρ is given by f (ρ) = f0(ρ) +
UD − μn, where f0(ρ) = 1/N[E0(ρ) − T S(ρ)]. The ther-
modynamic ground state ρ0 minimizes the free energy, so
deviations δρ from ρ0 increase the free energy: δf > 0. If
we parametrize the density matrix via the double occupancy
and the particle number, deviations from the thermodynamic
ground state lead to the following changes in the free
energy:

δf = ∂f0

∂D
δD + UδD + 1

2

∂2f0

∂D2
δD2

+ ∂f0

∂n
δn − μδn + 1

2

∂2f0

∂n2
δn2

+ ∂2f0

∂D∂n
δDδn. (E1)

The condition that f is at an extremum demands that the first-
order terms vanish, i.e., ∂f0/∂D = −U and ∂f0/∂n = +μ.
The second-order term can be written in matrix form as

δf = 1

2
(δD δn)

⎛
⎝ ∂2f0

∂D2
∂2f0

∂D∂n

∂2f0

∂D∂n

∂2f0

∂n2

⎞
⎠(

δD

δn

)

= 1

2
(δD δn)

(−∂U
∂D

−∂U
∂n

∂μ

∂D

∂μ

∂n

)(
δD

δn

)
. (E2)

Now, the condition δf > 0 means that both eigenvalues of this
matrix should be positive. Since the matrix is symmetric, this
leads to the conditions for thermodynamic equilibrium,

0 < −∂U

∂D
, (E3)

0 <
∂μ

∂n
, (E4)

0 <
∂U

∂n

∂μ

∂D
− ∂U

∂D

∂μ

∂n
. (E5)
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Equation (E4) tells us that the compressibility κ = ∂n/∂μ is
positive (at constant double occupancy), and Eq. (E3) indicates
that the double occupancy decreases as a function of U (at
constant density). The symmetry of the matrix implies the
Maxwell relation ∂μ/∂D = −∂U/∂n = A.

We consider the relation between ∂D/∂U at constant
chemical potential and at constant n. We define the implicit
function μ(U,n) to give the chemical potential corresponding
to U and n via n(U,μ(U,n)) = n. We find

∂n

∂U

∣∣∣∣
μ

+ ∂n

∂μ

∂μ(U,n)

∂U
= 0. (E6)

Using this, we obtain

∂D

∂U

∣∣∣∣
n

− ∂D

∂U

∣∣∣∣
μ

= ∂D

∂μ

∂μ(U,n)

∂U

(E6)= −∂D

∂μ

∂n/∂U

∂n/∂μ

= κ−1A−2 � 0, (E7)

where κ is the compressibility and A is the off-diagonal
element in Eq. (E2). The positivity follows since κ has to be
positive for thermodynamic stability and A appears as a square.
Together with Eq. (E3) this gives

0 < −∂D

∂U

∣∣∣∣
n

� −∂D

∂U

∣∣∣∣
μ

. (E8)

[1] J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).
[2] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[3] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
[4] J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964).
[5] M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).
[6] J. C. Slater, Phys. Rev. 82, 538 (1951).
[7] J. C. Slater, The Self-Consistent Field for Molecules and Solids

(McGraw-Hill, New York, 1974), Vol. 4.
[8] N. F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor and

Francis, London, 1990).
[9] F. Gebhard, The Mott Metal-Insulator Transition (Springer,

Berlin, 1997).
[10] H. Hafermann, E. G. C. P. van Loon, M. I. Katsnelson, A. I.

Lichtenstein, and O. Parcollet, Phys. Rev. B 90, 235105 (2014).
[11] E. G. C. P. van Loon, H. Hafermann, A. I. Lichtenstein, A. N.

Rubtsov, and M. I. Katsnelson, Phys. Rev. Lett. 113, 246407
(2014).

[12] N. F. Mott, Proc. Phys. Soc., Sect. A 62, 416 (1949).
[13] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
[14] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039

(1998).
[15] N. Blümer, Ph.D. thesis, University of Augsburg, 2003.
[16] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403

(2008).
[17] M. Balzer, B. Kyung, D. Sénéchal, A.-M. S. Tremblay, and M.

Potthoff, Europhys. Lett. 85, 17002 (2009).
[18] J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130

(2014).
[19] G. Santoro, M. Airoldi, S. Sorella, and E. Tosatti, Phys. Rev. B

47, 16216 (1993).
[20] M. Ulmke, V. Janis, and D. Vollhardt, Phys. Rev. B 51, 10411

(1995).
[21] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K. Held,

N. Blümer, M. Aichhorn, and A. Toschi, Phys. Rev. B 91, 125109
(2015).

[22] F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[23] D. B. McWhan and J. P. Remeika, Phys. Rev. B 2, 3734 (1970).
[24] S. A. Shivashankar and J. M. Honig, Phys. Rev. B 28, 5695

(1983).
[25] M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and

M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).
[26] E. G. C. P. van Loon, M. Schüler, M. I. Katsnelson, and T. O.

Wehling, Phys. Rev. B 94, 165141 (2016).

[27] T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149
(2013).

[28] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[29] M. B. Walker and T. W. Ruijgrok, Phys. Rev. 171, 513 (1968).
[30] D. K. Ghosh, Phys. Rev. Lett. 28, 330 (1972).
[31] T. Koma and H. Tasaki, Phys. Rev. Lett. 68, 3248 (1992).
[32] S. Sorella, Y. Otsuka, and S. Yunoki, Sci. Rep. 2, 992 (2012).
[33] F. F. Assaad and I. F. Herbut, Phys. Rev. X 3, 031010 (2013).
[34] The rj are scaled such that V01 = V .
[35] M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F. Assaad,

Phys. Rev. B 90, 085146 (2014).
[36] W. Wu and A.-M. S. Tremblay, Phys. Rev. B 89, 205128 (2014).
[37] P. Buividovich, D. Smith, M. Ulybyshev, and L. von Smekal,

PoS (LATTICE2016) 244 (2016).
[38] H. Terletska, T. Chen, and E. Gull, Phys. Rev. B 95, 115149

(2017).
[39] T. Ayral, S. Biermann, P. Werner, and L. Boehnke, Phys. Rev. B

95, 245130 (2017).
[40] J. E. Hirsch, Phys. Rev. Lett. 53, 2327 (1984).
[41] R. Peierls, Phys. Rev. 54, 918 (1938).
[42] N. N. Bogoliubov, Dokl. Akad. Nauk SSSR 119, 244 (1958).
[43] R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA,

1972).
[44] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys.

Rev. D 24, 2278 (1981).
[45] A. Tomas, C-C. Chang, Z-J. Bai, and R. Scalettar, Quan-

tum Electron Simulation Toolbox (QUEST) 1.3.0, http://quest.
ucdavis.edu/.

[46] D. Rost, E. V. Gorelik, F. Assaad, and N. Blümer, Phys. Rev. B
86, 155109 (2012).

[47] W. Wu, Y.-H. Chen, H.-S. Tao, N.-H. Tong, and W.-M. Liu, Phys.
Rev. B 82, 245102 (2010).

[48] P. Fazekas, Lecture Notes on Electron Correlation and Mag-
netism, Series in Modern Condensed Matter Physics Vol. 5
(World Scientific, Singapore, 1999).

[49] M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).
[50] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L.

Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015).
[51] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Comput. Phys.

Commun. 200, 274 (2016).
[52] G. Rohringer, A. Toschi, A. Katanin, and K. Held, Phys. Rev.

Lett. 107, 256402 (2011).

165135-8

https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1103/PhysRev.134.A923
https://doi.org/10.1103/PhysRev.134.A923
https://doi.org/10.1103/PhysRev.134.A923
https://doi.org/10.1103/PhysRev.134.A923
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1103/PhysRevLett.113.246407
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1209/0295-5075/85/17002
https://doi.org/10.1209/0295-5075/85/17002
https://doi.org/10.1209/0295-5075/85/17002
https://doi.org/10.1209/0295-5075/85/17002
https://doi.org/10.1103/PhysRevB.89.245130
https://doi.org/10.1103/PhysRevB.89.245130
https://doi.org/10.1103/PhysRevB.89.245130
https://doi.org/10.1103/PhysRevB.89.245130
https://doi.org/10.1103/PhysRevB.47.16216
https://doi.org/10.1103/PhysRevB.47.16216
https://doi.org/10.1103/PhysRevB.47.16216
https://doi.org/10.1103/PhysRevB.47.16216
https://doi.org/10.1103/PhysRevB.51.10411
https://doi.org/10.1103/PhysRevB.51.10411
https://doi.org/10.1103/PhysRevB.51.10411
https://doi.org/10.1103/PhysRevB.51.10411
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevLett.3.34
https://doi.org/10.1103/PhysRevLett.3.34
https://doi.org/10.1103/PhysRevLett.3.34
https://doi.org/10.1103/PhysRevLett.3.34
https://doi.org/10.1103/PhysRevB.2.3734
https://doi.org/10.1103/PhysRevB.2.3734
https://doi.org/10.1103/PhysRevB.2.3734
https://doi.org/10.1103/PhysRevB.2.3734
https://doi.org/10.1103/PhysRevB.28.5695
https://doi.org/10.1103/PhysRevB.28.5695
https://doi.org/10.1103/PhysRevB.28.5695
https://doi.org/10.1103/PhysRevB.28.5695
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRev.171.513
https://doi.org/10.1103/PhysRev.171.513
https://doi.org/10.1103/PhysRev.171.513
https://doi.org/10.1103/PhysRev.171.513
https://doi.org/10.1103/PhysRevLett.28.330.5
https://doi.org/10.1103/PhysRevLett.28.330.5
https://doi.org/10.1103/PhysRevLett.28.330.5
https://doi.org/10.1103/PhysRevLett.28.330.5
https://doi.org/10.1103/PhysRevLett.68.3248
https://doi.org/10.1103/PhysRevLett.68.3248
https://doi.org/10.1103/PhysRevLett.68.3248
https://doi.org/10.1103/PhysRevLett.68.3248
https://doi.org/10.1038/srep00992
https://doi.org/10.1038/srep00992
https://doi.org/10.1038/srep00992
https://doi.org/10.1038/srep00992
https://doi.org/10.1103/PhysRevX.3.031010
https://doi.org/10.1103/PhysRevX.3.031010
https://doi.org/10.1103/PhysRevX.3.031010
https://doi.org/10.1103/PhysRevX.3.031010
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.89.205128
https://doi.org/10.1103/PhysRevB.89.205128
https://doi.org/10.1103/PhysRevB.89.205128
https://doi.org/10.1103/PhysRevB.89.205128
https://pos.sissa.it/256/244/pdf
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRev.54.918
https://doi.org/10.1103/PhysRev.54.918
https://doi.org/10.1103/PhysRev.54.918
https://doi.org/10.1103/PhysRev.54.918
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
http://quest.ucdavis.edu/
https://doi.org/10.1103/PhysRevB.86.155109
https://doi.org/10.1103/PhysRevB.86.155109
https://doi.org/10.1103/PhysRevB.86.155109
https://doi.org/10.1103/PhysRevB.86.155109
https://doi.org/10.1103/PhysRevB.82.245102
https://doi.org/10.1103/PhysRevB.82.245102
https://doi.org/10.1103/PhysRevB.82.245102
https://doi.org/10.1103/PhysRevB.82.245102
https://doi.org/10.1103/PhysRevLett.69.168
https://doi.org/10.1103/PhysRevLett.69.168
https://doi.org/10.1103/PhysRevLett.69.168
https://doi.org/10.1103/PhysRevLett.69.168
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1016/j.cpc.2015.10.023
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402


FIRST-ORDER METAL-INSULATOR TRANSITIONS IN … PHYSICAL REVIEW B 97, 165135 (2018)

[53] S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992).
[54] Y. Ōno, M. Potthoff, and R. Bulla, Phys. Rev. B 67, 035119

(2003).
[55] T. Pruschke and R. Bulla, Eur. Phys. J. B 44, 217 (2005).
[56] J. I. Facio, V. Vildosola, D. J. García, and P. S. Cornaglia, Phys.

Rev. B 95, 085119 (2017).
[57] R. T. Scalettar, R. M. Noack, and R. R. P. Singh, Phys. Rev. B

44, 10502 (1991).
[58] M. Schüler, Zenodo (2017), doi: 10.5281/zenodo.1118152.

[59] A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627
(1964).

[60] M. Schüler, Zenodo (2017), doi: 10.5281/zenodo.1095402.
[61] S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke,

and M. Troyer, Phys. Rev. Lett. 106, 030401 (2011).
[62] R. Staudt, M. Dzierzawa, and A. Muramatsu, Eur. Phys. J. B 17,

411 (2000).
[63] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[64] E. Khatami, Phys. Rev. B 94, 125114 (2016).

165135-9

https://doi.org/10.1209/0295-5075/19/8/007
https://doi.org/10.1209/0295-5075/19/8/007
https://doi.org/10.1209/0295-5075/19/8/007
https://doi.org/10.1209/0295-5075/19/8/007
https://doi.org/10.1103/PhysRevB.67.035119
https://doi.org/10.1103/PhysRevB.67.035119
https://doi.org/10.1103/PhysRevB.67.035119
https://doi.org/10.1103/PhysRevB.67.035119
https://doi.org/10.1140/epjb/e2005-00117-4
https://doi.org/10.1140/epjb/e2005-00117-4
https://doi.org/10.1140/epjb/e2005-00117-4
https://doi.org/10.1140/epjb/e2005-00117-4
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.44.10502
https://doi.org/10.1103/PhysRevB.44.10502
https://doi.org/10.1103/PhysRevB.44.10502
https://doi.org/10.1103/PhysRevB.44.10502
https://doi.org/10.5281/zenodo.1118152
https://doi.org/10.5281/zenodo.1118152
https://doi.org/10.5281/zenodo.1118152
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.5281/zenodo.1095402
https://doi.org/10.5281/zenodo.1095402
https://doi.org/10.5281/zenodo.1095402
https://doi.org/10.1103/PhysRevLett.106.030401
https://doi.org/10.1103/PhysRevLett.106.030401
https://doi.org/10.1103/PhysRevLett.106.030401
https://doi.org/10.1103/PhysRevLett.106.030401
https://doi.org/10.1007/s100510070120
https://doi.org/10.1007/s100510070120
https://doi.org/10.1007/s100510070120
https://doi.org/10.1007/s100510070120
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.94.125114
https://doi.org/10.1103/PhysRevB.94.125114
https://doi.org/10.1103/PhysRevB.94.125114
https://doi.org/10.1103/PhysRevB.94.125114



