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We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond
to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect
to the position of a material point x. These configurational forces that result from the inner variations of the
Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for
geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces
inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential
and all-electron calculations in a single framework, and employs a local variational real-space formulation of
Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is
amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed
configurational force approach on benchmark all-electron and pseudopotential calculations conducted using
higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element
discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy
from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those
obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and
Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems
involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms,
where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection
technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014)].
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I. INTRODUCTION

Electronic structure calculations based on density func-
tional theory (DFT) have played an important role in pro-
viding significant insights into a wide variety of materials
properties. The Kohn-Sham approach [1,2] to DFT provides
an efficient formulation to compute the ground-state properties
of materials systems by reducing the many-body Schrödinger
problem of interacting electrons into an equivalent problem
of noninteracting electrons in an effective mean field that is
governed by the electron density. While this effective single-
electron formulation has no approximations, and is exact,
in principle, the quantum mechanical interactions between
electrons manifest in the form of an unknown exchange-
correlation functional, which is modeled in practice. While
improving the accuracy of the exchange-correlation functional
is still an active area of research, the widely used models for
the exchange-correlation functional [3] have shown to predict a
range of materials properties across various materials systems
with good accuracy.

An important aspect of electronic structure calculations
using DFT is the determination of accurate quantum me-
chanical forces on the atomic nuclei and stress tensor in
periodic systems. The forces and stresses are used in many
aspects of electronic structure calculations, including geometry
optimization, calculation of the dynamical matrix and phonon
spectra, determination of elastic properties, and ab initio

molecular dynamics calculations. In DFT, the atomic force on
a nuclei can be computed by taking recourse to the Hellmann-
Feynman theorem [4,5], which relates the force acting on a
nucleus to the electrostatic field at the nucleus due to the
electron density and other nuclei [6]. However, in practical
DFT calculations, the variational force can differ from the
Hellmann-Feynman force if the numerical basis sets employed
in the DFT calculations explicitly depend on atomic positions
[7–9] (Pulay force correction due to incomplete basis set) and,
moreover, the Hellmann-Feynman theorem does not provide
elastic stresses on periodic systems. Stress is computed as
the derivative of the energy with respect to strain, and the
practical numerical implementation of these derivatives relies
very much on the particular basis-set type employed in the DFT
calculation and has to account for possible strain dependence
on the basis sets employed, which manifest as Pulay stresses.
To this end, there have been significant efforts in the past few
decades to implement variationally consistent forces [10–25]
and stresses [16,26–34] in ab initio codes employing various
basis sets.

We note that the general approach to computing atomic
forces or stresses in the existing numerical implementations
rely on the outer variations of the Kohn-Sham energy func-
tional with respect to the change in the position of atoms
(for computing forces) or the lattice vectors (for computing
stresses). Thus, most of the approaches in the literature rely on
separate formulations for computing forces and stresses. In this

2469-9950/2018/97(16)/165132(30) 165132-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.165132&domain=pdf&date_stamp=2018-04-20
https://doi.org/10.1103/PhysRevB.90.115127
https://doi.org/10.1103/PhysRevB.90.115127
https://doi.org/10.1103/PhysRevB.90.115127
https://doi.org/10.1103/PhysRevB.90.115127
https://doi.org/10.1103/PhysRevB.97.165132


PHANI MOTAMARRI AND VIKRAM GAVINI PHYSICAL REVIEW B 97, 165132 (2018)

work, we propose a configurational force approach to compute
both atomic forces and stresses in periodic systems under a
single framework using Kohn-Sham density functional theory.
The idea of configurational force dates back to Eshelby’s
formulation [35], and is widely used in continuum physics
[36] to study problems involving material inhomogeneities
like coherent phase interfaces, evolving surfaces, cracks, etc.,
in materials. In contrast to the existing methods employed
in electronic structure calculations, the proposed approach
is based on the inner variations of the Kohn-Sham energy
functional resulting in configurational forces. These forces
correspond to the generalized variational derivative of the
Kohn-Sham energy functional with respect to the position of
a material point x. Hence, the proposed approach provides a
generalized force with respect to internal positions of atoms as
well as the periodic cell, in the case of periodic calculations,
thus providing a unified framework to compute atomic forces as
well as stresses for geometry optimization. Moreover, the pro-
posed formulation allows us to treat both pseudopotential and
all-electron calculations in a single framework. Furthermore,
we note that the configurational forces inherently account
for Pulay corrections owing to the variational nature of the
formulation, and no separate treatment is required to account
for these corrections.

The proposed configurational force approach provides a
natural way to evaluate atomic forces and stresses in the
context of finite-element discretization. The finite-element
basis [37], a piecewise polynomial basis, offers some unique
advantages for Kohn-Sham DFT calculations. Finite-element
basis can handle arbitrary boundary conditions, which enables
the consideration of isolated, semiperiodic, as well as, periodic
systems under a single framework. Further, the finite-element
basis is amenable to adaptive spatial resolution, which can be
exploited for handling all-electron DFT calculations [38–42]
as well as the development of coarse-graining techniques
[43–45]. Moreover, the locality of these basis functions pro-
vides good scalability on parallel computing platforms. Al-
though significant efforts have been focused in the recent past
to develop finite-element-based methodologies for conducting
Kohn-Sham DFT calculations [38–42,46–64], most of these
efforts have been confined to computing the electronic ground
state. To the best of our knowledge, expressions for computing
both stresses and forces that are variationally consistent have
not been developed for the finite-element discretization. The
proposed work fills this important gap to enable large-scale
electronic structure calculations using finite-element basis.
Further, the developed configurational forces also provide
the generalized forces corresponding to the nodal positions
of the underlying finite-element triangulation, which can in
turn be effectively used to determine the optimal positions of
the finite-element nodes: r adaptivity, an a posteriori mesh
adaption technique [65].

In this work, the proposed configurational force approach
is presented in the context of spectral finite-element dis-
cretization. However, the method presented is general, and
applicable to any real-space basis employed in the solution of
the Kohn-Sham DFT problem. Keeping in mind the reduced-
order scaling methods [41,66], the formulation has been
developed using nonorthogonal electronic wave functions.
We begin by considering the formulation of the Kohn-Sham

density functional theory at finite temperature in terms of
nonorthogonal wave functions, where the electronic ground
state, for a given position of atoms, is governed by a variational
problem involving the minimization of the Kohn-Sham free-
energy functional with respect to the wave functions and the
density matrix subject to the constraint on the total number
of electrons in the system. Subsequently, we discuss the local
variational real-space formulation of Kohn-Sham DFT, where
the computation of the Kohn-Sham electronic ground state
for a given position of atoms can be formulated as a local
variational problem involving wave functions, density matrix,
and electrostatic potentials. We then derive the expressions
for the configurational forces corresponding to geometry opti-
mization. Using the approach of inner variations, we evaluate
the generalized forces from the locally reformulated energy
functional corresponding to perturbations of the underlying
space. We note that the final form of the configurational force
expression involves integrals of Eshelby tensors contracted
with the gradient of the generator (ϒ) associated with the per-
turbation of the underlying space. The derived configurational
forces provide a unified framework to compute both forces
on atoms and stresses in periodic systems. To elaborate, the
force on any given atom is given by the configurational force
computed using a generator whose compact support includes
only the atom of interest, while the stress tensor is computed
by using a generator corresponding to affine deformations of
the underlying space. Subsequently, we present the details
involved in the numerical implementation of the configura-
tional force expressions within the framework of finite-element
discretization, and thereby discuss a computationally efficient
strategy to conduct geometry optimization using finite-element
basis.

Finally, we present the accuracy of the proposed configu-
rational force approach on sample benchmark problems. To
this end, we consider both nonperiodic and periodic material
systems, and conduct both pseudopotential and all-electron
calculations. We begin by examining the rates of convergence
of the finite-element approximation in the computed forces
and stresses. We observe a close to O(h2k−1) convergence
in all benchmark problems. Further, in order to assess the
variational nature of the computed forces and stresses, we
compare these with those obtained from finite-differencing
energies, which are in excellent agreement. As a further test,
we compute the forces and stresses as a function of bond length
or lattice parameter and compare these with the derivative of
polynomial fits to the energy dependence on these parameters.
These extensive tests have ascertained the variational nature
of the configurational forces in our numerical implementation.
We also compare the accuracies of forces and stresses obtained
from the proposed configurational force approach with those
obtained using external DFT packages, and find very good
agreement. Finally, we consider large materials systems com-
prising of an aluminum nanocluster containing 5 × 5 × 5 unit
cells (666 atoms) and an alkane chain containing 902 atoms,
where the finite-element discretized Kohn-Sham problem is
solved using the reduced-order scaling subspace projection
method [41] involving nonorthogonal localized wave func-
tions. We find that the configurational forces computed using
the reduced-order scaling method are in very good agreement
with those computed without the additional approximations
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used in the reduced-order scaling method, with differences
being well within the desired chemical accuracy.

The remainder of the paper is organized as follows: Section
II describes the formulation of the Kohn-Sham DFT problem
in the context of nonorthogonal wave functions, followed by
the local real-space reformulation of electrostatic interactions
in Sec. III. The configurational force expressions for both
nonperiodic and periodic cases are presented in Sec. IV, with
the details of the derivation presented in the Appendix. Section
V describes the numerical implementation of forces and
stresses in the context of finite-element discretization. Section
VI presents the results on various systems demonstrating the
accuracy and variational nature of the computed forces and
stresses. Finally, we conclude with a summary and outlook in
Sec. VII.

II. KOHN-SHAM DENSITY FUNCTIONAL THEORY

Consider a materials system consisting of Ne electrons
with Na nuclei whose position vectors are denoted by R =
{R1,R2,R3, . . . ,RNa

}. Neglecting spin, the free energy of the
system in Kohn-Sham density functional theory (DFT) [1,2]
at finite temperature [67] can be written as

F(�φ,�,R)

= Ts(�
φ,�) + Exc(ρ) + Eel(�

φ,�,R) − Eent(�
φ), (1)

where � = {φ1(x),φ2(x), . . . ,φN (x)} (N > Ne/2) denotes the
set of electronic wave functions. In all generality, we as-
sume that these wave functions are nonorthogonal in order
to realize a reduced-order scaling numerical implementation
of DFT [41,66]. Here, �φ denotes the matrix corresponding
to the single-particle density operator (�̂) expressed in the
nonorthogonal basis �, i.e., �φ

ij = ∑N
k=1 S−1

ik 〈φk|�̂|φj 〉, where

S−1
ik are the matrix elements of the inverse of the overlap matrix

given by

Sij =
∫

φ∗
i (x)φj (x) dx. (2)

We note that the superscript asterisk in the above, and
all the equations subsequently, denotes the complex conju-
gate. The electron density ρ in Eq. (1) can be expressed in terms
of the density matrix and the nonorthogonal wave functions as

ρ(x) = 2
N∑

i,j,k=1

�
φ

ij S−1
jk φ∗

k (x) φi(x). (3)

Further, Ts, which denotes the kinetic energy of noninteracting
electrons, is given by

Ts(�
φ,�) = 2

N∑
i,j,k=1

∫
�

φ

ij S−1
jk φ∗

k (x)

(
−1

2
∇2

)
φi(x) dx.

(4)

The exchange-correlation energy, which incorporates all the
quantum-mechanical interactions, is denoted by Exc(ρ). While
the explicit form of Exc(ρ) remains elusive, various approxima-
tions have been developed over the past decades, with the local
density approximation (LDA) [6] and generalized gradient
approximation (GGA) [68,69] being adopted across a range

of materials systems. In this work, LDA exchange-correlation
energy is adopted which has the following functional form:

Exc(ρ) =
∫

F (ρ) dx =
∫

εxc(ρ)ρ(x) dx, (5)

where εxc(ρ) = εx(ρ) + εc(ρ). In particular, we employ the
Slater exchange and Perdew-Zunger [70,71] form of the
correlation functional.

The electrostatic interaction energy Eel represents the in-
teractions between electrons and nuclei, which can be further
decomposed as

Eel(�
φ,�,R) = EH(ρ) + Eext(�

φ,�,R) + Ezz(R), (6)

where the first term EH is the Hartree energy representing
the electrostatic interaction energy between electrons, and
Ezz denotes the repulsive energy between nuclei. These are
given by

EH = 1

2

∫∫
ρ(x)ρ(y)

|x − y| dx dy,

Ezz = 1

2

∑
I,J �=I

ZIZJ

|RI − RJ | , (7)

with ZI denoting the charge on the I th nucleus. Eext in Eq. (6)
denotes the classical interaction energy between electrons and
nuclei, and is given by

Eext = −
∑

J

∫
ρ(x)

ZJ

|x − RJ | dx. (8)

As chemical bonding in many material systems is not in-
fluenced by the tightly bound core electrons close to the
nucleus of an atom, these core electrons may not play a
significant role in governing many materials properties. Hence,
the pseudopotential approach is commonly adopted, where
only wave functions for the valence electrons are computed in
an effective potential of the nucleus and core electrons given
by a pseudopotential. The pseudopotential is often defined by
the operator VPS = Vloc + Vnl, where Vloc is the local part of
the pseudopotential operator and Vnl is the nonlocal part of the
operator. In pseudopotential Kohn-Sham DFT, Eext is given by

Eext = 2
N∑

i,j,k=1

∫∫
�

φ

ij S−1
jk φ∗

k (x)VPS(x,y,R) φi(y) dy dx.

(9)

The norm-conserving Troullier-Martins pseudopotential [72]
in the Kleinman-Bylander form [73] is employed in this work,
where the action of the operatorVPS on the wave function φk(x)
is given by∫

Vloc(x,y,R)φi(y) dy

=
∑

J

V J
loc(|x − RJ |)φi(x), (10)

∫
Vnl(x,y,R)φi(y) dy

=
∑

J

∑
lm

C
J,i
lm V J

lmζ J
lm(x,RJ )�V J

l (|x − RJ |), (11)
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with

�V J
l (|x − RJ |) =V J

l (|x − RJ |) − V J
loc(|x − RJ |),

C
J,i
lm =

∫
ζ J
lm(y,RJ )�V J

l (|y − RJ |)φi(y) dy,

1

V J
lm

=
∫

ζ J
lm(y,RJ )�V J

l (|y − RJ |)ζ J
lm(y,RJ ) dy.

In the above Eqs. (10) and (11), Vloc(x,y,R) and Vnl(x,y,R)
denote the representation of the operators Vloc and Vnl in
the x basis, i.e., 〈x|VPS|y〉 = 〈x|Vloc + Vnl|y〉 = Vloc(x,y,R) +
Vnl(x,y,R). Further, we note that V J

loc(|x − RJ |) in Eq. (10)
denotes the local potential of atom J while V J

l (|x − RJ |) de-
notes the pseudopotential component of atom J corresponding
to the azimuthal quantum number l, and ζ J

lm(x,RJ ) is the cor-
responding single-atom pseudo-wave function with azimuthal
quantum number l and magnetic quantum number m.

In a nonperiodic setting, representing an isolated atomic
system, all integrals in Eqs. (4)–(11) are over R3 and the
summations include all atoms in the system. In the case of an
infinite periodic crystal, all integrals involving x in Eqs. (4)–
(11) are over the unit cell, whereas the integrals involving y are
over R3. Further, the summation over I is on atoms in the unit
cell, and the summation over J extends over all lattice sites.

The electronic entropy contribution Eent in Eq. (1) is
given by

Eent = −2 σ tr[�φ ln �φ + (I − �φ) ln(I − �φ)], (12)

where σ = kB T with kB denoting the Boltzmann constant and
T denoting the electronic temperature.

Finally, the ground state in Kohn-Sham DFT is governed
by the variational problem

min
R

min
�φ,�

Fc(�φ,�,R), (13)

where Fc = F − μ[2 tr(�φ) − Ne] with μ denoting the La-
grange multiplier (Fermi energy) enforcing the constraint
on number of electrons, i.e., 2 tr(�φ) = Ne. Equation (13)
indicates that the electronic ground state needs to be computed
for every configuration of the nuclei encountered during the
minimization procedure over the nuclear positions.

III. REAL-SPACE FORMULATION

In this section, we present the local variational real-space
formulation of Kohn-Sham DFT, which is subsequently used
to derive the expressions for configurational forces associated
with internal atomic relaxations and cell relaxation. We note
that the various components of the electrostatic interaction
energy [cf. Eq. (6)] are nonlocal in real space. These extended
interactions are typically computed in Fourier space, using
Fourier transforms. However, Fourier space formulations em-
ploying plane waves provide only uniform spatial resolution
and restrict simulation domains to periodic geometries and
boundary conditions. Thus, they are not well suited for material
systems involving molecules, nanoclusters, or systems con-
taining defects. Further, the nonlocality of the plane-wave basis
in real space limits the scalability of computations on parallel
computing platforms. Thus, there has been an increasing
focus on systematically improvable and scalable real-space

techniques for electronic structure calculations over the past
decade [50,74–80].

The real-space formulation discussed here is devoid of the
aforementioned limitations of a Fourier space formulation. The
proposed formulation extends the recent efforts in the local
reformulation of Kohn-Sham DFT [40,52,58], and differs from
prior efforts in the way the extended electrostatic interactions
have been treated. In particular, the proposed formulation is
crucial to developing a unified framework to compute the
configurational forces associated with both atomic relaxations
and cell relaxations, discussed subsequently. We note that
the treatment of extended electrostatic interactions is similar
to Das et al. [81], which was proposed in the context of
orbital-free DFT formulation. Here, we provide the relevant
details in the context of Kohn-Sham DFT.

Let δ̃(x − RI ) denote a regularized Dirac distribution lo-
cated at RI . Thus, the charge distribution of the I th nu-
clear charge is given by −ZI δ̃(x − RI ). We define the nu-
clear charge distribution b(x,R) = −∑

I ZI δ̃(|x − RI |) and
b(y,R) = −∑

J ZJ δ̃(|y − RJ |) to reformulate the repulsive
energy Ezz as

Ezz = 1

2

∫∫
b(x,R) b(y,R)

|x − y| dx dy − Eself, (14)

where Eself denotes the self-energy of the nuclear charges
which depends only on the nuclear charge distribution and can
be expressed as

Eself = −1

2

∑
I

∫
ZI δ̃(|x − RI |)V̄ I

δ̃
(x) dx, (15)

with V̄ I
δ̃

(x) denoting the electrostatic potential corresponding
to the I th nuclear charge −ZI δ̃(x − RI ) and is given by

V̄ I
δ̃

(x) =
∫ −ZI δ̃(|y − RI |)

|x − y| dy. (16)

Since the kernel associated with electrostatic interactions is
the Green’s function of the Laplace operator, the evaluation of
self-energy and the potential V̄ I

δ̃
(x) can be reformulated as the

following local variational problem:

Eself = −
∑

I

min
V I ∈H 1(R3)

{
1

8π

∫
|∇V I (x)|2 dx

+
∫

ZI δ̃(|x − RI |)V I (x) dx
}
, (17)

with V̄ I
δ̃

(x) being the minimizer of the variational problem
in Eq. (17) associated with the I th nucleus. In the preceding
equation, H 1(R3) denotes the Hilbert space of functions such
that the functions and their first-order derivatives are square
integrable on R3. Further, the local part of Eext in Eq. (9) can
be rewritten as

Eloc
ext (ρ,R) =

∫∫
ρ(x)b(y,R)

|x − y| dx dy +
∑

J

∫ (
V J

loc(|x − RJ |)

− V̄ J

δ̃
(|x − RJ |))ρ(x) dx. (18)

We note that ZJ in b(y,R) [and ZI in b(x,R)] denote the
valence charges of the J th (and I th) nucleus in the case of
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pseudopotential calculations, while, for all-electron calcula-
tions, they denote the atomic number with V J

loc = V̄ J

δ̃
. The

kernel corresponding to the extended electrostatic interactions

in the expressions for EH, Eloc
ext , and Ezz is the Green’s func-

tion of the Laplace operator. Thus, EH + Eloc
ext + Ezz can be

rewritten as the following local variational problem:

∫∫ [
1

2

ρ(x)ρ(y)

|x − y| + ρ(x)b(y,R)

|x − y| + 1

2

b(x,R)b(y,R)

|x − y|
]

dx dy +
∑

J

∫ (
V J

loc(|x − RJ |) − V̄ J

δ̃
(|x − RJ |))ρ(x) dx − Eself

= − min
ϕ∈Y

{
1

8π

∫
|∇ϕ(x)|2 dx −

∫
[ρ(x) + b(x,R)]ϕ(x) dx

}
+

∑
J

∫ (
V J

loc(|x − RJ |) − V̄ J

δ̃
(|x − RJ |))ρ(x) dx − Eself,

(19)

where ϕ(x) denotes the trial function for the total electrostatic potential due to the electron density and the nuclear charge
distribution, and Y is a suitable function space corresponding to the boundary conditions of the problem, discussed subsequently.
Using the local reformulation in Eqs. (17) and (19), the electrostatic interaction energy Eel in DFT can now be expressed as the
following variational problem:

Eel = EH + Eext + Ezz = max
ϕ∈Y

min
V I ∈H 1(R3)

Lel(�
φ,�,ϕ,V,R), (20)

where

Lel(�
φ,�,ϕ,V,R) = LALL

el (ρ,ϕ,V,R) + LPSP
el (�φ,�,R)

with

LALL
el (ρ,ϕ,V,R) =

∫ [
− 1

8π
|∇ϕ(x)|2 + [ρ(x) + b(x,R)]ϕ(x)

]
dx +

∑
I

∫ [
1

8π
|∇V I (x)|2 + ZI δ̃(|x − RI |)V I (x)

]
dx, (21)

LPSP
el (�φ,�,R) = Lloc(ρ,R) + Lnl(�φ,�,R), Lloc =

∑
J

∫ (
V J

loc(|x − RJ |) − V̄ J

δ̃
(|x − RJ |))ρ(x) dx,

Lnl = 2
N∑

i,j,k=1

∫∫
�

φ

ij S−1
jk φ∗

k (x)Vnl(x,y,R) φi(y) dx dy, (22)

with V = {V 1,V 2, . . . ,V Na } denoting the vector containing the trial electrostatic potentials corresponding to all nuclear charges
in the simulation domain. Further, the minimization over V I in Eq. (20) refers to a simultaneous minimization over all these
electrostatic potentials in V . We further note that LPSP

el (�φ,�,R) = 0 in the case of all-electron Kohn-Sham DFT calculations.
Thus, this local reformulation also provides a unified framework for both pseudopotential as well as all-electron DFT calculations.

Finally, using the local reformulation of the extended electrostatic interaction energy, the computation of the electronic ground
state for a given position of atoms in Eq. (13) can be formulated as the following local variational problem in wave functions,
density matrix, and electrostatic potentials:

F0(R) = min
�φ

min
�∈(Y)N

max
ϕ∈Y

L(�φ,�,ϕ; R), (23)

where L(�φ,�,ϕ; R) = L̃(�φ,�) + Lc(�φ) + min
V I ∈H 1(R3)

Lel(�
φ,�,ϕ,V; R)

with L̃(�φ,�) = Ts(�
φ,�) + Exc(ρ) + Eent(�

φ), (24)

Lc(�φ) = −μ[2 tr(�φ) − Ne]. (25)

In the above, Y denotes a suitable function space that guar-
antees the existence of minimizers. Further, we remark that
numerical computations involve the use of bounded domains,
which in nonperiodic calculations correspond to a large enough
domain containing the compact support of the wave functions,
and, in periodic calculations, correspond to the supercell.
Denoting such an appropriate bounded domain by � sub-

sequently, Y = H 1
0 (�) in the case of nonperiodic problems,

and Y = H 1
per(�) in the case of periodic problems. We note

that, in practice, the solution to the variational problem in
Eq. (23) is computed by taking recourse to the Kohn-Sham
equations, which constitutes a nonlinear eigenvalue problem
solved using self-consistent field iteration on the electron
density (cf. [40,58]).
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IV. CONFIGURATIONAL FORCES

We now derive the expressions for the configurational
forces corresponding to geometry optimization. To this end,
we employ the approach of inner variations, where we eval-
uate the generalized forces corresponding to perturbations
of underlying space, which provides a unified expression
for the generalized force corresponding to the geometry of
the simulation cell, internal atomic positions, as well as the
simulation domain boundary. Further, owing to the real-space
formulation in Sec. III, the derived expressions are applicable
to both pseudopotential and all-electron calculations.

In order to derive the expressions for the configurational
forces, we first define a bijective mapping τ ε : R3 → R3

which represents the infinitesimal perturbation of the under-
lying space, mapping a material point x to a new point x′ such
that τ 0 = I. Further, we define the generator of this mapping
as ϒ = d

dε
τ ε(x) |ε=0. We note that the mapping τ ε should be

constrained to rigid body deformations in the compact support
of the regularized nuclear charge distribution b(x) in order to
preserve the integral constraint

∫
δ̃(x − RI ) = 1. To this end,

τ ε(x) = Qε
I x + T ε

I in the compact support of δ̃(x − RI ) for
I = 1 . . . Na , where Qε

I is unitary, and Qε
I , T ε

I are independent
of x denoting rotation and translation operations, respectively.

A. Nonperiodic DFT calculations

We first discuss the case of nonperiodic problems with
bounded domains �, where � is large enough that the values
of wave functions are negligible outside of �, i.e., we assume
the wave functions have a compact support on �. We will

subsequently discuss the case of periodic calculations with
periodic boundary conditions. In view of the C0 finite-element
basis (continuous basis functions with piecewise continuous
derivatives) employed to discretize the DFT functional sub-
sequently, we recast Ts(�φ,�) in Eq. (24) as the following:

Ts(�
φ,�) = 2

N∑
i,j,k=1

∫
�

�
φ

ij S−1
jk φ∗

k (x)

(
−1

2
∇2

)
φi(x) dx

= 2
N∑

i,j,k=1

1

2

∫
�

�
φ

ij S−1
jk ∇φ∗

k (x) · ∇φi(x) dx.

In the above, we employ the divergence theorem and make
use of the fact that � ∈ (H 1

0 (�))N for nonperiodic problems.
Let us consider the perturbation of the underlying space

given by τ ε, which maps a material point x in � to x′ = τ ε(x)
in �′ (which denotes the image of � under the perturbation).
The ground-state energy in the perturbed space is given by

F0( τ ε) = Lε(�̄φε

,�̄
ε
,ϕ̄ε; Rε)

= L̃ε(�̄φε

,�̄
ε) + Lε

c(�̄φε

) + Lε
el

(
�̄

φε

,�̄
ε
,ϕ̄ε,V̄ε

δ̃
; Rε

)
,

(26)

where �̄
ε ∈ (H 1

0 (�′))N, ϕ̄ε ∈ H 1
0 (�′), V̄ε

δ̃
, and �̄

φε

are the
solutions of the saddle-point problem (23) on the perturbed
space. We now evaluate the configurational force by comput-
ing the Gâteaux derivative of F0( τ ε), i.e., d

dε
F0( τ ε)|ε=0 =

d
dε

(L̃ε + Lε
c + Lε

el)|ε=0, to arrive at (cf. Appendix for details of
the derivation)

dF0( τ ε)

dε

∣∣∣∣
ε=0

=
∫

�

E : ∇ϒ(x) dx +
∑

I

∫
R3

E′I : ∇ϒ(x) dx + FPSP, (27)

where E = Eloc + Enl and E′ denote Eshelby tensors whose expressions in terms of the solutions of the saddle-point problem

(23) on the original space (�̄φ0

, �̄
0
, ϕ̄0, V̄0

δ̃
) are provided below. We note that in the above expressions and, subsequently, the

outer product between two vectors is denoted by “⊗” the dot product between two vectors by “·” and dot product between two
tensors by “:”. Dropping the superscript 0 on the electronic fields for notational convenience, the Eshelby tensors are given by

Eloc =
( N∑

i,j,k=1

�̄
φ

ij S
−1
jk ∇φ̄∗

k (x) · ∇φ̄i(x) − 2
N∑

i,j,p,q=1

�̄
φ

ij S
−1
jp φ̄∗

p(x) φ̄q(x)H loc
qi + εxc(ρ̄)ρ̄(x) − 1

8π
|∇ϕ̄(x)|2 + ρ̄(x)ϕ̄(x)

+
∑

J

(
V J

loc − V̄ J

δ̃

)
ρ̄(x)

)
I −

N∑
i,j,k=1

�̄
φ

ij S
−1
jk

[∇φ̄∗
k (x) ⊗ ∇φ̄i(x) + ∇φ̄i(x) ⊗ ∇φ̄∗

k (x)
] + 1

4π
∇ϕ̄(x) ⊗ ∇ϕ̄(x),

Enl =
(

−2
N∑

i,j,p,q=1

�̄
φ

ij S
−1
jp φ̄∗

p(x) φ̄q(x)H nl
qi + 2

N∑
i,j,k=1

�̄
φ

ij S
−1
jk

(
Pnl

ki + Pnl
ik

∗))
I,

where

ρ̄(x) =2
N∑

i,j,k=1

�̄
φ

ij S−1
jk φ̄∗

k (x) φ̄i(x), Sjk =
∫

�

φ̄∗
j (x)φ̄k(x) dx,

H loc
qi =

∫
�

N∑
k=1

S−1
qk

(
1

2
∇φ̄∗

k (x) · ∇φ̄i(x) + φ̄∗
k (x) φ̄i(x)V loc

eff (ρ̄)

)
dx, H nl

qi =
∫

�

∫
�

N∑
k=1

S−1
qk φ̄∗

k (x)Vnl(x,y,R)φ̄i(y) dy dx,

Pnl
ki =

∑
J

∑
lm

V J
lm φ̄∗

k (x)ζ J
lm(x,RJ )�V J

l (|x − RJ |)
∫

�

ζ J
lm(y,RJ )�V J

l (|y − RJ |)φ̄i(y) dy.
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Further, the other terms in Eq. (27) are given by

E′I = 1

8π

∣∣∇V̄ I
δ̃

(x)
∣∣2

I − 1

4π
∇V̄ I

δ̃
(x) ⊗ ∇V̄ I

δ̃
(x),

FPSP =
∑

J

∫
�

ρ̄(x)
[∇(

V J
loc(|x − RJ |) − V̄ J

δ̃
(|x − RJ |))] · [ϒ(x) − ϒ(RJ )] dx + 2

N∑
i,j,k=1

�̄
φ

ij S
−1
jk

(
Fnl

ki + Fnl
ik

∗)
,

where

Fnl
ki =

∑
J

∑
lm

V J
lm

[ ∫
�

φ̄∗
k (x)∇(

ζ J
lm(x,RJ )�V J

l (|x − RJ |)) · [ϒ(x) − ϒ(RJ )] dx
][∫

�

ζ J
lm(y,RJ )�V J

l (|y − RJ |)φ̄i(y) dy
]
.

We note that the terms ϕ b and δ̃(|x − RI |) V̄ I
δ̃

(x) do not appear in the expressions for Eloc and E′
I , respectively, owing to the

restriction that τ ε(x) corresponds to rigid body deformations in the compact support of the nuclear charge distribution b(x). Hence,
in the compact support of b, we have ∇ · ϒ = 0. We note that the second term in Eq. (27) involves an integral over R3 which
appears intractable. However, we can split this integral on a bounded domain Q, containing the compact support of δ̃(|x − RI |),
and its complement R3/Q which can in turn be computed as a surface integral. Thus,∫

R3
E′I : ∇ϒ dx =

∫
Q

E′I : ∇ϒ dx +
∫
R3/Q

E′I : ∇ϒ dx,

which can be written as the following equation:∫
R3

E′I : ∇ϒ dx =
∫

Q

E′I : ∇ϒ dx −
∫

∂Q

E′I : n̂ ⊗ ϒ ds, (28)

where n̂ denotes the outward normal to the surface ∂Q. The last equality follows from the fact that ∇2V̄ I
δ̃

= 0 on R3/Q.
Although the expression for configurational force in Eq. (27) is derived in the case of pseudopotential calculations, the expression
for all-electron calculations is obtained by using V J

loc(|x − RJ |) = V̄ J

δ̃
(|x − RJ |), Enl = 0, and FPSP = 0. Finally, we note that

the force on any given atom is computed by choosing ϒ such that its compact support only contains the atom of interest. We
refer to the Appendix for the detailed derivation of Eq. (27).

The computation of electronic ground state in Eq. (23) is equivalent to finding the occupied eigensubspace VN spanned by
the eigenfunctions (canonical wave functions) corresponding to the smallest N eigenvalues of the Kohn-Sham self-consistent
Hamiltonian. Consequently, if �̄⊥ = {ψ̄1,ψ̄2,ψ̄3 . . . ψ̄N } represent the orthonormal canonical eigenfunctions spanning the
occupied subspace VN of the Kohn-Sham Hamiltonian, the expressions for the Eshelby tensor E and FPSP in Eq. (27) reduce to
the following form in terms of �̄⊥, f̄i (orbital occupancy functions), ε̄i (Kohn-Sham eigenvalues), and ϕ̄ (electrostatic potential):

E =
(

N∑
i=1

(f̄i∇ψ̄∗
i (x) · ∇ψ̄i(x) − 2 f̄i ε̄i ψ̄

∗
i (x) ψ̄i(x)) + εxc(ρ̄)ρ̄(x) − 1

8π
|∇ϕ̄(x)|2 + ρ̄(x)ϕ̄(x)

+
∑

J

(
V J

loc − V̄ J

δ̃

)
ρ̄(x) + Enl + Enl∗

)
I −

N∑
i=1

f̄i[∇ψ̄∗
i (x) ⊗ ∇ψ̄i(x) + ∇ψ̄i(x) ⊗ ∇ψ̄∗

i (x)] + 1

4π
∇ϕ̄(x) ⊗ ∇ϕ̄(x), (29)

where

ρ̄(x) = 2
∑

i

f̄i ψ̄∗
i (x) ψ̄i(x), f̄i = 1

1 + exp
(

ε̄i−μ

kB T

) ,

Enl = 2
N∑

i=1

∑
J

∑
lm

f̄i V J
lm ψ̄∗

i (x) ζ J
lm(x,RJ )�V J

l (|x − RJ |)
∫

�

ζ J
lm(y,RJ ) �V J

l (|y − RJ |)ψ̄i(y) dy.

Further,

FPSP =
∑

J

∫
�

ρ̄(x)
[∇(

V J
loc(|x − RJ |) − V̄ J

δ̃
(|x − RJ |))] · [ϒ(x) − ϒ(RJ )] dx + Fnl + Fnl∗,

where

Fnl = 2
N∑

i=1

∑
J

∑
lm

f̄iV
J
lm

[ ∫
�

ψ̄∗
i (x)∇(

ζ J
lm(x,RJ )�V J

l (|x − RJ |)) · [ϒ(x) − ϒ(RJ )] dx
]

×
[∫

�

ζ J
lm(y,RJ )�V J

l (|y − RJ |)ψ̄i(y) dy
]
.
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In the next section, we present the configurational forces for the case of DFT calculations involving periodic geometries and
boundary conditions.

B. Periodic DFT calculations

In the case of infinite periodic crystals, the Kohn-Sham eigenfunctions are given by the Bloch theorem [82], and the Bloch-
periodic Kohn-Sham problem on an infinite crystal can be reduced to a periodic problem on a unit cell. In numerical simulations
involving periodic calculations, it is computationally efficient to deal with unit cells, which are much smaller than the supercells,
and the computation of electron density, kinetic energy, and the electrostatic interaction energy in the case of pseudopotentials
involves an additional integration over the Brillouin zone that is computed using numerical quadratures [6].

Consider a unit cell �p (periodic domain) containing Na atoms and Ne electrons with nuclei positioned at R =
{R1,R2,R3, . . . ,RNa

}. To this end, the kinetic energy of noninteracting electrons per unit cell, in terms of the orthonormal
wave functions and the orbital occupancy functions can be written as

Ts( f ,�⊥) = 2
N∑

n=1

−
∫

BZ

∫
�p

fn(k) ψ∗
n (x,k)

(
−1

2
∇2

)
ψn(x,k) dx dk, (30)

where −∫BZ denotes the volume average of the integral over the Brillouin zone corresponding to �p. In the above,
�⊥ = {ψ1(x,k),ψ2(x,k), . . . ,ψN (x,k); ∀ k ∈ BZ} and f denotes the vector of orbital occupancy functions, i.e., f =
{f1(k),f2(k), . . . ,fN (k); ∀ k ∈ BZ}, while N > Ne/2 denotes the number of states of interest for any given point in the Brillouin
zone. Using Bloch theorem, ψn(x,k) can be expressed as

ψn(x,k) = eik·xun(x,k), (31)

where i = √−1 and un(x,k) is a function that is periodic on the unit cell. Denoting un(x,k) and fn(k) as unk(x) and fnk

subsequently, Ts in Eq. (30) can be rewritten using Eq. (31) as

Ts( f ,U) = 2
N∑

n=1

−
∫

BZ

∫
�p

fnku
∗
nk

(
−1

2
∇2 − ik · ∇ + 1

2
|k|2

)
unk dx dk, (32)

where U = {Uk; ∀ k ∈ BZ} and Uk = {u1k(x),u2k(x) . . . uNk(x)}. In view of the C0 finite-element basis (continuous basis
functions with piecewise continuous derivatives) employed subsequently to discretize the Kohn-Sham functional, it is convenient
to recast the above equation to the following form involving partial derivatives of only first order:

Ts( f ,U) = 2
N∑

n=1

−
∫

BZ

∫
�p

fnk

(
1

2
|∇unk|2 − iu∗

nkk · ∇unk + 1

2
|k|2|unk|2

)
dx dk. (33)

To arrive at the above equation, we employ the divergence theorem and use the fact unk(x) ∈ H 1
per(�p).

The contribution to the electrostatic interaction energy from the nonlocal pseudopotential is given by

Lnl( f ,�⊥) = 2
N∑

n=1

−
∫

BZ
fnk

[∫
�p

ψ∗
n (x,k)

( ∫
R3

Vnl(x,y,R)ψn(y,k) dy
)

dx
]

dk. (34)

Using Bloch theorem, Eq. (34) is rewritten as

Lnl( f ,U) = 2
N∑

n=1

−
∫

BZ
fnk

[∫
�p

u∗
nk(x)e−ik·x

( ∫
R3

Vnl(x,y,R)eik·y unk(y) dy
)

dx
]

dk. (35)

In the above equation, within the Kleinman-Bylander setting we have

e−ik·x
∫
R3

Vnl(x,y,R)eik·y unk(y) dy =
∑
a,l,m

∑
r

e−ik·(x−Lr )C
a,nk
lm V a

lm ζ a
lm(x,Ra + Lr )�V a

l [|x − (Ra + Lr )|], (36)

where the summation over r runs on all lattice points in the periodic crystal and a runs on all the Na atoms in the unit cell. We
further note that Ca

lm and V a
lm in the above equation have the following form:

C
a,nk
lm =

∫
�p

∑
r

eik.(y−Lr )ζ a
lm(y,Ra + Lr )�V a

l [|y − (Ra + Lr )|]unk(y) dy,

1

V a
lm

=
∫

�p

∑
r

ζ a
lm(y,Ra + Lr ) �V a

l [|y − (Ra + Lr )|]ζ a
lm(y,Ra + Lr ) dy.

Finally, using the local formulation of the extended electrostatic interaction energy presented in Sec. III, the computation of the
electronic ground state, for a given position of atoms, in the context of the periodic DFT calculations is governed by the following
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variational problem:

E0(R) = min
fk∈R/R−

min
Uk∈(Y)N

max
ϕ∈Y

L( f ,U,ϕ; R) such that
∫

�p

u∗
ik(x)uj k(x) dx = δij , 2

N∑
n=1

−
∫

BZ
fnk dk = Ne, (37)

where

L( f ,U,ϕ; R) = Ts( f ,U) + Exc(ρ) − Eent( f ) + min
V I ∈H 1(R3)

Lel( f ,U,ϕ,V; R),

Lel( f ,U,ϕ,V; R) =
∫

�p

[
− 1

8π
|∇ϕ(x)|2 + [ρ(x) + b(x,R)]ϕ(x)

]
dx +

∑
I

∫
R3

[
1

8π
|∇V I (x)|2 + ZI δ̃(|x − RI |)V I (x)

]
dx

+
∑

a

∑
r

∫
�p

(
V a

loc[|x − (Ra + Lr )|] − V̄ a

δ̃
[|x − (Ra + Lr )|])ρ(x) dx + Lnl( f ,U),

ρ(x) = 2
N∑

n=1

−
∫

BZ
fnk|unk(x)|2 dk, Eent( f ) = −2kBT

N∑
n=1

−
∫

BZ
[fnk log fnk + (1 − fnk) log(1 − fnk)] dk.

In the above, we note thatY = H 1
per(�p). In order to compute the configurational force, we follow a similar procedure as in the case

of nonperiodic calculations. Let x denote a point in �p, whose image in �′
p = τ ε(�p) is x′ = τ ε(x) with ϒ = d

dε
τ ε|ε=0 being the

generator of the underlying deformation. We restrict τ ε to deformations that preserve the periodic geometry, i.e., �′
p represents

a periodic domain, given that �p is a periodic domain. Further, let k′ = κε(k) correspond to the bijective mapping representing
the infinitesimal perturbation of the reciprocal space due to the underlying deformation of the real space. We now evaluate
the configurational force in the periodic setting by computing the Gâteaux derivative of E0( τ ε) = Lε( f̄

ε
,Ūε

,ϕ̄ε; Rε), where
Ū ε

k′ ∈ (H 1
per(�

′
p))N, ϕ̄ε ∈ H 1

per(�
′
p), f̄

ε
are the solutions of the saddle-point variational problem in Eq. (37). The configurational

force is given by (cf. Appendix for detailed derivation)

d E0( τ ε)

dε

∣∣∣∣
ε=0

=
∫

�p

E : ∇ϒ(x) dx +
∑

I

∫
R3

E′I : ∇ϒ(x) dx + FPSP + FK, (38)

where E and E′ denote Eshelby tensors whose expressions in terms of the solutions of the saddle-point problem (37)
( f̄

0
, Ū0

, ϕ̄0,V0
δ̃
) solved over �p are given below. Dropping the superscript 0 on the electronic fields for notational convenience,

we have

E =
(

N∑
n=1

−
∫

BZ
f̄nk(|∇ūnk(x)|2 − 2 i ū∗

nk(x) k · ∇ūnk(x) + (|k|2 − 2 ε̄nk) |ūnk(x)|2) dk + εxc(ρ̄)ρ̄(x) − 1

8π
|∇ϕ̄(x)|2 + ρ̄(x)ϕ̄(x)

+
∑

a

∑
r

(
V a

loc[|x − (Ra + Lr )|] − V̄ a

δ̃
[|x − (Ra + Lr )|])ρ̄(x) + Enl + Enl∗

)
I

−
N∑

n=1

−
∫

BZ
f̄nk[∇ū∗

nk(x) ⊗ ∇ūnk(x) + ∇ūnk(x) ⊗ ∇ū∗
nk(x) − 2 i ū∗

nk(∇ūnk ⊗ k)] dk + 1

4π
∇ϕ̄(x) ⊗ ∇ϕ̄(x),

where

Enl = 2
N∑

n=1

∑
a,l,m

−
∫

BZ
f̄nk

∑
r

ū∗
nk(x) e−ik·(x−Lr ) C

a,nk
lm V a

lm ζ a
lm(x,Ra + Lr )�V a

l [|x − (Ra + Lr )|] dk.

Further, the other terms in Eq. (38) are given by

E′I = 1

8π

∣∣∇V̄ I
δ̃

(x)
∣∣2

I − 1

4π
∇V̄ I

δ̃
(x) ⊗ ∇V̄ I

δ̃
(x),

FPSP =
∑

a

∑
r

∫
�p

ρ̄(x)
[∇(

V a
loc[|x − (Ra + Lr )|] − V̄ a

δ̃
[|x − (Ra + Lr )|])] · [ϒ(x) − ϒ(Ra + Lr )] dx + Fnl + Fnl∗,

where

Fnl = 2
N∑

n=1

∑
a,l,m

−
∫

BZ

∫
�p

f̄nk

∑
r

ū∗
nk(x)e−ik·(x−Lr )C

a,nk
lm V a

lm

[∇(
ζ a
lm(x,Ra + Lr )�V a

l [|x − (Ra + Lr )|])
·[ϒ(x) − ϒ(Ra + Lr )] − ζ a

lm(x,Ra + Lr )�V a
l [|x − (Ra + Lr )|](ik · (ϒ(x) − [ϒ(Ra + Lr ) − ϒ(Ra)]))

]
dx dk,
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and finally we have

FK =
N∑

n=1

−
∫

BZ

∫
�p

f̄nk

(
−2 i ū∗

nk(x)
d

dε
κε(k)

∣∣∣∣
ε=0

· ∇ūnk(x) + d

dε
|κε(k)|2

∣∣∣∣
ε=0

|ūnk(x)|2
)

dx dk

+ 2
N∑

n=1

∑
a,l,m

−
∫

BZ
f̄nkV

a
lm

d

dε

{[∫
�p

∑
r

ū∗
nk(x) e−iκε(k).(x−Lr ) ζ a

lm(x,Ra + Lr ) �V a
l [|x − (Ra + Lr )|] dx

]

×
[∫

�p

∑
s

eiκε(k).(y−Ls ) ζ a
lm(y,Ra + Ls) �V a

l [|y − (Ra + Ls)|] ūnk(y) dy
]}∣∣∣∣

ε=0

dk.

In the above, ε̄nk (1 � n � N ) denote the smallest N eigenvalues in the Kohn-Sham eigenvalue problem, which arises from the
Euler-Lagrange equations of the variational problem in Eq. (37). The second term in Eq. (38), involving an integral over R3, is
evaluated as explained in Eq. (28) of the previous subsection. We note that the expression for configurational force in Eq. (38)
is equally applicable for all-electron calculations by using V a

loc = V̄ a

δ̃
, Enl = 0, FPSP = 0. The force on any given atom in �p is

computed via Eq. (38) by choosing ϒ such that its compact support lies within �p and contains only the atom of interest. In this
case, we note that k′ = k, and, thus, FK = 0.

Computation of stress tensor. We now discuss the eval-
uation of the stress tensor, associated with cell relaxations,
using the derived configurational force expression. Geometry
optimization of the unit cell is realized by application of affine
deformations, which preserves the periodicity of the cell. Thus,
in order to compute the stress tensor, we chose an affine
perturbation of the underlying space:

( τ ε(x))i = x ′
i = xi + εCijxj ⇒ ϒi = Cijxj

⇒ ϒ = Cx, (39)

where C is independent of x. The stress tensor is the derivative
of the energy density with respect to the infinitesimal strain
tensor E , and is given by

σij = 1

�p

∂E0

∂Eij
. (40)

Using Eq. (39), the deformation gradient F = ∂x′
∂x is given by

F = I + εC , where ε is a small, denoting an infinitesimal
perturbation. Thus, the strain tensor E is given by

E = 1
2 (FT F − I) = 1

2ε (CT + C) + O(ε2). (41)

We note that the energyE0(E(ε)) can be expanded about ε = 0
as

E0(E(ε)) = E0(E(ε = 0)) +
(

∂E0

∂E

∣∣∣∣
E(ε=0)

: E
)

+ O(ε2),

which, in turn, can be written using Eqs. (40) and (41) as

E0(E(ε)) = E0(E(ε = 0)) + �p
(
σ : 1

2ε (CT + C)
) + O(ε2).

Thus, the Gâteaux derivative d E0( τ ε)
dε

|
ε=0

, which is the con-
figurational force, can be written in terms of stress tensor σ

as

d E0( τ ε)

dε

∣∣∣∣
ε=0

= �p
1

2
((C + CT ) : σ ) = �p (C : σ ). (42)

The second equality in the above equation results from the
symmetry of the stress tensor σ .

Next, we consider the configurational force associated with
affine perturbation, given by Eq. (39), evaluated using Eq. (38).
To this end, we note that in the reciprocal space k′ = κε(k) =
(I − εCT )k, when ϒ(x) is given by Eq. (39). Substituting ϒ =
Cx and κε(k) = (I − εCT )k in (38) we have

d E0( τ ε)

dε

∣∣∣∣
ε=0

= C :

(∫
�p

(E + Ẽ) dx +
∫
R3

∑
I

E′I dx

)
,

(43)

where E and E′I are defined as in (38), and Ẽ is the tensor aris-
ing out of the term F PSP + F k in Eq. (38). Finally, comparing
Eqs. (42) and (43), we arrive at the following expression for
the stress tensor σ :

σ = 1

�p

(∫
�p

(E + Ẽ) dx +
∫
R3

∑
I

E′I dx

)
. (44)

Ẽ in the above equation can be expressed as

Ẽ = EPSP + EK (45)

and the expressions for EPSP and EK in the above are given
below:

EPSP =
∑

a

∑
r

∫
�p

ρ̄(x)
[∇(

V a
loc[|x − (Ra + Lr |)] − V̄ a

δ̃
[|x − (Ra + Lr |)]

)] ⊗ [x − (Ra + Lr )] dx + Enl + Enl∗, (46)

where

Enl = 2
N∑

n=1

∑
a,l,m

−
∫

BZ

∫
�p

f̄nk

∑
r

ū∗
nk(x)e−ik·(x−Lr )C

a,nk
lm V a

lm∇(
ζ a
lm(x,Ra + Lr )�V a

l [|x − (Ra + Lr )|]) ⊗ [x − (Ra + Lr )] dx dk,

(47)
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and finally we have

EK =
N∑

n=1

−
∫

BZ

∫
�p

f̄nk(2 i ū∗
nk(x)[k ⊗ ∇ūnk(x)] − 2(k ⊗ k)|ūnk(x)|2) dx dk. (48)

V. NUMERICAL IMPLEMENTATION

In this section, we present the details of the numerical
implementation of configurational forces within the framework
of finite-element discretization. Subsequently, we discuss a
computationally efficient and robust strategy to conduct atomic
relaxations and cell relaxations using the finite-element basis.

A. Finite-element discretization

Although the finite-element (FE) basis offers some unique
advantages for electronic structure calculations, initial studies
[38,46,58] which employed linear finite-element basis func-
tions suggested that they require a large number of basis
functions, of the order of 100 000 basis functions per atom, or
more, were required to achieve chemical accuracy in electronic
structure calculations. This compared poorly with plane-wave
basis and atomic-orbital type basis. A recent investigation [40]
has indicated that the use of adaptive higher-order spectral
finite elements can significantly improve the computational
efficiency of real-space electronic structure calculations. In
particular, staggering computational savings of the order of
1000-fold relative to linear finite elements for both all-electron
and pseudopotential calculations have been realized. Further,
for accuracies commensurate with chemical accuracy, it was
demonstrated that the computational efficiency afforded by
higher-order finite-element discretizations is competing with
plane-wave discretizations for pseudopotential calculations
[40] and with Gaussian basis for all-electron calculations using
enrichment finite-element basis [64]. Efficient computational
strategies [40–42,64] in conjunction with finite-element dis-
cretization have enabled large-scale real-space Kohn-Sham
DFT calculations on material systems containing up to 10 000
atoms in the case of pseudopotential calculations and 10 000
electrons in the case of all-electron calculations.

We note that the expressions derived for evaluating the
configurational forces require that electronic fields satisfy
the Euler-Lagrange equations corresponding to the variational
problem (23) in the case of nonperiodic problems, and (37) in
the case of periodic calculations, i.e., the electronic fields are
at their ground-state corresponding to the Kohn-Sham energy
functional. To this end, the Kohn-Sham ground state for a given
position of atoms is obtained by computing self-consistently
the occupied eigensubspace of the Kohn-Sham eigenvalue
problem while evaluating the electrostatic potentials ϕ̄ and V̄ I

δ̃
via the Poisson problems in Eq. (20). In this work, we employ
higher-order finite-element basis for all the electronic fields
involved in the Kohn-Sham problem. Let VM

h represent the
M-dimensional subspace spanned by the finite-element basis
Nj (x) : 1 � j � M , a piecewise polynomial basis generated
from a finite-element discretization [37] with characteristic
mesh size h. The representation of the various electronic
fields in the Kohn-Sham problem (the wave functions and the

electrostatic potential) in the finite-element basis is given by

gh(x) =
M∑
i=1

Ni(x)gi, (49)

where gh(x) denotes the finite-element discretized electronic
field with gi denoting the coefficients in the expansion. We note
that gi also corresponds to the nodal values at the ith node on
the finite-element mesh. The finite-element discretization of
the Poisson problems corresponding to Eq. (20) results in the
following linear system of equations:

Kϕ = rtot; KV I = rI , (50)

where Kjk = (1/4π )
∫ ∇Nj (x) · ∇Nk(x) dx, r tot

j = ∫
[ρh(x)

+ b(x,R)]Nj (x) dx and further we have rI
j = ∫

ZIδ(x −
RI )Nj (x) dx. ϕ denotes the discrete electrostatic potential
corresponding to the sum of electron density ρh(x) and the
nuclear charge distribution b(x,R) = ∑

I ZI δ(x − RI ). The
discrete nuclear potential corresponding to the I th nuclear
charge ZIδ(x − RI ), computed in the finite-element basis, is
denoted as V I . We note that the nuclear charges are located on
the nodes of the finite-element triangulation, and are treated
as point charges [ZIδ(x − RI )], and the discreteness of the
finite-element triangulation provides a regularization of the
potential fields.

We next discuss the discretization of the Kohn-Sham
eigenvalue problem. Using the Löwdin orthonormalized finite-
element basis [qj (x) = ∑M

k=1 M
−1/2
jk Nk(x)], the Kohn-Sham

eigenvalue problem reduces to the following standard eigen-
value problem [40]:

H̄�̄ i = εh
i �̄ i , (51)

where H̄ = M−1/2HM−1/2, with

Hjk =1

2

∫
∇Nj (x) · ∇Nk(x) dx

+
∫

Nj (x)
(
V

loc,h
eff + V h

nl

)
Nk(x) dx.

The discrete Kohn-Sham eigenvalue problem (51) is solved
using a self-consistent field iteration (SCF) with Anderson
mixing scheme by employing either “ChFSI-FE” technique
[40] or “SubPJ-FE” [41] method. In each SCF iteration,
the “ChFSI-FE” technique [40] comprises of employing
Chebyshev filtering [83] to efficiently compute the occupied
eigenspace using spectral finite elements in conjunction with
Gauss-Lobatto quadrature for numerical integration. Upon
computing the approximate eigenspace, the Chebyshev fil-
tered vectors spanning the eigenspace are orthonormalized
and, subsequently, the projection of the Hamiltonian into
this orthonormal basis is computed. Finally, the projected
Hamiltonian is diagonalized to compute the eigenvalues and
eigenvectors, which, in turn, are used in the computation of the
electron density. On the other hand, in the “SubPJ-FE” method
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[41], in each SCF iteration, the Chebyshev filter is applied to
a subspace (spanned by localized functions) to compute an
approximation to the occupied eigenspace. Then, a localization
procedure is employed to construct nonorthogonal localized
wave functions spanning the Chebyshev filtered space. The
localized functions are truncated using a truncation tolerance,
below which they are set to zero, to provide a compact
support for these functions. The Kohn-Sham Hamiltonian is
then projected into this localized basis, and a Fermi-operator
expansion in terms of the projected Hamiltonian is employed
to compute the electron density. We note that “SubPJ-FE”
has enabled large-scale electronic structure calculations us-
ing spectral finite-element discretizations with reduced order
scaling, and, importantly, the method treats both metallic and
insulating systems on a similar footing.

Upon computing the Kohn-Sham electronic ground state
for a given position of atoms in the discrete setting, in order to
compute the forces on atoms we make use of the expressions for
configurational forces in Sec. IV. Note that the configurational
force expressions have been derived in the continuum setting,
and the force can be evaluated at every material point x
in the domain with an appropriate choice of ϒ(x). In the
discrete finite-element setting, we note that the ground-state
energy is not only a function of position of atoms, but also a
function of position of the nodes contained in the underlying
finite-element triangulation. Hence, in addition to the physical
force associated with the atoms, there is an additional mesh
force (Pulay force) on all the nodes of the FE triangulation.
The configurational force expressions presented in Sec. IV,
which is a variational force, inherently accounts for these
contributions.

In order to evaluate the configurational force in the discrete
setting, we discretize the generator ϒ(x), representing the per-
turbation of the underlying space to lie in the finite-dimensional
subspace VM̃

h ⊂ VM
h spanned by the M̃ linear finite-element

basis functions {Ñk(x)}. We note that the subparametric lin-
ear interpolation of the geometry in our FE implementation
restricts the perturbation of the underlying geometry ϒh(x) to
lie in the space VM̃

h spanned by the linear finite-element basis
functions as

ϒh
j (x) =

∑
i

ϒi,j Ñi(x), i = 1 . . . M̃ and j = 1,2,3 (52)

where Ñi(x) is the linear finite-element basis function associ-
ated with node i, and ϒi,j is the nodal value of the generator
associated with the node i in the j th direction. To evaluate the
force fhi,j acting on the ith node in the j th direction, we use (52)
with ϒi,j = 1 for the ith node and j th direction, and ϒi,j = 0
otherwise. Finally, the expression for the configurational force
in (27) reduces to

fhi,j =
3∑

p=1

(∫
�

Eh
jp

∂Ñi(x)

∂xp

dx +
∑

I

∫
R3

E′h
jp

I ∂Ñi(x)

∂xp

dx

)

+ FhPSP
i,j , where j = 1,2,3 and i = 1 . . . M̃. (53)

In the above equation (53), Eh
jp and E′h

jp

I
represent the (j,p)

component of the Eshelby tensors E and E′I [cf. Eqs. (27)
and (38)] in their discrete form involving the discrete wave

functions (�̄h for the nonperiodic case and Ūh for the periodic
case) and the discrete electrostatic potentials ϕ̄h, V̄ Ih

δ̃
. We note

that FhPSP
i,j = 0 in the case of all-electron calculations. In the

case of pseudopotential calculations, the term FPSP in Eq. (27)
involves expressions of the form ∇p(x) · [ϒ(x) − ϒ(RJ )]

which reduce to the form ∂p

∂xj
[Ñi(x) − 1] or ∂p

∂xj
(Ñi(x)) in FhPSP

i,j ,
depending on whether a nucleus lies on the finite-element node
i or not.

(a) Atomic relaxations. We recall from Eq. (13) that the
overall ground state in DFT is obtained by minimizing the
Kohn-Sham energy functional over the nuclear positions, while
obtaining the electronic ground state for every configuration
of nuclei encountered during the minimization over nuclear
positions. This involves driving the forces associated with the
atoms to zero, in order to obtain the equilibrium configuration
of atoms in a given material system. We now discuss a
computationally efficient strategy to evaluate the forces on
atoms within the finite-element framework.

It is evident from Eq. (53) that the configurational force can
be computed on every node of the underlying FE triangulation.
An ideal approach for atomic relaxations is to drive the config-
urational forces on all M̃ nodes below a prescribed tolerance.
However, this approach is not computationally efficient as
the number of degrees of freedom involved in the atomic
relaxation will scale with the number of nodes in the underlying
FE mesh. Furthermore, those nodes with atomic nuclei can
encounter large displacements during the iterative process of
atomic relaxations, which can result in a deterioration of the
quality of the FE mesh. To circumvent the above issues, we
move a ball of nodes around every nucleus to design a robust
atomic relaxation procedure. To this end, we compute the
configurational force associated with an atom I using the
generator ϒj (x) to be of the form �(x − RI ), which is a
localized function around the atom of interest. In this work,
we choose �(x − RI ) to be a Gaussian function which has the
following form:

�(x − RI ) = e−α|x−RI |2 , (54)

where the parameter α > 0 determines the radius of influence
of the Gaussian function. Using the finite-element discretiza-
tion of ϒ(x), the function �(x − RI ) is interpolated to obtain

ϒh
j (x) = �h(x − RI ) =

M̃∑
i=1

ϒi,j Ñi(x), j = 1,2,3 (55)

where ϒi,j = exp(−α|xi − RI |2) with xi denoting the position
coordinate of ith linear finite-element node. Finally, using
Eq. (53), the configurational force associated with the gen-
erator �h(x − RI ) is given by

fhI,j =
M̃∑
i=1

fhi,j e−α|xi−RI |2 . (56)

It is evident from Eq. (56) that the total degrees of freedom in
the atomic relaxation procedure is now commensurate with the
number of atoms. We determine the equilibrium configuration
of atoms by driving fhI,j below a prescribed tolerance.
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(b) Periodic cell relaxations. The configurational force
derived in Sec. IV provides the generalized variational force
with respect to both the internal positions of atoms as well as
the external cell domain in the case of periodic calculations.
Geometry optimization involving external cell relaxation is
performed by application of affine deformations that change
the shape of the cell, while preserving the periodicity of its
faces. Hence, we restrict ϒ to affine deformations to compute
the stresses, as discussed in Sec. IV. We note that affine
functions are exactly represented by linear FE basis functions,
and, thus, the stress on a unit cell, in the discrete setting, is
given by

σ = 1

�p

(∫
�p

(Eh + Ẽ
h
) dx +

∫
R3

∑
I

E′hI
dx

)
, (57)

where Eh and Ẽ
h

are the Eshelby tensors in Eq. (44) expressed
in their discrete form, involving the discrete wave functions
Ūh and the discrete electrostatic potentials ϕ̄h, V̄ Ih

δ̃
.

VI. RESULTS AND DISCUSSION

In this section, we discuss the accuracy and performance
of the proposed configurational force approach on benchmark
problems within the framework of spectral finite-element
discretization. We use Eqs. (56) and (53) to evaluate atomic
forces, and (57) to evaluate periodic unit-cell stresses in all the
benchmark problems considered in this section.

We first consider nonperiodic systems involving CO, CH4,
N2, and SiF4 molecules. All-electron calculations have been
performed on CO and CH4 molecules, while norm-conserving
Troullier-Martins pseudopotential in the Kleinman-Bylander
form [72,73] has been employed in the studies on N2 and SiF4

molecules. In these nonperiodic benchmark examples, we ex-
amine the numerical rates of convergence of the finite-element
approximation in the atomic forces for a given position of
atoms, using a sequence of meshes with decreasing mesh sizes
employing higher-order finite-element interpolating polyno-
mials. Further, the computed Kohn-Sham DFT ground-state
energies as a function of bond lengths are fit using polynomial
functions, and the derivatives of these curves are compared
with the computed atomic forces using the configurational
force approach.

We then consider all-electron and norm-conserving
Troullier-Martins pseudopotential periodic calculations on
systems comprising of Al face-centered-cubic unit cell and
Li body-centered-cubic unit cell. In these periodic systems,
we examine the numerical rates of convergence of the finite-
element approximation in the atomic forces on perturbed atoms
and the unit-cell stresses, using a sequence of meshes with
decreasing mesh sizes. Further, similar to the nonperiodic
studies, the Kohn-Sham ground-state energies are plotted as
a function of the atomic displacement in the unit cells and the
derivatives of these curves are compared with the computed
forces. The Kohn-Sham ground-state energies are also plotted
as a function of the lattice parameter, and the derivatives
of these curves are compared with the computed stresses
using the proposed configurational force approach. Wherever
applicable, we benchmark the accuracies of forces and stresses
obtained with calculations conducted using external DFT

packages. We note that in all the above benchmark studies,
the finite-element discretized Kohn-Sham problem is solved
using the Chebyshev filtered subspace iteration method [40]
(ChFSI-FE), and the forces and stresses are evaluated in
terms of discretized electronic fields involving orthogonal
canonical eigenfunctions and electrostatic potentials obtained
using ChFSI-FE procedure.

Finally, we consider benchmark studies involving larger
materials systems: aluminum nanocluster containing 5 × 5 ×
5 unit cells (666 atoms) and an alkane chain containing 902
atoms. Here, the finite-element discretized Kohn-Sham prob-
lem is solved using the subspace projection method (SubPJ-
FE) [41], and the forces on all the atoms are computed in
terms of discretized electronic fields involving nonorthogonal
localized wave functions. These forces are then compared with
those obtained using ChFSI-FE procedure involving orthogo-
nal wave functions, thus quantifying the accuracy afforded by
SubPJ-FE in atomic forces.

In all our simulations, we use Fermi-Dirac smearing with
temperature T = 500 K. Further, we use the n-stage Anderson
mixing scheme [84] on the electron density in self-consistent
field iteration of the Kohn-Sham problem with a stopping
criterion of 10−8 in the L2 norm of the change in electron
density in two successive iterations. Further, all calculations
involving atomic relaxations are conducted until atomic forces
are below threshold values of 5 × 10−6 Ha/bohr.

A. Nonperiodic systems

In this section, we present all-electron Kohn-Sham DFT
calculations on isolated material systems involving carbon
monoxide (CO) and methane molecule (CH4), and pseudopo-
tential calculations on nitrogen molecule (N2) and silicon
tetrafluoride molecule (SiF4). We begin by examining the
convergence of the configurational force on atoms with respect
to the finite-element discretization, and assess the accuracy
of the computed forces. Here and subsequently, we use the a
priori mesh adaption techniques developed by Motamarri et al.
[40] to construct the finite-element meshes, and refer to this
prior work for the details.

We use quadratic (HEX27) and quartic (HEX125SPECT)
spectral finite elements to study the numerical rates of conver-
gence of the forces. To this end, a sequence of finite-element
meshes is generated with increasingly smaller element sizes by
uniformly subdividing the initial coarse mesh. Denoting by h,
the measure of the size of finite element, the magnitude of the
discrete configurational force associated with one of the atoms
fh = |fIh | [see Eq. (56)], is computed using the above sequence
of meshes. The extrapolation procedure adopted in [40] is used
to estimate the force magnitude in the limit as h → 0, and is
denoted by f0. To this end, fh computed from the sequence of
meshes using HEX125SPECT finite elements is used to fit

|fh − f0| = Cf

(
1

Nel

)p/3

(58)

to determine Cf , p, and f0. Here, Nel denotes the number
of elements in the finite-element mesh. We use f0 as the
reference value of the configurational force, and the relative
error |fh − f0|/|f0| is plotted against (1/Nel)1/3. The obtained
reference value f0 is also compared with that obtained from
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FIG. 1. Convergence of the finite-element approximation in the
force computed on the oxygen atom of CO molecule with a bond
length of 2.4 bohr.

NWCHEM [85] package for all-electron calculations and ABINIT

[86] for pseudopotential calculations. We further verify the
accuracy and variational nature of the computed forces us-
ing the finite-difference test. To this end, we displace one
of the atoms I by small perturbations +d, − d, + 2d, −
2d, + 3d, − 3d in each of the spatial directions (x, y, and
z) with d chosen to be 1 × 10−2 a.u. The finite-difference
force in each of the directions is computed using a sixth-
order central difference formula, given by [45(E+d − E−d ] −
9(E+2d − E−2d ) + (E+3d − E−3d ))/(60 d), where E+h and
E−h denote the discrete ground-state energies with the atom
I displaced by +h and −h, respectively. Further, we fit the
computed ground-state energies as a function of bond length
with polynomials, and compare the derivative of these energy
curves with the computed forces. In all the studies below, we
choose a HEX125SPECT finite-element mesh with relative
discretization error of around 10−5 in forces to verify the
variational nature of the computed force. We now discuss the
specific details of these calculations in each of the benchmark
examples considered.

1. All-electron calculations

(a) Carbon monoxide. We consider carbon monoxide
molecule with a C-O bond length of 2.4 a.u. enclosed within
a simulation domain size of 80 a.u.. We first conduct the
numerical convergence study on the force acting on the oxygen
atom with quadratic (HEX27) and quartic (HEX125SPECT)
spectral finite elements. Figure 1 shows the relative errors in
the force plotted against ( 1

Nel
)1/3, which represents a measure

of the mesh size h. The value of f0 computed from Eq. (58)
is 0.202 802 087 Ha/bohr, and is used to compute the relative
errors in the force plot. Further, we note that the magnitude of
atomic force computed by performing an all-electron calcu-
lation using pc-4 Gaussian basis [87] with the NWCHEM [85]
package is 0.202 830 Ha/bohr. The slopes of the linear fit to
the computed force in Fig. 1 provide the rates of convergence
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FIG. 2. Convergence of the finite-element approximation in the
magnitude of force computed on the hydrogen atom of CH4 molecule
with a C-H bond length of 2.424 bohr.

of the finite-element approximation for the force, and these
results show close to O(h2k−1) convergence in the forces.

Further, the force on oxygen atom is also computed using a
finite-difference test, and the l2 norm of the difference between
the finite-difference force and the computed force is 6.3 × 10−6

Ha/bohr. Moreover, the computed atomic force (negative of the
configurational force) on oxygen atom is plotted as a function
of interatomic distance in Fig. 3, and compared with the
negative derivative of the quartic polynomial fit to the ground-
state energy plot (cf. Fig. 1 in Supplemental Material [88] for
the energy plot). These results confirm that the computed forces
are variational.

Finally, we perturb the atomic positions such that inter-
atomic distance differs by up to 20% from the equilibrium
bond length and conduct geometry optimization to find the
equilibrium position of atoms. The equilibrium bond length of
carbon monoxide obtained from atomic relaxation procedure
is 2.1296 a.u., which is in very good agreement with the equi-
librium bond length of 2.1294 a.u. obtained using NWCHEM.

(b) Methane. We consider methane molecule with C-H
bond length of 2.424 a.u. and C-H-C tetrahedral of 109.47◦
enclosed within a simulation domain size of 80 a.u. We
first study the convergence of the magnitude of force acting
on the hydrogen atom with quadratic (HEX27) and quartic
(HEX125SPECT) spectral finite-elements. Figure 2 shows the
relative errors in the force magnitudes plotted against ( 1

Nel
)1/3.

The value of f0 computed from Eq. (58) is 0.071 844 9 Ha/bohr,
which is used to compute the relative errors in the force.
The magnitude of atomic force computed by performing an
all-electron calculation using pc-4 Gaussian basis [87] with
the NWCHEM [85] package is 0.071 862 8 Ha/bohr. The rates of
convergence of the finite-element approximation in forces for
this system are also close to O(h2k−1).

In order to further test the accuracy and variational nature
of the computed forces, we compute the finite-difference
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FIG. 3. Comparison of the computed atomic force and the deriva-
tive of ground-state energy plot as a function of C-O and C-H bond
lengths. Case study: CO and CH4 molecules.

force obtained from finite-differencing energies. The l2 norm
of the difference between the finite-difference force and the
computed force is 7.2 × 10−6 Ha/bohr. Further, the Kohn-
Sham DFT ground-state energies computed for various C-H
bond lengths are fit to a fourth-order polynomial (cf. Fig. 2 in
the Supplemental Material [88]), and the negative derivative
of this energy curve is compared with the atomic force acting
on the hydrogen atom along the C-H bond direction, which is
shown in Fig. 3.

Finally, we perturb the atomic positions such that the four
C-H bond lengths differ by up to 20% from the equilibrium
bond length and conduct geometry optimization to find the
equilibrium position of atoms. The computed equilibrium bond
length of C-H from atomic relaxation is 2.0735 a.u., which is
in very good agreement with the equilibrium bond length of
2.0733 a.u. obtained using NWCHEM.

2. Pseudopotential calculations

(a) Nitrogen molecule. We consider nitrogen molecule with
a N-N bond length of 2.4 a.u. enclosed within a simulation
domain size of 80 a.u. We consider the 2s, 2p, 3d angular
momentum components to compute the projector, while the
4f component is chosen to be the local part of the non-
local pseudopotential expressed in the Kleinman-Bylander
form. The pseudopotentials for this system, as well as all
other subsequent systems with pseudopotential calculations,
are generated using the FHI98PP [89] software. The default
cutoff radius is used for 2s, 2p, and 3d components, which
is 1.45 a.u. The convergence of the force acting on the
nitrogen atoms is studied using quadratic (HEX27) and quartic
(HEX125SPECT) spectral finite elements. Figure 4 shows the
relative errors in the force plotted against ( 1

Nel
)1/3, and the

value of f0 computed from Eq. (58) is 0.277 995 6 Ha/bohr. We
note that the force computed by performing a pseudopotential
DFT calculation using plane-wave basis with the ABINIT [86]
package is 0.277 996 0 Ha/bohr. The slopes of the linear fits
in Fig. 4, which provide the rates of convergence of the finite-
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FIG. 4. Convergence of the finite-element approximation in the
force computed on the nitrogen atom of N2 molecule with a bond
length of 2.4 bohr.

element approximation for the force, are close to O(h2k−1) as
in the case of all-electron calculations.

The force on nitrogen atom is also computed from finite
differencing the energies, and the l2 norm of the difference
between the finite difference and the computed force is 6.1 ×
10−6 Ha/bohr. Further, the computed atomic force on the
nitrogen atom for different interatomic distances (N-N bond
length) is provided in Fig. 6. Comparing these with the negative
derivative of the quintic polynomial fit to the ground-state
energies (cf. Fig. 3 in the Supplemental Material [88] for the
energy curve), confirms the variational nature of the computed
forces.

Finally, we perturb the atomic positions such that inter-
atomic distance differs by up to 20% from the equilibrium
bond length and conduct geometry optimization to find the
equilibrium position of atoms. The equilibrium bond length of
nitrogen molecule obtained from atomic relaxation is 2.055 09
a.u., which is in very good agreement with the equilibrium
bond length of 2.055 13 a.u. obtained using ABINIT.

(b) Silicon tetrafluoride. We now consider silicon tetraflu-
oride molecule with Si-F bond length of 3.464 a.u. and F-Si-F
tetrahedral angle of 109.47◦ enclosed within a simulation
domain size of 80 a.u. In the case of silicon, we consider
the 3s, 3p, 3d angular momentum components to compute the
projector, while the 4f component is chosen to be the local part
of the nonlocal pseudopotential expressed in the Kleinman-
Bylander form. The default cutoff radii used for 3s, 3p, and
3d components are 1.73, 1.9, and 2.03 a.u., respectively. In
the case of fluorine, we consider the 2s, 2p, 3d components
to compute the projector, while the 4f component is chosen
to be the local part of the pseudopotential. The default cutoff
radius is used for 2s, 2p, and 3d components, which is equal
to 1.35 a.u. for all the components. The numerical convergence
of the magnitude of force acting on one of the fluorine
atoms with quadratic (HEX27) and quartic (HEX125SPECT)
spectral finite elements is shown in Fig. 5. The value of f0

165132-15



PHANI MOTAMARRI AND VIKRAM GAVINI PHYSICAL REVIEW B 97, 165132 (2018)

10 -3 10 -2 10 -1
10 -8

10 -6

10 -4

10 -2

10 0

10 2

HEX27: Slope 2.73
HEX125SPECT: Slope 6.87

FIG. 5. Convergence of the finite-element approximation in the
magnitude of force computed on the fluorine atom of SiF4 molecule
with a Si-F bond length of 3.464 bohr.

computed from Eq. (58) is 0.107 000 Ha/bohr, which is used
to compute the relative errors in the force. Further, we note
that the magnitude of atomic force obtained using plane-wave
basis with ABINIT[86] package is 0.107 002 Ha/bohr. The rates
of convergence of the finite-element approximation, given by
the slopes of the linear fit to the data, are close to O(h2k−1).

In order to verify the variational nature of the computed
forces, the force on the fluorine atom is also computed from
finite differencing the energies. The l2 norm of the difference
between the finite-difference force and the computed force is
7.9 × 10−6 Ha/bohr. Further, the Kohn-Sham DFT ground-
state energies computed for various Si-F bond lengths are fit
to a sixth-order polynomial (cf. Fig. 4 in the Supplemental
Material [88] for the energy curve) and the negative derivative
of this polynomial fit to the ground-state energies is compared
with the atomic force acting on the fluorine atom along the
Si-F bond direction, which is shown in Fig. 6. These results
confirm the variational nature of the computed forces.

Finally, we perturb the atomic positions such that the four
Si-F bond lengths differ by up to 20% from the equilibrium
bond length, and conduct geometry optimization to find the
equilibrium position of atoms. The equilibrium bond length
of Si-F achieved from atomic relaxation is 2.9130 a.u. which
is found to be in very good agreement with the equilibrium
bond length of 2.9134 a.u. obtained using plane-wave basis
with ABINIT.

B. Periodic systems

In this section, we present all-electron and pseudopo-
tential Kohn-Sham DFT calculations on periodic material
systems involving aluminum (Al) face-centered-cubic (fcc)
and lithium (Li) body-centered-cubic (bcc) unit cells. The
rates of convergence of the finite-element approximation in
the configurational forces acting on a perturbed atom in Al
face-centered-cubic unit cell and Li body-centered-cubic unit
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FIG. 6. Comparison of the computed atomic force and the deriva-
tive of ground-state energy plot as a function of N-N and Si-F bond
lengths. Case study: N2 and SiF4 molecules.

cell are examined. Further, the rates of convergence of the
finite-element approximation in the hydrostatic stress obtained
using the proposed configurational force approach is also
studied.

A sequence of quadratic (HEX27) and quartic
(HEX125SPECT) spectral finite-element meshes with
increasingly smaller mesh sizes are used to study the
numerical rates of convergence of forces and stresses in the
periodic systems considered here. The extrapolation procedure
adopted in the previous section is used to estimate the force
and stress in the limit h → 0. To this end, the force fh and the
hydrostatic stress σh computed from the sequence of meshes
using HEX125SPECT finite elements are fit to

|fh − f0| = Cf

(
1

Nel

)p/3

, (59)

|σh − σ 0| = Cσ

(
1

Nel

)p/3

, (60)

in order to determine Cf , Cσ , p, f0, and σ 0. The relative errors
in force |fh − f0|/|f0| and hydrostatic stress |σh − σ 0|/|σ 0| are
plotted as a function of (1/Nel)1/3. The reference values f0 and
σ 0 are benchmarked with the values obtained from ABINIT [86]
for pseudopotential calculations. Further, in order to verify the
variational nature of the computed forces and stress, we use a
finite-difference test. In addition, as in the case of nonperiodic
calculation, we fit the ground-state energy data computed at
various volumetric strains using a polynomial fit and compare
the computed stresses with the derivative of the equation-of-
state energy curve. In all the studies below, we choose a finite-
element mesh with relative discretization error of around 10−5

in forces and stresses to verify the variational nature of the
computed force and stresses.

We use the unshifted 2 × 2 × 2 Monkhorst-Pack grid [90]
for sampling the Brillouin zone in all the studies reported
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FIG. 7. Convergence of the finite-element approximation in the
hydrostatic stress of a fcc Al unit cell with lattice constant a = 7.2
bohr (all-electron study).

below. Further, we employ the norm-conserving Troullier-
Martins pseudopotential in the Kleinman-Bylander form
[72,73] in the case of pseudopotential calculations.

1. All-electron calculations

(a) Aluminum fcc unit cell. We consider all-electron Kohn-
Sham DFT calculations on aluminum face-centered-cubic unit
cell with a lattice constant of 7.2 a.u., and study the conver-
gence of the finite-element approximation in the hydrostatic
stress using quadratic (HEX27) and quartic (HEX125SPECT)
spectral finite elements. Figure 7 shows the relative errors in
the stress plotted against ( 1

Nel
)1/3. The value of σ 0 computed

from Eq. (59) is −4.512 559 93× 10−4 Ha/bohr3, and is used
to compute the relative errors. We next perturb an Al atom
in the unit cell by 0.72 bohr in [0 1 0] direction, and study
the finite-element convergence of the atomic force acting on
the perturbed atom. Figure 8 shows the relative errors in the
forces. The value of f0 computed from Eq. (59) is 0.062 484 1
Ha/bohr and is used to compute the relative errors. We note that
the rates of convergence of the finite-element approximation
in both stress and force are close to O(h2k−1).

We also assess the variational nature of the computed
stress and force using the finite-difference test. The computed
hydrostatic stress differs from the one obtained via finite
difference of energies by 1.5 × 10−7 Ha/bohr3, which is less
than 0.01 GPa. Similarly, the force on the perturbed Al atom
is computed from finite differencing the energies, and the l2

norm of the difference between the finite-difference force and
the computed force is 7.6 × 10−6 Ha/bohr. In addition, the
hydrostatic stress is plotted as a function of lattice parameter
in Fig. 9, and is compared with the derivative of the quartic
polynomial fit of the ground-state energy computed for various
lattice parameters (cf. Fig. 5 in the Supplemental Material
[88] for the energy curve). The comparison between the
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FIG. 8. Convergence of the finite-element approximation in the
magnitude of force computed on a perturbed atom in a fcc Al unit cell
with lattice constant a = 7.2 bohr (all-electron study).

computed atomic force and the negative derivative of the
quartic polynomial fit to the ground-state energy plot (cf. Fig. 6
in the Supplemental Material [88] for the energy curve) is
shown in Fig. 13. These results confirm the variational nature
of the computed stresses and forces.

(b) Lithium bcc unit cell. We consider all-electron Kohn-
Sham DFT calculations on lithium body-centered-cubic unit
cell with a lattice constant of 6.2 a.u., and conduct a similar
study as in the case of aluminum fcc unit cell. Figure 10
shows the relative errors in the stress for quadratic and
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FIG. 9. Variation in the stress as a function of lattice constant.
Case study: Al fcc unit cell (all-electron study).
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FIG. 10. Convergence of the finite-element approximation in the
hydrostatic stress of a bcc Li unit cell with lattice constant a = 6.2
bohr (all-electron study).

quartic spectral finite elements, with σ 0 = −6.254 757 × 10−5

Ha/bohr3. Figure 11 shows the relative errors in the force on
an atom which is perturbed by 0.62 bohr in [1 0 0] direction
(f0 = 0.009 810 153 Ha/bohr). These results suggest a close to
O(h2k−1) convergence of the finite-element approximation for
stresses and forces.

Further, the difference in computed hydrostatic stress and
that obtained from finite differencing the energy differ by 2.3 ×
10−7 Ha/bohr3 (∼0.01 GPa). The l2 norm of the difference
between the computed force and the finite-difference force
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FIG. 11. Convergence of the finite-element approximation in the
magnitude of force computed on a perturbed atom in a bcc Li unit
cell with lattice constant a = 6.2 bohr (all-electron study).
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FIG. 12. Variation in the stress as a function of lattice constant.
Case study: Li bcc unit cell (all-electron study).

on the perturbed Li atom is 5.7 × 10−6 Ha/bohr. In addition,
Fig. 12 shows the comparison between the computed stress and
the derivative of the quartic polynomial fit to the ground-state
energy plot (cf. Fig. 7 in the Supplemental Material [88]
for the energy curve), and Fig. 13 shows the comparison of
the computed atomic force and the negative derivative of the
quartic polynomial fit to the ground-state energy plot (cf. Fig. 8
in the Supplemental Material [88] for the energy curve). These
results validate variational nature of the computed stresses and
forces.
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FIG. 13. Comparison of the computed atomic force and the
derivative of the ground-state energy plot as a function of atomic
displacement. Case study: Al fcc unit cell and Li bcc unit cell
(all-electron study).
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FIG. 14. Convergence of the finite-element approximation in the
hydrostatic stress of a fcc Al unit cell with lattice constant a = 7.2
bohr (pseudopotential study).

2. Pseudopotential calculations

(a) Aluminum fcc unit cell. We consider norm-conserving
pseudopotential Kohn-Sham DFT calculations on aluminum
face-centered-cubic unit cell with a lattice constant of 7.2 a.u.
We consider the 3s, 3p, 3d angular momentum components
to compute the projectors, while the 4f component is chosen
to be the local part of the nonlocal pseudopotential expressed
in Kleinman-Bylander form. Default cutoff radii are chosen for
3s, 3p, and 3d components, which are 1.8, 2.0, and 2.15 a.u.,
respectively. Figure 14 shows the relative errors in stress for
finite-element approximations using quadratic (HEX27) and
quartic (HEX125SPECT) spectral finite elements, with σ 0

estimated to be −3.645 913 2 × 10−4 Ha/bohr3. The hydro-
static stress obtained using plane-wave basis with ABINIT [86]
package is −3.645 859 6 × 10−4 Ha/bohr3. Next, we perturb
an atom in the unit cell by 0.72 bohr in [0 1 0] direction,
and Fig. 15 shows the relative errors in the force on the
perturbed atom (f0 = 0.058 369 3 Ha/bohr). The atomic force
obtained using plane-wave basis with ABINIT [86] package is
0.058 369 4 Ha/bohr. The rates of convergence obtained from
the convergence study are close to O(h2k−1), as observed in
the case of all-electron calculations.

Further, the hydrostatic stress computed from finite dif-
ferencing the energies differs from the computed value by
8.9 × 10−8 Ha/bohr3. The l2 norm of the difference between
the computed force on the perturbed Al atom and that obtained
from finite differencing the energy is 7.1 × 10−6 Ha/bohr. This
confirms the variational nature of the computed stress and
force. Additionally, the hydrostatic stress is plotted against the
lattice parameter in Fig. 16, and is compared with the derivative
of the quartic polynomial fit to the ground-state energy data (cf.
Fig. 9 in the Supplemental Material [88]). The equilibrium
lattice parameter obtained is 7.413 a.u., which is in good
agreement with the equilibrium lattice parameter of 7.414 a.u.
obtained using ABINIT. The atomic force on the atom perturbed
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FIG. 15. Convergence of the finite-element approximation in the
magnitude of force computed on perturbed face atom of a fcc Al unit
cell with lattice constant a = 7.2 bohr (pseudopotential study).

along [0 1 0] direction is provided in Fig. 20, and compared
with the negative derivative of the quartic polynomial fit to the
ground-state energy (cf. Fig. 10 in the Supplemental Material
[88] for the energy plot). These results further confirm the
variational nature of the computed forces and stresses.

(b) Lithium bcc unit cell. Pseudopotential Kohn-Sham
DFT calculations on lithium body-centered-cubic unit cell
with a lattice constant of 6.2 a.u are performed. We con-
sider the 2s, 2p, 3d angular momentum components to com-
pute the projectors, while the 4f component is chosen to
be the local part of the nonlocal pseudopotential expressed
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FIG. 16. Variation in the stress as a function of lattice constant.
Case study: Al fcc unit cell (pseudopotential study).
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FIG. 17. Convergence of the finite-element approximation in the
hydrostatic stress of a bcc Li unit cell with lattice constant a = 6.2
bohr (pseudopotential study).

in Kleinman-Bylander form. We use the default cutoff radii
for 2s, 2p, and 3d components, which are 2.2, 2.2, and
2.5 a.u., respectively. Figure 17 shows the relative errors in the
stress for quadratic (HEX27) and quartic (HEX125SPECT)
spectral finite elements. The value of σ 0 computed from
Eq. (59) is −1.521 171 × 10−5 Ha/bohr3 and is used to
compute the relative errors. We note that the hydrostatic stress
obtained using plane-wave basis with ABINIT [86] package is
−1.521 142 × 10−5 Ha/bohr3. Further, we perturb a Li atom
in the unit cell by 0.62 bohr in all the three spatial directions,
and study the convergence with respect to the finite-element
discretization, which is presented in Fig. 18. The value of f0

computed from Eq. (59) is 0.020 309 27 Ha/bohr, and is used
to compute the relative errors. We note that the magnitude
of atomic force obtained using plane-wave basis with ABINIT

[86] package is 0.020 309 37 Ha/bohr. Figures 17 and 18 show
close to O(h2k−1) rates of convergence for the finite-element
discretization, which is consistent will all previous studies.

Further, the computed hydrostatic stress differs from the
value computed via finite differencing the energy by 6.8 ×
10−8 Ha/bohr3. Also, the l2 norm of the difference between
the computed force and that obtained from finite differencing
the energies is 5.2 × 10−6 Ha/bohr. Moreover, the computed
hydrostatic stresses are plotted as a function of lattice parame-
ter in Fig. 19, and compared against the derivative of the quartic
polynomial fit to the ground-state energy plot (cf. Fig. 11 in
the Supplemental Material [88] for the energy curve). The
equilibrium lattice parameter obtained is 6.262 a.u., which
is in good agreement with the equilibrium lattice parameter
of 6.260 a.u. obtained using ABINIT. Figure 20 shows the
comparison between the computed force for various values
of the displacement of an atom along the [0 0 1] direction
and the negative derivative of the quartic polynomial fit to the
ground-state energy (cf. Fig. 12 in the Supplemental Material
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FIG. 18. Convergence of the finite-element approximation in the
magnitude of force computed on perturbed face atom of a bcc Li unit
cell with lattice constant a = 6.2 bohr (pseudopotential study).

[88] for the energy plot). These results validate the variational
nature of the computed stresses and forces.

C. Molecular dynamics

In this section, we further investigate the accuracy of forces
by conducting Born-Oppenheimer molecular dynamics (MD)
calculations [91]. In particular, we choose a periodic aluminum
system consisting of 3 × 3 × 3 fcc unit cells (108 atoms) with
lattice constant of 7.45 a.u. and conduct a NVE molecular
dynamics simulation. We choose a finite-element mesh with

4.5 5 5.5 6 6.5 7 7.5
Lattice constant (Bohr)

-2.5

-2

-1.5

-1

-0.5

0

0.5
10 -3

Computed stress data

Derivative of polynomial fit for the energy curve

FIG. 19. Variation in the stress as a function of lattice constant.
Case study: Li bcc unit cell (pseudopotential study).

165132-20



CONFIGURATIONAL FORCES IN ELECTRONIC … PHYSICAL REVIEW B 97, 165132 (2018)

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Displacement of atom (Bohr)

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

A
to

m
ic

 fo
rc

e 
(H

a/
B

oh
r)

Al fcc: Computed force data
Li bcc: Computed force data
Derivative of polynomial fit
for the energy curve

Pseudopotential periodic DFT

FIG. 20. Comparison of the computed atomic force and the
derivative of the ground-state energy plot as a function of atomic
displacement. Case study: Al fcc unit cell and Li bcc unit cell
(pseudopotential study).

third-order spectral finite elements (HEX64SPECT) with a
mesh size of 0.8 a.u. We use an initial ionic temperature of
T = 1500 K and employ a time step of 0.5 fs using a velocity
Verlet time integration algorithm. This simulation is conducted
using norm-conserving Troullier-Martins pseudopotential. We
assign initial velocities using a Maxwell-Boltzmann distri-
bution corresponding to the initial temperature of 1500 K.
Further, we choose the electronic temperature to be equal to
the ionic temperature at every step and the molecular dynamics
simulation is conducted until 500 fs.

Figure 21 shows the variation of the total energy of the
system up to 500 fs, while the variation in kinetic energy
is shown in Fig. 22. The mean and the standard deviation
of the total energy is computed to be −2.094 17 Ha/atom
and 8.12 × 10−5 Ha/atom, respectively. We also compute the
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FIG. 21. Variation of total energy during NVE molecular dynam-
ics simulation. Case study: Al 3 × 3 × 3 fcc unit cells.
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FIG. 22. Variation of kinetic energy during NVE molecular dy-
namics simulation. Case study: Al 3 × 3 × 3 fcc unit cells.

drift in the total energy by evaluating the slope of linear fit,
which is found to be 1.73 × 10−7 Ha/atom-ps. Overall, the
results are commensurate with the desired accuracy in MD
simulation [91,92], and confirm the accuracy of the forces
obtained using the proposed configurational force approach.
We attribute the small deviation in the total energy from the
mean to the movement of finite-element mesh with time as the
atoms move during the course of the simulation. This deviation
can be further reduced by finite-element mesh refinement.

D. Large material systems

In this section, we investigate the accuracy of the proposed
configurational force approach formulated within the frame-
work of nonorthogonal Kohn-Sham wave functions using the
subspace projection method (SubPJ-FE) proposed in [41]. In
SubPJ-FE approach, the Kohn-Sham electronic ground state
is computed by solving the discrete Kohn-Sham eigenvalue
problem (51), where each self-consistent field iteration (SCF)
begins with a Chebyshev filter acting on a given subspace
spanned by localized functions to compute an approxima-
tion to the occupied eigenspace. A localization procedure is
subsequently employed to construct nonorthogonal localized
wave functions spanning the Chebyshev filtered space, which
are truncated using an adaptive truncation tolerance. The
Kohn-Sham Hamiltonian is then projected into this localized
basis, and a Fermi-operator expansion in terms of the projected
Hamiltonian is employed to compute the electron density.
We note that in SubPJ-FE, the locality of the nonorthogonal
wave functions in conjunction with the locality of the finite-
element basis reduces the computational complexity of Kohn-
Sham DFT, and has enabled large-scale electronic structure
calculations using spectral finite-element discretization with
reduced-order scaling as demonstrated in [41].

Upon computing the Kohn-Sham electronic ground state
for a given position of atoms using the SubPJ-FE approach,
the atomic forces can be computed using the discrete form
of (27) which involves nonorthogonal localized truncated
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TABLE I. Comparison of forces (Ha/bohr) where the Kohn-Sham
electronic ground state is computed using the SubPJ-FE technique
[41] and ChFSI-FE [40].

System || f c
x − f s

x ||∞ || f c
y − f s

y ||∞ || f c
z − f s

z||∞
5 × 5 × 5 8.9 × 10−6 8.45 × 10−6 8.11 × 10−6

Al cluster
C300H602 2.07 × 10−5 1.48 × 10−5 1.52 × 10−5

wave functions, as discussed in Sec. IV. In order to assess
the accuracy of the forces computed using the SubPJ-FE
formulation, we compute the error between these forces and
the atomic forces obtained using ChFSI-FE [40] involving
orthogonal wave functions.

To this end, we consider representative benchmark sys-
tems involving an aluminum nanocluster, representative of a
metallic system, containing 5 × 5 × 5 unit cells (666 atoms)
with lattice spacing of 7.45 bohr, and an alkane chain C300H602

(902 atoms), representative of an insulating system, with
individual repeating units of CH2 having C-C and C-H bond
lengths to be 2.910 18 and 2.0598 a.u, respectively. The
H-C-H and C-C-C bond lengths are taken to be 109.47◦.
Finite-element meshes with fifth-order spectral finite elements
(HEX216SPECT) are chosen such that the discretization errors
in ground-state energy are less than 5 meV per atom. SubPJ-FE
approach is used to evaluate the Kohn-Sham ground state as
discussed in [41]. The compact support of nonorthogonal wave
functions after the localization procedure is achieved by using
truncation tolerances for localized wave functions which are
chosen adaptively, with initial SCF iterations employing looser
tolerances and progressively tightening these during the course
of the SCF convergence. The adaptive truncation tolerances
used in the current benchmark examples are identical to what
has been proposed in [41]. Table I tabulates || f c

i − f s
i ||∞

where f s
i denotes a vector of forces on all the atoms in

the material system in the ith spatial direction where the
Kohn-Sham electronic ground state is obtained using SubPJ-
FE approach, and f c

i denotes the vector of forces on all
atoms where the Kohn-Sham ground state is obtained using
ChFSI-FE. The results show that the maximum difference in
the atomic forces between the two approaches is well within
the chemical accuracy of 1 mHa/bohr, which establishes the
accuracy of SubPJ-FE in computing forces.

Finally, we measure the computational cost of computing
the atomic forces using the proposed approach, and compare
with the computational cost of computing the Kohn-Sham
electronic ground state. To this end, we choose two benchmark
examples containing 3 × 3 × 3 unit cells (172 atoms) and
5 × 5 × 5 unit cells (666 atoms) with lattice spacing of 7.45
bohr. Table II shows the cost of computing forces and the Kohn-
Sham electronic ground state, which indicates that the cost of
computing the forces is marginal in comparison to the cost of
computing the ground-state wave functions.

VII. SUMMARY

In this work, we derived and implemented a configurational
force approach to conduct geometry optimization using Kohn-

TABLE II. Computational cost of computing forces and Kohn-
Sham electronic ground state. Case study: Al nanoclusters.

Degrees of Ground state Forces
Cluster freedom (DoF) (CPU hrs) (CPU hrs)

3 × 3 × 3 1 107 471 58.44 2.28
5 × 5 × 5 4 363 621 1178.4 29.1

Sham density functional theory (DFT) within the framework
of higher-order spectral finite-element discretization. The ap-
proach provides a unified expression for the generalized force
corresponding to geometry of the simulation cell (atomic
positions) as well as the simulation domain. The derived
configurational force is variational, and inherently accounts
for Pulay corrections arising from incomplete basis-set errors.
Further, the developed expressions treat both pseudopotential
and all-electron DFT calculations for both periodic and non-
periodic calculations in a single framework.

The development of the proposed approach involved the
following main ideas. First, we employed a local variational
real-space formulation of Kohn-Sham DFT functional involv-
ing nonorthogonal wave functions that is amenable to reduced-
order scaling. In particular, we have extended the local refor-
mulation of the electrostatic interaction energy of prior works
to treat both all-electron and pseudopotential calculations in a
single framework. Using the local variational formulation, we
derived the expressions for the generalized force corresponding
to the perturbations of the underlying space. We note that
the final form of the configurational force expression involves
integrals of Eshelby tensors contracted with the gradient of
the generator (ϒ) associated with the underlying deformation.
We then employed a higher-order spectral finite-element basis,
with atomic nuclei located at the nodes of the triangulation,
to solve for the Kohn-Sham electronic ground state and used
the discretized configurational force expression to evaluate the
forces and stresses. The forces on atomic nuclei are evaluated
by choosing an appropriate generator compactly supported
around the atom of interest, while the stresses in periodic
systems are evaluated by restricting the generator to affine
deformations.

The accuracy of the proposed approach was investigated on
representative benchmark examples. We first chose nonperi-
odic systems involving all-electron calculations on CO, CH4,
and pseudopotential calculations on N2, SiF4 molecules. In
these examples, we examined the numerical rates of conver-
gence of higher-order finite-element approximation (quadratic
and quartic orders) in computing forces, and the results indicate
a close to O(h2k−1) convergence in the forces for all systems.
Further, a comparison between derivative of energy curves
with computed forces ascertains the variational nature of the
computed forces. We further extended these studies to periodic
all-electron and pseudopotential calculations on Al fcc and
Li bcc unit cells. As in the nonperiodic case, we observed a
close to O(h2k−1) convergence in stresses and atomic forces for
both pseudopotential and all-electron calculations. We further
confirmed the variational nature of the computed stresses
and forces for these periodic systems. Wherever applica-
ble, we benchmarked the accuracies of forces and stresses
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obtained from the proposed configurational force approach
with Kohn-Sham DFT calculations employing plane waves
(for pseuodopotential calculations) and Gaussian basis sets
(for all-electron calculations), and found excellent agreement.
Finally, we examined the accuracy of the forces computed
when the Kohn-Sham electronic ground state is solved using
a reduced-order scaling subspace projection technique [41]
on large materials systems. To this end, we chose metallic
aluminum nanocluster containing 666 atoms and an alkane
chain containing 902 atoms. The accuracy of computed atomic
forces using the reduced-order scaling formulation is well
within the required chemical accuracy.

This work demonstrates a methodology for efficient com-
putation of forces on nuclei and elastic stresses on periodic
unit cells by means of a configurational force approach within
the framework of spectral finite-element discretization. To
the best of our knowledge, expressions for computing both
stresses and forces that are variationally consistent have not
been developed for the finite-element discretization, and this
work fills this important gap to enable large-scale electronic
structure calculations using finite-element basis. Noting that
the discrete Kohn-Sham ground-state energy is not only a
function of position of atoms but also a function of position
of nodes of the underlying finite-element triangulation, the
configurational force approach also has the potential to be used
as an a posteriori mesh adaption strategy, which is a useful

direction for future work. Further, developing and assessing the
accuracy of configurational forces in the context of enriched
finite-element basis [64] is currently being pursued, which can
enable large-scale real-space all-electron DFT calculations on
materials systems.
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APPENDIX: DERIVATION OF CONFIGURATIONAL FORCE EXPRESSIONS

We describe here the detailed derivation of the configurational force expressions given in Sec. IV for both nonperiodic and
periodic DFT calculations. The notations followed here are consistent with those of Secs. III and IV.

1. Nonperiodic DFT calculations

In the case of nonperiodic problems, � denotes a bounded domain large enough so that the values of wave functions are
negligible outside of �, i.e., we assume the wave functions have a compact support on �. If x denotes a point in �, whose image
in �′ = τ ε(�) is x′ = τ ε(x), the ground-state energy on �′ is given by F0( τ ε) in Eq. (26). We now evaluate the configurational
force by computing the Gateaux derivative of F0( τ ε), i.e., d

dε
F0( τ ε)|ε=0 = d

dε
(L̃ε + Lε

c + Lε
el)|ε=0. We first focus on evaluating

d
dε
L̃ε|ε=0 = d

dε
(T ε

s + Eε
xc + Eε

ent)|ε=0. In order to evaluate d
dε

T ε
s |ε=0, we first transform the integral in T ε

s , which is defined on
domain �′ to domain � as

T ε
s (�̄φε

,�̄
ε) =

N∑
i,j,k=1

∫
�′

�̄
φε

ij Sε−1
jk ∇x′ φ̄ε∗

k (x′) · ∇x′ φ̄ε
i (x′) dx′

=
N∑

i,j,k=1

∫
�

[
�̄

φε

ij Sε−1
jk

(
∇xφ̄

ε∗
k ( τ ε(x) ) · ∂x

∂x′

)
·
(

∇xφ̄
ε
i ( τ ε(x) ) · ∂x

∂x′

)
det

(
∂x′

∂x

)]
dx. (A1)

Now, the Gâteaux derivative of T ε
s is given by

d

dε
T ε

s

∣∣∣∣
ε=0

= A1 + A2 + A3 + A4;

A1 =
N∑

i,j,k=1

∫
�

d

dε

(
�̄

φε

ij

)∣∣∣∣
ε=0

S0−1
jk ∇φ̄0∗

k (x) · ∇φ̄0
i (x) dx, A2 =

N∑
i,j,k=1

∫
�

�̄
φ0

ij

d

dε

(
Sε−1

jk

)∣∣∣∣
ε=0

∇φ̄0∗
k (x) · ∇φ̄0

i (x) dx,

A3 =
N∑

i,j,k=1

∫
�

�̄
φ0

ij S0−1
jk

d

dε

[
∇φ̄ε∗

k ( τ ε(x) ) · ∇φ̄ε
i ( τ ε(x) )

]∣∣∣∣
ε=0

dx,
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A4 =
N∑

i,j,k=1

∫
�

�̄
φ0

ij S0−1
jk

{[∇φ̄0∗
k (x) ⊗ ∇φ̄0

i (x) + ∇φ̄0
i (x) ⊗ ∇φ̄0∗

k (x)
]

:
d

dε

∂x
∂x′

∣∣∣∣
ε=0

+∇φ̄0∗
k (x) · ∇φ̄0

i (x)
d

dε

[
det

(
∂x
∂x

′)]∣∣∣∣
ε=0

}
dx. (A2)

To evaluate d
dε

(Sε−1
jk )|ε=0 in A2 in Eq. (A2), we consider the variational derivative of the relation SεSε−1 = I giving rise to

d
dε

Sε−1 = −Sε−1
( d
dε

Sε)Sε−1
. To this end, we have the following expression for d

dε
(Sε−1

jk )|
ε=0

:

d

dε
Sε−1

jk

∣∣∣∣
ε=0

= −
N∑

p,q=1

([
Sε−1

jp

d

dε

{∫
�

[
φ̄ε∗

p ( τ ε(x) )φ̄ε
q( τ ε(x) ) det

(
∂x′

∂x

)]
dx

}
Sε−1

qk

)∣∣∣∣
ε=0

. (A3)

Hence, A2 in Eq. (A2) can be rewritten as A2 = A2a + A2b with A2a and A2b given by the following expressions:

A2a =
N∑

i,j,k=1

∫
�

�̄
φ0

ij

d

dε

(
S−1

jk (�̄ε)
)∣∣∣∣

ε=0

∇φ̄0∗
k (x) · ∇φ̄0

i (x) dx,

A2b = −
N∑

i,j,k=1

N∑
p,q=1

∫
�

�̄
φ0

ij S0−1
jp

(∫
�

φ̄0∗
p (x)φ̄0

q (x)
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

dx
)

S0−1
qk ∇φ̄0∗

k (x) · ∇φ̄0
i (x) dx.

We now evaluate d
dε

Eε
xc|ε=0 of d

dε
L̃ε|ε=0 in the following way:

d

dε
Eε

xc

∣∣∣∣
ε=0

= d

dε

[∫
�

F (ρ̄ε( τ ε)) det

(
∂x′

∂x

)
dx

]∣∣∣∣
ε=0

= B1 + B2, (A4)

with

B1 =
∫

�

d

dε
ρ̄ε( τ ε(x) )

∣∣∣∣
ε=0

∂F

∂ρ̄ε

∣∣∣∣
ε=0

dx =
∫

�

d

dε
ρ̄ε( τ ε(x))

∣∣∣∣
ε=0

Vxc(ρ̄0) dx, B2 =
∫

�

F (ρ̄0)
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

dx.

We now compute d
dε

Eε
ent|ε=0 and d

dε
Lε

c|ε=0 as follows:

d

dε
Eε

ent

∣∣∣∣
ε=0

= −2σ

[
d

dε
�̄

φε

∣∣∣∣
ε=0

ln

(
�̄

φ0

I − �̄
φ0

)]
, (A5)

d

dε
Lε

c

∣∣∣∣
ε=0

= −2μ tr

(
d

dε
�̄

φε

∣∣∣∣
ε=0

)
. (A6)

Finally, we turn our attention to d
dε
Lε

el|ε=0 = d
dε

(LALL,ε
el + LPSP,ε

el )|ε=0. We first evaluate d
dε
LALL,ε

el |ε=0. To this end, we first

transform the integrals in LALL,ε
el (ρ̄ε,ϕ̄ε,V̄ε

δ̃
,Rε) defined on domain �′ to domain �. We have

LALL,ε
el

(
ρ̄ε,ϕ̄ε,V̄ε

δ̃
,Rε

) =
∫

�′

[
− 1

8π
|∇x′ ϕ̄ε(x′)|2 + [ρ̄ε(x′) + b(x′, τ ε(R))]ϕ̄ε(x′)

]
dx′

+
∑

I

∫
R3

[
1

8π

∣∣∇x′ V̄ I ε

δ̃
(x′)

∣∣2 + ZI δ̃[|x′ − τ ε(RI )|] V̄ I ε

δ̃
(x′)

]
dx′. (A7)

In the above, we note that b(x′, τ ε(R)) = ∑
I ZI δ̃[|x′ − τ ε(RI )|] = ∑

I ZI δ̃(|x − RI |) = b(x,R), which follows from the
restriction that τ ε corresponds to rigid body deformations in the compact support of b. Transforming the integral in Eq. (A7) to
domain �, we obtain

LALL,ε
el

(
ρ̄ε,ϕ̄ε,V̄ε

δ̃
,Rε

) =
∫

�

[
− 1

8π

∣∣∣∣∇xϕ̄
ε( τ ε(x) ) · ∂x

∂x′

∣∣∣∣2

+ [ρ̄ε( τ ε(x) ) + b(x,R)]ϕ̄ε( τ ε(x))

]
det

(
∂x′

∂x

)
dx

+
∑

I

∫
R3

[
1

8π

∣∣∣∣∇xV̄
I ε

δ̃
( τ ε(x) ) · ∂x

∂x′

∣∣∣∣2

+ ZI δ̃(|x − RI |) V̄ I ε

δ̃
( τ ε(x))

]
det

(
∂x′

∂x

)
dx. (A8)

Using a similar procedure as above, the Gâteaux derivative of LALL,ε
el is evaluated as

d

dε
LALL,ε

el

(
ρ̄ε,ϕ̄ε,V̄ε

δ̃
,Rε

)∣∣∣∣
ε=0

= C1 + C2 + C3, (A9)
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where

C1 =
∫

�

d

dε
ρ̄ε( τ ε(x))

∣∣∣∣
ε=0

ϕ̄0(x) dx,

C2 =
∫

�

{[
− 1

8π
|∇ϕ̄0(x)|2 + [ρ̄0(x) + b(x,R)]ϕ̄0(x)

]
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

+ 1

4π

[
∇ϕ̄0(x) ⊗ ∇ϕ̄0(x) :

(
d

dε

∂x
∂x′

)∣∣∣∣
ε=0

]}
dx,

C3 =
∑

I

∫
R3

{[
1

8π
|∇V̄ I 0

δ̃
(x)|2 + ZI δ̃(|x − RI |)V̄ I 0

δ̃
(x)

]
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

− 1

4π

[
∇V̄ I 0

δ̃
(x) ⊗ ∇V̄ I 0

δ̃
(x) :

(
d

dε

∂x
∂x′

)∣∣∣∣
ε=0

]}
dx.

In the above Eq. (A9), the terms arising from the inner variations of LALL,ε
el with respect to ϕ̄ε and V̄ I ε

δ̃
do not appear in the above

equation as ϕ̄0 and V̄ I 0

δ̃
are the solutions of the variational problem (20) satisfying the Euler-Lagrange equations associated with

the functional LALL,0
el (τ 0). We now turn our attention to evaluate d

dε
LPSP,ε

el |ε=0. To this end, the integrals in LPSP,ε
el (�̄φε

,�̄
ε
,Rε)

defined on domain �′ are transformed to domain �, and we get

LPSP,ε
el (�̄φε

,�̄
ε
,Rε) =

∑
J

∫
�

(
V J

loc[| τ ε(x) − τ ε(RJ )|] − V̄ J ε

δ̃
[| τ ε(x) − τ ε(RJ )|])ρ̄ε( τ ε(x) ) det

(
∂x′

∂x

)
dx

+ 2
N∑

i,j,k=1

∫
�

�̄
φε

ij Sε−1
jk φ̄ε∗

k ( τ ε(x) )
(∫

�

Vnl( τ ε(x) , τ ε(y), τ ε(R)) φ̄ε
i ( τ ε(y)) det

(
∂y′

∂y

)
dy

)

× det

(
∂x′

∂x

)
dx, (A10)

with ∫
�

Vnl( τ ε(x) , τ ε(y), τ ε(R)) φ̄ε
i ( τ ε(y)) det

(
∂y′

∂y

)
dy

=
∑

J

∑
lm

V J
lmζ J

lm( τ ε(x) , τ ε(RJ ))�V J
l [| τ ε(x) − τ ε(RJ )|]

×
∫

�

ζ J
lm( τ ε(y) , τ ε(RJ ))�V J

l [| τ ε(y) − τ ε(RJ )|]φ̄ε
i ( τ ε(y) ) det

(
∂y′

∂y

)
dy.

The Gâteaux derivative of LPSP,ε
el can now be evaluated as

d

dε
LPSP,ε

el (�̄φε

,�̄
ε
,Rε)

∣∣∣∣
ε=0

= D1 + D2 + D3 + D4 + D5 + D6 + D7;

D1 =
∑

J

∫
�

d

dε
ρ̄ε( τ ε(x) )

∣∣∣∣
ε=0

(
V J

loc(|x − RJ |) − V̄ J 0

δ̃
(|x − RJ |)) dx,

D2 =
∑

J

∫
�

ρ̄0(x)
(∇V J

loc(|x − RJ |) − ∇V̄ J 0

δ̃
(|x − RJ |)) ·

(
d τ ε(x)

dε

∣∣∣∣
ε=0

− d τ ε(RJ )

dε

∣∣∣∣
ε=0

)
dx,

D3 =
∑

J

∫
�

ρ̄0(x)
(
V J

loc(|x − RJ |) − V̄ J 0

δ̃
(|x − RJ |)) d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

dx,

D4 = 2
N∑

i,j,k=1

∫
�

d

dε

(
�̄

φε

ij

)∣∣∣∣
ε=0

S0−1
jk φ̄0∗

k (x)

(∫
�

Vnl(x,y,R)φ̄0
i (y) dy

)
dx,

D5 = 2
N∑

i,j,k=1

∫
�

�̄
φ0

ij

d

dε

(
Sε−1

jk

)∣∣∣∣
ε=0

φ̄0∗
k (x)

(∫
�

Vnl(x,y,R)φ̄0
i (y) dy

)
dx,

D6 = 2
N∑

i,j,k=1

�̄
φ0

ij S0−1
jk (Dki + D∗

ik), (A11)
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with

Dki =
∑

J

∑
lm

V J
lm

[ ∫
�

φ̄0∗
k (x)

{
∇(

ζ J
lm(x,RJ )�V J

l (|x − RJ |)) ·
(

d τ ε(x)

dε

∣∣∣∣
ε=0

− d τ ε(RJ )

dε

∣∣∣∣
ε=0

)

+ ζ J
lm(x,RJ )�V J

l (|x − RJ |) d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

}
dx

][∫
�

ζ J
lm(y,RJ )�V J

l (|y − RJ |)φ̄0
i (y) dy

]
,

and, finally,

D7 = 2
N∑

i,j,k=1

∫
�

�̄
φ0

ij S0−1
jk

[
d

dε
φ̄ε∗

k ( τ ε(x))

∣∣∣∣
ε=0

(∫
�

Vnl(x,y,R)φ̄0
i (y) dy

)
+ φ̄0∗

k (x)

(∫
�

Vnl(x,y,R)
d

dε
φ̄ε

i ( τ ε(y) )

∣∣∣∣
ε=0

dy
)]

dx,

where (. . .)∗ denotes the complex conjugate of (. . .) in all the above equations. In all the above equations, we assume that the

pseudo-wave functions ζ J
lm are real. Using the arguments presented in Eq. (A3) for evaluating the Gâteaux derivative of Sε−1

jk , D5

in the above equation can be written as D5 = D5a + D5b with D5a and D5b given by the following expressions:

D5a = 2
N∑

i,j,k=1

∫
�

�̄
φ0

ij

d

dε

(
S−1

jk (�̄ε)
)∣∣∣∣

ε=0

φ̄0∗
k (x)

(∫
�

Vnl(x,y,R)φ̄0
i (y) dy

)
dx,

D5b = −2
N∑

i,j,k=1

N∑
p,q=1

∫
�

�̄
φ0

ij S0−1
jp

( ∫
�

φ̄0∗
p (x)φ̄0

q (x)
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

dx
)

S0−1
qk φ̄0∗

k (x)

(∫
�

Vnl(x,y,R)φ̄0
i (y) dy

)
dx.

Using the expression for ρ(x) in Eq. (3), we now rewrite the sum of terms B1, C1, and D1 in Eqs. (A4), (A9), and (A11) in terms
of V loc

eff (ρ̄0) = Vxc(ρ̄0) + ϕ̄0 + ∑
J (V J

loc(|x − RJ |) − V̄ J 0

δ̃
(|x − RJ |)) and the wave functions �̄

ε as∫
�

d

dε
ρ̄ε( τ ε(x))

∣∣∣∣
ε=0

V loc
eff (ρ̄0) dx = 2

N∑
i,j,k=1

∫
�

d

dε

(
�̄

φε

ij Sε−1
jk φ̄ε∗

k ( τ ε(x) ) φ̄ε
i ( τ ε(x))

)∣∣∣∣
ε=0

V loc
eff (ρ̄0) dx = F1 + F2 + F3a + F3b,

(A12)

where

F1 = 2
N∑

i,j,k=1

∫
�

d

dε

(
�̄

φε

ij

)∣∣∣∣
ε=0

S0−1
jk φ̄0∗

k (x) φ̄0
i (x) V loc

eff (ρ̄0) dx,

F2 = 2
N∑

i,j,k=1

∫
�

�̄
φ0

ij S0−1
jk

d

dε

[
φ̄ε∗

k ( τ ε(x) )φ̄ε
i ( τ ε(x))

]∣∣∣∣
ε=0

V loc
eff (ρ̄0) dx,

F3a = 2
N∑

i,j,k=1

∫
�

�̄
φ0

ij

d

dε

(
S−1

jk (�̄ε)
)∣∣∣∣

ε=0

φ̄0∗
k (x)φ̄0

i (x)V loc
eff (ρ̄0) dx,

F3b = −2
N∑

i,j,k=1

N∑
p,q=1

∫
�

�̄
φ0

ij S0−1
jp

( ∫
�

φ̄0∗
p (x)φ̄0

q (x)
d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

dx
)

S0−1
qk φ̄0∗

k (x)φ̄0
i (x)V loc

eff (ρ̄0) dx.

We further note that the sum of terms A2a + A3 + D5a + D7 + F2 + F3a = 0 as �̄
0 is the solution of the saddle-point variational

problem corresponding to F0(τ 0) and hence satisfies the Euler-Lagrange equations corresponding to Eq. (23). Furthermore,

the sum of terms A1 + D4 + F1 + d
dε

Eε
ent|

ε=0
+ d

dε
Lε

c|
ε=0

= 0 since �̄
φ0

satisfy the Fermi-Dirac distribution (Euler-Lagrange

equation of F0 with respect to �φ). We now note the following identities:

d

dε

{
∂xi

∂x ′
j

}∣∣∣∣
ε=0

= − ∂xi

∂x ′
k

(
d

dε

∂x ′
k

∂xl

)
∂xl

∂x ′
j

|ε=0 = −∂ϒi(x)

∂xj

,

(A13)
d

dε

{
det

(
∂x ′

i

∂xj

)}∣∣∣∣
ε=0

= d

dε

{
det

(
δij + ε

∂ϒi(x)

∂xj

)}∣∣∣∣
ε=0

= d

dε

{
1 + ∂ϒj (x)

∂xj

ε + O(ε2)

}∣∣∣∣
ε=0

= ∂ϒj (x)

∂xj

.

Using these identities and rearranging the nonzero terms A2b, A4, B2, C2, C3,D2,D3,D5b,D6, F3b we arrive at

dF0( τ ε)

dε

∣∣∣∣
ε=0

=
∫

�

E : ∇ϒ(x) dx +
∑

I

∫
R3

E′I : ∇ϒ(x) dx + FPSP, (A14)
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where E and E′ denote Eshelby tensors whose expressions in terms of the solutions of the saddle-point problem (23) on the

original space (�̄φ0

, �̄
0
, ϕ̄0, V̄0

δ̃
) are given in Sec. IV of the paper.

2. Periodic DFT calculations

We follow the similar procedure as described in the case of nonperiodic calculations. As defined before, x denotes a point in
�p, whose image in �′

p = τ ε(�p) is x′ = τ ε(x) with ϒ = d
dε

τ ε|ε=0 being the generator of the underlying deformation. Further,
let k′ = κε(k) correspond to the bijective mapping representing the infinitesimal perturbation of the reciprocal space due to the
underlying deformation of the real space.

The expression for configurational force in the present case will differ from Eq. (29) derived in the case of nonperiodic
calculations in terms of the contributions arising from the kinetic energy term Ts(U, f ) in Eq. (33) and the nonlocal pseudopotential
energy term Lnl(U, f ) in Eq. (35). To this end, we evaluate d

dε
(T ε

s + Lε
nl)|ε=0 where T ε

s and Lε
nl are the functionals defined on �′

p.
To evaluate d

dε
(T ε

s + Lε
nl)|ε=0, we transform the integrals in T ε

s and Lε
nl defined on domain �′

p to domain �p as follows. We first
consider the functional T ε

s in Eq. (33). To this end, we have

T ε
s ( f̄

ε
,Ūε) =

N∑
n=1

−
∫

BZ

(∫
�p

g

(
f̄ ε

nk,ū
ε
nk( τ ε(x)),ūε∗

nk( τ ε(x)),∇xū
ε
nk( τ ε(x)) · ∂x

∂x′ ,∇xū
ε∗
nk( τ ε(x)) · ∂x

∂x′ , κ
ε(k)

)

× det

(
∂x′

∂x

)
dx

)
dk,

where

g

(
f̄ ε

nk,ū
ε
nk( τ ε(x)),ūε∗

nk( τ ε(x)),∇xū
ε
nk( τ ε(x)) · ∂x

∂x′ ,∇xū
ε∗
nk( τ ε(x)) · ∂x

∂x′ , κ
ε(k)

)
= f̄ ε

nk

(∣∣∣∣∇xū
ε
nk( τ ε(x)) · ∂x

∂x′

∣∣∣∣2

− 2 i ūε∗
nk( τ ε(x)) κε(k) ·

(
∇xū

ε
nk( τ ε(x)) · ∂x

∂x′

)
+ |κε(k)|2 |ūε

nk( τ ε(x))|2
)

.

Subsequently, the Gâteaux derivative of T ε
s (Uε, f ε) is given as

d

dε
T ε

s ( f̄
ε
,Ūε)

∣∣∣∣
ε=0

= G1 + G2 + G3 + G4;

G1 =
N∑

n=1

−
∫

BZ

∫
�p

f̄ 0
nk

{[
∇ū0∗

nk(x) ⊗ ∇ū0
nk(x) + ∇ū0

nk(x) ⊗ ∇ū0∗
nk(x) − 2 i ū0∗

nk

(∇ū0
nk ⊗ k

)]
:

d

dε

∂x
∂x′

∣∣∣∣
ε=0

+ (∣∣∇ū0
nk(x)

∣∣2 − 2 i ū0∗
nk(x) k · ∇ū0

nk(x) + |k|2 ∣∣ū0
nk(x)

∣∣2) d

dε

[
det

(
∂x
∂x

′)]∣∣∣∣
ε=0

}
dx dk,

G2 =
N∑

n=1

−
∫

BZ

∫
�p

f̄ 0
nk

(
−2 i ū0∗

nk(x)
d

dε
κε(k)

∣∣∣∣
ε=0

· ∇ū0
nk(x) + d

dε
|κε(k)|2

∣∣∣∣
ε=0

∣∣ū0
nk(x)

∣∣2
)

dx dk,

G3 =
N∑

n=1

−
∫

BZ

∫
�p

∂g

∂f̄ ε
nk

d

dε
f̄ ε

nk

∣∣∣∣
ε=0

dx dk,

G4 =
N∑

n=1

−
∫

BZ

∫
�p

(
∂g

∂ūε
nk

d

dε

(
ūε

nk( τ ε(x))
) + ∂g

∂ūε∗
nk

d

dε

(
ūε∗

nk( τ ε(x))
)

+ ∂g

∂∇ūε
nk

d

dε

(∇ūε
nk( τ ε(x))

) + ∂g

∂∇ūε∗
nk

d

dε

(∇ūε∗
nk( τ ε(x))

))∣∣∣∣
ε=0

dx dk. (A15)

Further, the functional corresponding to the nonlocal pseudopotential energy (35) is treated as described below. We have

Lnl,ε( f̄
ε
,Ūε)

=
N∑

n=1

−
∫

BZ

[∫
�p

( ∫
R3

h
(
f̄ ε

nk,ū
ε
nk( τ ε(x)),ūε∗

nk( τ ε(x)),κε(k),Vnl( τ ε(x) , τ ε( y), τ ε(R))) det

(
∂y′

∂y

)
dy

)
det

(
∂x′

∂x

)
dx

]
dk,
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where ∫
R3

h
(
f̄ ε

nk,ū
ε
nk( τ ε(x)),ūε∗

nk( τ ε(x)),κε(k),Vnl( τ ε(x) , τ ε( y), τ ε(R))
)
det

(
∂y′

∂y

)
dy

= 2 f̄ ε
nk ūε∗

nk( τ ε(x)) e−iκε(k)· τ ε(x)
∫
R3

Vnl( τ ε(x) , τ ε(y), τ ε(R)) eiκε(k)· τ ε(y) ūε
nk( τ ε(y)) det

(
∂y′

∂y

)
dy.

Now, the Gâteaux derivative of Lnl,ε(, f̄
ε
,Ūε) within the Kleinman-Bylander setting can be evaluated as

d

dε
Lnl,ε( f̄

ε
,Ūε)

∣∣∣∣
ε=0

= Hnl + H ∗
nl + HK

nl + H1 + H2;

Hnl = 2
N∑

n=1

∑
a,l,m

−
∫

BZ

∫
�p

f̄ 0
nkV

a
lm

∑
r

ū0∗
nk(x)e−ik·(x−Lr )

{
∇(

ζ a
lm(x,Ra+Lr )�V a

l [|x−(Ra+Lr )|]) · d

dε
[ τ ε(x)−τ ε(Ra + Lr )]

∣∣∣∣
ε=0

+ ζ a
lm(x,Ra + Lr )�V a

l [|x − (Ra + Lr )|]
(

d

dε

[
det

(
∂x′

∂x

)]∣∣∣∣
ε=0

− ik · d

dε
( τ ε(x) −[τ ε(Ra + Lr )− τ ε(Ra)])

∣∣∣∣
ε=0

)}
dx

×
[∫

�p

∑
s

eik·(y−Ls )ζ a
lm(y,Ra + Ls)�V J

l [|y − (Ra + Ls)|]ū0
nk(y) dy

]
dk,

HK
nl = 2

N∑
n=1

∑
a,l,m

−
∫

BZ
f̄ 0

nkV
a
lm

d

dε

{[∫
�p

∑
r

ū0∗
nk(x) e−iκε(k)·(x−Lr ) ζ a

lm(x,Ra + Lr ) �V a
l [|x − (Ra + Lr )|] dx

]

×
[∫

�p

∑
s

eiκε(k)·(y−Ls ) ζ a
lm(y,Ra + Ls) �V a

l [|y − (Ra + Ls)|] ū0
nk(y) dy

]}∣∣∣∣
ε=0

dk,

H1 =
N∑

n=1

−
∫

BZ

∫
�p

∫
R3

∂h

∂f̄ ε
nk

d

dε
f̄ ε

nk

∣∣∣∣
ε=0

dy dx dk,

H2 =
N∑

n=1

−
∫

BZ

∫
�p

∫
R3

(
∂h

∂ūε
nk

d

dε

(
ūε

nk( τ ε(x))
) + ∂h

∂ūε∗
nk

d

dε

(
ūε∗

nk( τ ε(x))
))∣∣∣∣

ε=0

dy dx dk. (A16)

We note that the evaluation of configurational force for terms other than Ts and Lnl in the Kohn-Sham functional (37) is similar
to the procedure described in the case of nonperiodic calculations. To this end, we note that the sum of terms G4,H2 along
with the the term F2 arising in Eq. (A12) (restricted to the case of orthonormal wave functions) vanish as Ū0 is the solution of
the saddle-point variational problem corresponding to E0(τ 0), and, hence, satisfy the Euler-Lagrange equations corresponding
to Eq. (37). Furthermore, the sum of the terms G3,H1 along with the terms F1 arising in Eq. (A12), d

dε
Eε

ent|ε=0 in Eq. (A5),
and d

dε
Lε

c|ε=0 = 0 in Eq. (A6) (restricted to the case of orthonormal wave functions) vanish since f̄ 0
nk satisfy the Fermi-Dirac

distribution (Euler-Lagrange equation of E0 with respect to fnk). Using the identities given in (A13) and rearranging the nonzero
terms G1,G2,Hnl,H

∗
nl,H

K
nl , B2,C2, C3,D2,D3 and orthonormal counterparts of A2b, D5b, and F3b, the Gâteaux derivative of

E0( τ ε) can be written as

d E0( τ ε)

dε

∣∣∣∣
ε=0

=
∫

�p

E : ∇ϒ(x) dx +
∑

I

∫
R3

E′I : ∇ϒ(x) dx + FPSP + FK, (A17)

where E and E′ denote Eshelby tensors whose expressions in terms of the solutions of the saddle-point problem (37)
( f̄

0
, Ū0

, ϕ̄0,V0
δ̃
) are given in Sec. IV of the paper.
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