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Multistage electronic nematic transitions in cuprate superconductors:
A functional-renormalization-group analysis
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Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate
superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in
an unbiased way by applying the functional-renormalization-group method to the d-p Hubbard model. Without
assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform
(q = 0) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order
triggers another nematic p-orbital density wave along the axial (Cu-Cu) direction at Qa ≈ (π/2,0). It is predicted
that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic
density-wave order at q = Qa is triggered by the uniform order. The predicted multistage nematic transitions are
caused by Aslamazov–Larkin-type fluctuation-exchange processes.
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I. INTRODUCTION

In the normal state of high-Tc cuprate superconductors,
interesting unconventional order parameters emerge due to
the strong interference between the spin, charge, and orbital
degrees of freedom. These phenomena should be directly
related to the fundamental electronic states in the pseudogap
region. The emergence of the charge-density-wave (CDW)
states inside the pseudogap region has been confirmed by the
x-ray and scanning tunneling microscopy measurements [1–6],
as schematically shown in Fig. 1(a). The observed CDW
pattern is shown in Fig. 1(b), in which the density modulations
mainly occur on the oxygen px and py orbitals with antiphase
(d-symmetry) form factor. The discovery of the CDW has
promoted significant progress in the theoretical studies, such
as the spin-fluctuation-driven density-wave scenarios [7–14]
and the superconducting-fluctuation scenarios [15–18].

The origin and nature of the pseudogap phase below T ∗
remain unsolved. For example, it is unclear whether the pseu-
dogap is a distinct phase or a continuous crossover. The short-
range spin fluctuations atT ∼ T ∗ induce the large quasiparticle
damping [19–21], which causes the pseudogap in the density of
states. On the other hand, the phase transition around T ∗ has
been reported by the resonant ultrasound spectroscopy [22],
angle-resolved photoemission spectroscopy (ARPES) analy-
sis [23], and magnetic torque measurement [24]. In particular,
Ref. [24] discovered the C4 symmetry-breaking (nematic)
transition, and its natural candidate is the uniform CDW with
d symmetry schematically shown in Fig. 1(c). A fundamental
question, then, is what mechanism can account for such uncon-
ventional multistage CDW transitions? No CDW instabilities
are given by the mean-field-level approximations, such as
the random-phase approximation (RPA), unless large intersite
interactions are introduced [13,25]. Therefore, higher-order
many-body effects, called the vertex corrections (VCs), should
be essential for the CDW formation [7–13,26].

In many spin-fluctuation-driven CDW scenarios, the CDW
wave vector is given by the minor nesting vector Qa or Qd in
Fig. 1(d); Qa is the “axial-wave vector” parallel to the nearest
Cu-Cu direction, and Qd is the “diagonal-wave vector.” The
experimental axial CDW is obtained if the Aslamazov–Larkin
VCs (AL-VCs) are taken into account [13]. In addition, the
uniform (q = 0) CDW instability has been studied intensively
based on the Hubbard models [9,27–30]. In these studies,
however, it was difficult to exclude the possibility that the CDW
susceptibility has the maximum at finite q.

Theoretically, it is difficult to analyze the spin and charge
susceptibilities with general wave vector q on equal footing
by including the VCs in an unbiased way. For this purpose, in
principle, the functional-renormalization-group (fRG) method
would be the best theoretical method. The pioneering fRG
studies [9,28] were performed only in the weak-coupling
region, so the obtained CDW instability is small and its q
dependence is not clear. To overcome this problem, we have
to improve the numerical accuracy of the fRG method, and
apply it to the two-dimensional Hubbard model in the strong-
coupling region.

In this paper, we study the orbital-dependent spin and charge
susceptibilities for various symmetries on equal footing by
analyzing the higher-order VCs in an unbiased way using
the improved fRG method. We find that the uniform CDW
accompanied by the p-orbital polarization (nx �= ny), shown
in Fig. 1(c), is driven by the antiferro spin fluctuations. In
this uniform nematic CDW phase, another nematic CDW
instability emerges at the wave vector q = Qa as shown in
Fig. 1(b). The present study indicates that the uniform p-orbital
polarization appears in the pseudogap region, and the axial
q = Qa CDW is induced at TCDW < T ∗. These multistage
CDW transitions in under-doped cuprates originate from the
higher-order AL-type VCs.

In the present study, we use the functional RG +
constrained RPA (RG + cRPA) method. The advantage of this
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FIG. 1. (a) Schematic phase diagram of the high-Tc cuprate super-
conductors. T ∗, TCDW, TN , and Tc are the transition temperatures for
the pseudogap state, CDW order, magnetic order, and superconductiv-
ity, respectively. We study the 10%-doping case shown by the vertical
broken line. (b) Schematic charge distribution in the d-symmetry
pO-CDW state with the wave vector q = Qa ≈ (0.5π,0). (c) The
uniform nematic pO-CDW state with nx �= ny . (d) The Fermi surface
and (e) energy dispersion of the present d-p model. The lower-energy
region (|E| < �0 = 0.5 eV) is divided into the Np = 128 patches to
perform the RG analysis.

method had been explained in Refs. [31–34] and Appendix A
in detail.

II. MODEL AND THEORETICAL METHOD

Here, we study a standard three-orbital d-p Hubbard
model [13,33,35] expressed as H = ∑

k,σ c†k,σ ĥ0(k)ck,σ +
U

∑
j nd, j ,↑nd, j ,↓, where c†k,σ = (d†

k,σ ,p
†
x,k,σ ,p

†
y,k,σ ) is the

creation operator for the electron on d, px , and py orbitals,
and ĥ0(k) is the kinetic term given as the 0MTO model
in Refs. [35,36]. (The numerical results are unchanged if
another realistic 1MTO model is used; see Appendix B.) U

is the Hubbard-type on-site Coulomb interaction for the d

orbital, and nd, j ,σ = d
†
j ,σ d j ,σ at site j . Hereafter, we study

the 10%-hole-doping case. The Fermi surface (FS) and the
band structure are shown in Figs. 1(d) and 1(e), respectively.

By using the RG + cRPA theory in Ref. [33], we find that
the spin susceptibility for d electrons,

χ spin(q) = 1

2

∫ 1/T

0
dτ 〈Sd (q,τ )Sd (−q,0)〉, (1)

and the B1g-symmetry (d-symmetry) charge susceptibility for
p electrons,

χ
p-orb
d (q) = 1

2

∫ 1/T

0
dτ

〈
n

p-orb
d (q,τ )np-orb

d (−q,0)
〉
, (2)

are the most enhanced susceptibilities [33]. Here, Sd (q,τ ) is
the d electron-spin operator, and n

p-orb
d (q) ≡ nx(q) − ny(q)

[nx(y)(q) = ∑
k,σ p

†
x(y),k,σ px(y),k+q,σ ] is the p-orbital charge-

density-wave (pO-CDW) operator with B1g symmetry. If

χ
p-orb
d (q) diverges at q = Qa (q = 0), the pO-CDW order

shown in Fig. 1(b) [Fig. 1(c)], which is the CDW on p orbitals,
is realized. We verified that the charge susceptibilities with
non-B1g symmetries, such as the A1g-symmetry total charge
susceptibility for n ≡ nd + nx + ny , remain small even in the
strong-coupling region [33].

In the RG + cRPA method, we calculate the scattering
processes involving higher-energy states |Ek,ν | > �0 [ν being
the band index; see Fig. 1(e)] using the RPA with the energy-
constraint and incorporate their contributions into the initial
vertex functions of the RG equations [31–34]. Using the
RPA, the higher-energy processes are calculated accurately by
dropping the VCs, which are less important for higher-energy
processes. The lower-energy scattering processes for |Ek,ν | <

�0 are calculated by solving the RG equations, based on the
Np-patch RG scheme [27,37]. Hereafter, we put Np = 128
and �0 = 0.5 eV. In the RG + cRPA method, the numerical
accuracy of the susceptibilities is greatly improved even in the
weak-coupling region since the cRPA is used for the higher-
energy processes, for which the Np-patch RG scheme is less
accurate. We verified that the numerical results are essentially
independent of the choice of �0 when EF � �0 � T .

By solving the RG equations, many-body vertices are grad-
ually renormalized as reducing the energy scale �l = �0e

−l

with increasing l (�0). In principle, the renormalization of the
vertex saturates when �l reaches ∼T [37,38]. Here, we intro-
duce the lower-energy cutoff �low (∼T ) in the RG equations
for the four-point vertex �

s(c)
l , and stop the renormalization at

�l = �low; see Appendix A and Ref. [9]. [We do not introduce
the lower-energy cutoff in the RG equations for χs,c(q).] In the
previous study [33], we set a large cutoff �low = πT to achieve
stable numerical results. When �low � T , the uniform (q = 0)
nematic susceptibility is especially underestimated compared
with q �= 0 instabilities, as we discuss later. Since we have
improved the numerical accuracy in solving the RG equations,
we can use a smaller natural cutoff �low = T . For this reason,
we can obtain the q dependence of the susceptibility accurately,
including q ≈ 0.

We find that the numerical accuracy and stability are
improved by employing the Wick-ordered scheme of the fRG
formalism, in which the cutoff function 	�

<(ε) = 	(� − |ε|)
is used for the Green’s function [37]. In this scheme, in
principle, the VCs due to the higher-energy processes are
included more accurately compared with using another cutoff
function 	�

>(ε) = 	(|ε| − �) based on the Kadanoff–Wilson
scheme used in Ref. [33].

III. MULTISTAGE ELECTRONIC NEMATIC TRANSITIONS

In Figs. 2(a) and 2(b), we show the pO-CDW susceptibility
χ

p-orb
d (q) given by the RG + cRPA method for U = 4.32 eV

at T = 0.1 eV. The large peaks obtained at q = 0, Qa, and Qd
originate from the VCs, since the RPA result is less singular,
as seen in Fig. 2(b). As shown in Figs. 2(a)–2(c), the most
dominant peak locates at q = 0. This is consistent with the
experimental uniform nematic transition at T ∗ (>TCDW) [24].
We also obtain the peak structures at q = Qa and Qd, consis-
tently with our previous fRG study [33]. Figure 2(c) shows
that χ

p-orb
d (0) monotonically increases with decreasing T ,
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FIG. 2. (a), (b) The RG + cRPA result of the pO-CDW sus-
ceptibility χ

p-orb
d (q) obtained for U = 4.32 eV at T = 0.1 eV. The

RPA result is also shown for comparison in panel (b). The axial
wave vector is Qa ≈ (0.37π,0) and the diagonal wave vector is
Qd ≈ (0.40π,0.40π ). Both Qa and Qd correspond to the wave vector
connecting the hot spots shown in Fig. 1(b). (c) T dependence of
χ

p-orb
d (q) for U = 4.32 eV. (d) VCs due to MT processes. (e) VCs

due to AL processes.

consistently with the recent electronic nematic susceptibility
measurement [39]. At low temperatures, χp-orb

d ( Qa) increases
steeply and becomes larger than χ

p-orb
d ( Qd), shown in the

inset of Fig. 2(c). Note that the temperature T = 0.1 eV is
comparable to T ∗ ∼ 300 K if the mass-enhancement factor
m∗/mband ∼ 3 is taken into account.

The enhancement of χ
p-orb
d (q) is caused by the spin

fluctuations, due to the strong charge-spin interplay given
by the VCs. The moderate peak at Qd is caused by the
Maki–Thompson (MT)-VCs, given by the series of the single-
fluctuation-exchange processes shown in Fig. 2(d) [11,12].
However, the MT-VCs cannot account for the dominant peaks
at q = 0 and Qa. Recently, it was found that the uniform
nematic order in the Fe-based superconductors [26,40] and
Sr3Ru2O7 [31,41] is driven by the AL-VC, given by the
series of the double-fluctuation-exchange processes shown in
Fig. 2(e). In fact, the first term in Fig. 2(e) is proportional to∑

k χ spin(k + q)χ spin(k), which takes a large value for q = 0
whenχ

spin
max � 1 [26,42]. Later, we demonstrate that the AL-VC
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FIG. 3. (a) RG + cRPA result of χ
p-orb
d (q) at three peak positions

as a function of χ spin
max (�Ep = 0). The RPA results are also shown by

lines. In the inset, the U dependence of χ spin
max is shown. (b) Scaling

flows of the effective four-point vertices for the pO-CDW with d

symmetry, for U = 4.32 eV at T = 0.1 eV. l (�0) is the scaling
parameter. The scaling flows for spin channel are also shown where
Qs is the nesting vector ≈(π, 0.78π ) or (0.78π, π ). (c) The optimized
form factor fq=0(k) on the FS, which has d symmetry.

causes the uniform and axial CDW instabilities in the present
d-p model.

Next, we investigate the U dependencies of the susceptibil-
ities. In the inset of Fig. 3(a), we show the U dependence of
χ

spin
max ≡ maxq{χ spin(q)}. Thanks to the numerical accuracy of

the RG + cRPA method, χ spin
max perfectly follows the RPA result

for the wide weak-coupling region (U < 4 eV). To clarify the
close interplay between spin and orbital fluctuations, we plot
the peak values of χ

p-orb
d (q) as a function of χ

spin
max in Fig. 3(a).

In contrast to χ
spin
max , χ

p-orb
d (q) strongly deviates from the RPA

result, indicating the significance of the VCs. With increasing
U , the peak position of χ

p-orb
d (q) shifts to q = 0 at χ

spin
max ∼

2.5, and χ
p-orb
d (0) exceeds the spin susceptibility for χ

spin
max �

10 eV−1.
To understand the origin of the enhancement of χ

p-orb
d (q),

we analyze the scaling flow of the effective interaction for the
pO-CDW introduced as

�
p-orb
d (q) ≡ �c

x;x(q) + �c
y;y(q) − �c

x;y(q) − �c
y;x(q),

with

�c
α;β(q) ≡

∑
k,k′

�c
l (k + q,k; k′ + q,k′)

× u∗
α(k + q)uα(k)uβ(k′ + q)u∗

β(k′).
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Here �c
l is the charge-channel four-point vertex, which is a

moderate function of the Fermi momenta in the parameter
range of the present numerical study. uα(k) is the matrix ele-
ment connecting the p orbitals (α = x,y) and the conduction
band [33]. The scaling flow of �

p-orb
d (q) is shown in Fig. 3(b),

with the scaling parameter l = ln(�0/�l). The negative effec-
tive interaction drives the enhancement of the corresponding
instability. We also plot the effective interaction for the spin
channel, �spin( Qs). For the spin channel, �spin( Qs) ∼ −U at
l = 0, and it is renormalized like the RPA as �

spin
l = �

spin
0 /(1 −

c|�spin
0 |l) for l � ln(�0/T ) = 1.6, where c is the density of

states. For the charge channel, although �
p-orb
d (q) at l = 0 is

quite small, it is strongly renormalized to be a large negative
value. This result means that the CDW instability originates
from the VC going beyond the RPA.

We also calculate the d-electron charge susceptibility with
form factor fq(k), which is given as

χd-orb(q) = 1

2

∫ 1/T

0
dτ 〈B(q,τ )B(−q,0)〉, (3)

where B(q) = ∑
k,σ fq(k)d†

k−q/2,σ dk+q/2,σ . The numerically
optimized fq(k) at q = 0 is shown in Fig. 3(c), which has B1g

symmetry. Its Fourier transformation gives the modulation of
the effective hopping integrals, called the dx2−y2 -wave bond
order. Since the k dependence of f0(k) in Fig. 3(c) is similar
to that of |ux(k)|2 − |uy(k)|2, the obtained χ

spin
max dependence

of χd-orb(0) with the optimized form factor is similar to that of
χ

p-orb
d (0) shown in Fig. 3(a). In Appendix C, we analyze the

single-d-orbital Hubbard model, and find the strong enhance-
ment of χd-orb(q) with the B1g form factor at q = 0, Qa, and
Qd, very similarly to the pO-CDW susceptibilities shown in
Figs. 2 and 3.

As shown in Fig. 2(c), χ
p-orb
d (0) increases divergently at

T ∼ 0.1 eV, and the uniform p-orbital polarization with nx �=
ny depicted in Fig. 1(c) appears below the transition tem-
perature. To discuss the CDW instabilities inside the nematic
phase, we perform the RG + cRPA analysis in the presence of
the uniform pO-CDW order H ′ = − 1

2�Ep[nx(0) − ny(0)]. In

Fig. 4(a), we plot the peak values of χ
p-orb
d (q) in the uniform

pO-CDW state with �Ep = 0.3 eV. Due to small �Ep > 0,
χ

p-orb
d (q) at q = Qx

a (along the x axis) strongly increases
whereas that at q = Qy

a (along the y axis) decreases. Thus,
the pO-CDW at q = Qx

a is expected to emerge below TCDW,
consistently with the phase diagram in Fig. 1(a).

IV. ORIGIN OF NEMATIC ORDERS

To confirm the mechanism of the nematic transition, we
perform the diagrammatic calculation for the MT- and AL-
VCs. These VCs can be obtained by solving the CDW equation
introduced in Ref. [43] in the study of Fe-based superconduc-
tors. We analyze the linearized CDW equation introduced in
Appendix D and in Ref. [44]. By solving the CDW equation,
both MT- and AL-VCs shown in Figs. 2(d) and 2(e) with the op-
timized form factors are systematically generated. Figure 4(b)
shows the eigenvalue of the linearized equation, λq , for �Ep =
0.1 eV. Here, αS is the spin Stoner factor, and the horizontal
axis is proportional to χ

spin
max . The CDW susceptibility increases
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FIG. 4. (a) The RG + cRPA result of χ
p-orb
d (q) at q = 0, Qx,y

a ,
and Qd as a function of χ spin

max for �Ep = 0.3 eV. The inset shows the
FS. (b) The eigenvalues of the CDW susceptibility given by solving
the linearized CDW equation in Appendix D for γ = 0.3 eV.

with the increase of λq . In Fig. 4(b), we set the quasiparticle
damping γ = 0.3 eV. Note that λq decreases with γ , whereas
its overall q dependence is independent of γ , as shown in
Appendix D. The obtained results are qualitatively consistent
with the RG + cRPA results in Fig. 4(a). In Appendix D, we
reveal that the CDW instabilities at q = 0 and q = Qa are
given by the higher-order AL-type VCs.

Finally, we explain why �low should be set small. The RG
equation for the q = 0 vertex, �̄c

l (k; k′) ≡ �c
l (k,k; k′,k′), is

given as

d�̄c(k; k′)/dl ∝ �lḟ (�l)
∑

k′′
δ(|Ek′′ | − �l)�̄

c
l (k; k′′)

× �̄c
l (k′′; k′) + two other terms,

where ḟ (ε) is the derivative of the Fermi distribution function.
Since the factor |ḟ (�l)| is small for �l � 4T , the obtained �̄c

l

is strongly reduced if �low � T . In contrast, �s,c for q �= 0 is
not so sensitive to �low. For this reason, the renormalization
effect of �c

l is underestimated for q ≈ 0 if �low � T . Then,
the obtained χ

p-orb
d (0) is suppressed to be smaller than the peak

values at q �= 0 if a large cutoff �low � T is used, similarly to
the previous results for �low = πT [33]. In the present study,
large χ

p-orb
d (0) is correctly obtained thanks to the use of the

small cutoff �low = T .

V. DOPING DEPENDENCE OF CHARGE-DENSITY-WAVE
SUSCEPTIBILITIES

In the above sections, we studied the spin and charge
susceptibilities in the d-p Hubbard model only for 10%-hole-
doped case (p = 0.10). To understand the experimental phase
diagram in Fig. 1(a), however, we have to study the doping
dependence of susceptibilities. This issue is a very important
but difficult goal for theorists. We find that the CDW is driven
by the strong spin fluctuations, which strongly develop when
the hole-density p approaches zero experimentally.

In the RG + cRPA theory, the CDW is driven by the
strong spin fluctuations, and spin fluctuations develop as
the hole carrier p approaches zero experimentally. For this
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FIG. 5. Doping dependence of χ
p-orb
d (0) obtained by the RG +

cRPA theory (Np = 64) at T = 0.1 eV. The obtained χ
p-orb
d (0)

linearly increases as p approaches unity, consistently with T ∗ in the
experimental phase diagram in Fig. 1(a) in the main text. For p � 0.1,
χ

p-orb
d (0) exceeds χ spin

max for T � 0.1 eV.

reason, as shown in Fig. 5, the uniform CDW susceptibility
χ

p-orb
d (0) linearly increases as p decreases accompanied by

the increment of χ
spin
max for p ∼ 0. This result is consistent with

the experimental p dependence of T ∗ in Fig. 1(a) in the main
text. In Fig. 5, we modify U slightly so that the experimental
approximate relation χ

spin
max ∝ 1/p is satisfied, as performed in

our previous study [13]. We put U = 4.31, 4.25, and 4.06 eV
for p = 0.05, 0.10, and 0.20, respectively.

In contrast to T ∗, TCDW decreases near the half filling
for p < 0.1, as depicted in Fig. 1(a). This behavior is also
understood qualitatively based on the spin-fluctuation-driven
mechanism. In fact, the axial CDW wavelength Qa is given by
the nesting vector between the neighboring hot spots, and | Qa|
increases as p approaches zero. The CDW instability driven by
the Aslamazov–Larkin vertex correction, which is qualitatively
proportional to

∑
q χs(q)χs(q + Qa), is suppressed if | Qa|

is very large, as we explained in Ref. [13]. Therefore, the
difference in the doping-dependencies of T ∗ and TCDW is
qualitatively understood. It is an important future issue to
reproduce the experimental phase diagram in Fig. 1(a) more
completely, which is one of the greatest goals in this field.

VI. SUMMARY

In summary, we studied various unconventional CDW
instabilities in the d-p Hubbard model by using the RG +
cRPA method and predicted the multistage CDW transitions
in cuprate superconductors. Based on the proposed spin-
fluctuation-driven CDW mechanism, the following under-
standing has been reached: The short-range spin fluctuations
drive the uniform nematic CDW around T ∗, and it triggers the
axial q = Qa CDW at TCDW successively. We also explained
the doping dependence of T ∗ based on the RG + cRPA theory.
These results naturally explain the phase diagram in Fig. 1(a),
except for heavily under-doped region. Although the uniform

CDW order cannot simply explain the pseudogap formation,
the large quasiparticle damping [19–21] due to the short-range
spin-fluctuations may induce the pseudogap for T � T ∗.
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APPENDIX A: RENORMALIZATION GROUP EQUATIONS
FOR THE FOUR-POINT VERTEX

In the main text, we analyzed the d-p Hubbard model
by using the RG + cRPA method [32]. This method is the
combination of the fRG theory and the cRPA. The RG + cRPA
method enables us to perform reliable numerical study in the
unbiased way. In this method, we introduce the original cutoff
energy �0 in order to divide each band into the higher- and
lower-energy regions: The higher-energy scattering processes
are calculated by using the cRPA: The lower-energy scattering
processes are analyzed by solving the RG equations, in which
the initial vertices in the differential equation are given by the
cRPA.

In the present model, the bare Coulomb interaction term on
d electrons is given as

HU = 1

4

∑
i

∑
σσ ′ρρ ′

U 0;σσ ′ρρ ′
d
†
iσ diσ ′d

†
iρ ′diρ, (A1)

U 0;σσ ′ρρ ′ = 1

2
U 0;s �σσσ ′ · �σρ ′ρ + 1

2
U 0;cδσ,σ ′δρ ′,ρ, (A2)

where U 0;c = U and U 0;s = −U .
The antisymmetrized full four-point vertex �(k + q,k; k′ +

q,k′), which is the dressed vertex of the bare vertex Û in
Eq. (A2) in the microscopic Fermi-liquid theory, is depicted in
Fig. 6(a). Reflecting the SU(2) symmetry of the present model,
� is uniquely decomposed into the spin-channel and charge-

d

dΛ

k2

k1

k4

k3

=

k

k’k2

k1

k4

k3

+

k

k’k3

k1

k4

k2

+ k k’

k2

k1

k3

k4

ΓRG (k1, k2; k3, k4)

, ( , ;       , )k q k k q kσσ ρρΓ + + =

k,σ '

k+q,σ

k',ρ'

k'+q,ρ

Γ

(a)

(b)

' ' ''

FIG. 6. (a) Definition of the full four-point vertex �σσ ′ρρ′
(k +

q,k; k′ + q,k′) in the microscopic Fermi-liquid theory. (b) The
one-loop RG equation for the four-point vertex. The crossed lines
represent the electron Green’s function with cutoff �. The slashed
lines represent the electron propagations having energy shell �.
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channel four-point vertices by using the following relation:

�σσ ′ρρ ′
(k + q,k; k′ + q,k′)

= 1
2�s(k + q,k; k′ + q,k′)�σσσ ′ · �σρ ′ρ

+ 1
2�c(k + q,k; k′ + q,k′)δσ,σ ′δρ ′,ρ, (A3)

where σ, σ ′, ρ, ρ ′ are spin indices, and �σ is the Pauli matrix
vector. We stress that �c,s are fully antisymmetrized, so the
requirement by the Pauli principle is satisfied. We note that
�↑↑↑↑ = 1

2�c + 1
2�s , �↑↑↓↓ = 1

2�c − 1
2�s , and �↑↓↑↓ = �s .

In the RG formalism, the four-point vertex function is
determined by solving the differential equations, called the RG
equations. In the band-representation basis, the explicit form
of the RG equations is given by [34]

d

d�
�RG(k1,k2; k3,k4)

= − T

N

∑
k,k′

[
d

d�
G(k)G(k′)

]

×
[
�RG(k1,k2; k,k′)�RG(k,k′; k3,k4)

−�RG(k1,k3; k,k′)�RG(k,k′; k2,k4)

− 1

2
�RG(k1,k; k′,k4)�RG(k,k2; k3,k

′)
]
, (A4)

where G(k) is the Green’s function multiplied by the Heaviside
step function 	(� − |Ek,ν |), and k is the compact notation of
the momentum, band, and spin indices: k = (k,εn,ν,σ ). The
diagrammatic representation of the RG equations is shown in
Fig. 6(b). The first two contributions in the right-hand-side
represent the particle-hole channels and the last contribution
is the particle-particle channel.

In a conventional fRG method, �0 is set larger than
the bandwidth Wband, and the initial value is given by the
bare Coulomb interaction in Eq. (A2). In the RG + cRPA
method, we set �0 < Wband, and the initial value is given by
the constrained RPA to include the higher-energy processes
without over counting of diagrams [32].

In the main text, we introduced the lower-energy cutoff
�low (∼T ) in the RG equation for the four-point vertex:
Eq. (A4). For this purpose, we multiply the cutoff function
[(�low/�)ζ + 1]−1 to the right-hand side of Eq. (A4). Here,
ζ is a parameter determining the width of this smooth cutoff,
and we set ζ = 10 in the main text. We do not introduce the
lower-energy cutoff in the RG equation for the susceptibilities.

APPENDIX B: RG + cRPA ANALYSIS OF THE d- p MODEL
WITH DIFFERENT HOPPING PARAMETERS

In Ref. [35], the authors derived the realistic d-p models
for La-based cuprate by evaluating the hopping parameters on
the basis of the N th-order muffin-tin orbitals (NMTO). The
model parameters for N = 0 and N = 1 are given in Table I.
The band structure of the N = 0 basis model (0MTO model)
is very close to the local density approximation band structure
near the Fermi energy. For this reason, we have analyzed
the 0MTO model in the main text. On the other hand, the
N = 1 basis model (1MTO model) appropriately reproduces

TABLE I. Hopping integrals for the N = 0 and N = 1 models
given in Ref. [35]. The units are eV.

NMTO εd − εp tdd tpd t ′
pd tpp t ′

pp t ′′
pp t ′′′

pp

N = 0 0.43 −0.10 0.96 −0.10 0.15 −0.24 0.02 0.11
N = 1 0.95 0.15 1.48 0.08 0.91 0.03 0.15 0.03

the overall oxygen bonding band structure with deep bottom
energy E � −8 eV. To check the reliability of our RG + cRPA
results, we analyze the d-p model with the 1MTO model
parameters.

Figure 7(a) shows the band structure of the 1MTO model.
Here, we introduced the third-nearest d-d hopping t3rd

dd =
−0.1 eV to make the FS closer to Y-based cuprates. The FS
of this model is shown in Fig. 7(b). Now, we analyze this
model by using the RG + cRPA method. The parameters are
the same as in the main text except for U . The number of
patches is Np = 128 and the initial cutoff is �0 = 0.5 eV. The
temperature is fixed at T = 0.1 eV.

In Fig. 7(c), we show the obtained χ
p-orb
d (q) for U = 5.72

eV. The RPA results are also shown for comparison. It has the
largest peak at q = 0 and the second largest peak at q = Qa,
respectively. The obtained q dependence of χ

p-orb
d (q) is similar

to Fig. 2(b). We also investigate the U dependencies of the spin
and charge susceptibilities. As shown in the inset of Fig. 7(d),
relatively large U is required for the enhancement of χ

spin
max in

the 1MTO model, since the density of states of the d orbital
at the Fermi energy in the 1MTO model is smaller than that in
the 0MTO model [35]. In Fig. 7(d), we plot the peak values of
χ

p-orb
d (q) as functions of χ

spin
max . The obtained results are quite

similar to Fig. 3(a) in the main text. Thus the spin-fluctuation-
driven CDW instabilities are universal phenomena in both the
0MTO and 1MTO models.

FIG. 7. (a) Energy dispersion and (b) FS of the d-p model with
1MTO model parameters. (c) RG + cRPA and RPA results for the
pO-CDW susceptibility χ

p-orb
d (q) with U = 5.72 eV. (d) RG + cRPA

result of χ
p-orb
d (q) at three peak positions as a function of χ spin

max .
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In summary, we investigate the d-p model with 1MTO
model parameters. We found that the results are very similar to
those for the 0MTO model given in the main text. Therefore, the
mechanism of the spin-fluctuation-driven CDW instabilities
revealed in the main text is universal, independently of the
details of the model parameters.

APPENDIX C: RG + cRPA ANALYSIS
FOR SINGLE-d-ORBITAL HUBBARD MODEL

In the main text, we studied the 0MTO d-p Hubbard model
based on the RG + cRPA theory and found that the pO-CDW
susceptibilities develop strongly in the strong-spin-fluctuation
region. Similar results are obtained in the 1MTO model in
which εd − εp is 0.53 eV larger than that in the 0MTO model,
as we show in Appendix B. In these d-p models, any Coulomb
interactions on p orbitals are not taken into account. Therefore,
spin-fluctuation-driven CDW formation is also expected to be
realized in the single-d-orbital Hubbard model with on-site
Coulomb interaction.

Here, we study the single-d-orbital Hubbard model with
the first-, the second-, and the third-nearest hopping integrals
as t = −0.50 eV, t ′ = 0.083 eV, and t ′′′ = −0.10 eV, respec-
tively. The band structure and Fermi surface for n = 0.90 are
shown in Figs. 8(a) and 8(b), respectively. We calculate the
d-electron charge susceptibility χd-orb(q) with the B1g form
factor fq(k) = cos(kx) − cos(ky) introduced in Eq. (3) in the
main text. The results obtained are summarized in Fig. 8(c):
Both χd-orb(0) and χd-orb( Qa) are strongly enlarged in the
strong spin-fluctuation region, very similarly to the pO-CDW
susceptibility shown in Fig. 3(a) in the main text.
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(0,0) (π,0) (π,π) (0,0)

Wavevector

E
ne

rg
y

[e
V

]

)π,π()π,0(

)0,π()0,0(

kx

ky

0 5 10 15
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]
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sp
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m
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[e

V
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1 ]
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(c)

FIG. 8. (a) Energy dispersion and (b) FS of the single-d-orbital
Hubbard model. (c) RG + cRPA result of the d-electron charge sus-
ceptibility with B1g form factor fq(k) = cos(kx) − cos(ky), χd-orb

d (q),
as a function of χ spin

max .

Therefore, it was verified that our main numerical results
in the main text are unchanged even in the single-d-orbital
model once the B1g form factor is taken into account. We also
analyzed the CDW equation for the single-d-orbital model,
and obtained the strong CDW instability. The obtained form
factor ��0(k) has B1g symmetry. In real space, this is the
bond order (=modulation of hopping integrals) given by the
Fourier transformation of the symmetry-breaking self-energy
��0(k). Thus, the robustness of the spin-fluctuation-driven
CDW mechanism has been clearly confirmed.

APPENDIX D: ANALYSIS OF LINEARIZED
CHARGE-DENSITY-WAVE EQUATION

In the main text, we analyzed the d-p Hubbard model for
cuprate superconductors in an unbiased manner by using the
RG + cRPA method. We find that the nematic CDW with d

form factor is the leading instability. The axial nematic CDW
instability at q = Qa is the second strongest, and its strength
increases under the static uniform CDW order. This result leads
to the prediction that uniform nematic CDW occurs at the
pseudogap temperature T ∗, and the axial CDW at wave vector
q = Qa is induced under T ∗.

In this section, we study the CDW formation mechanism in
cuprate superconductors based on the diagrammatic method
to find which many-body processes cause the CDW order.
Theoretically, the CDW order is given as the symmetry
breaking in the self-energy ��(k). According to Refs. [26,44],
the self-consistent CDW equation is

��(k) = (
1 − PA1g

)
T

∑
q

V (q)G(k + q), (D1)

where PA1g is the A1g-symmetry projection operator, and
G(k) = [G−1

0 (k) − ��(k)]−1 is the d-electron Green’s
function with the symmetry-breaking term ��. V (q) =
U 2[ 3

2χs(q) + 1
2χc(q) − χ0(q)] + U , where χs(c)(q) =

χ0(q)/[1 − (+)Uχ0(q)] and χ0(q) = −T
∑

k G(k + q)G(k).
To analyze the CDW state with arbitrary wave vector q, we

linearize Eq. (D1) with respect to ��:

λq��q(k) = T
∑
k′

K(q; k,k′)��q(k′), (D2)

where λq is the eigenvalue for the CDW for the wave vector q.
The CDW with wave vector q appears when λq = 1, and the
eigenvector ��q(k) gives the CDW form factor. The kernel
K(q,k,k′) is given in Fig. 9(a), and its analytic expression
is [44]

K(q; k,k′) =
(

3

2
V s

0 (k − k′) + 1

2
V c

0 (k − k′)
)

×G0(k′ + q/2)G0(k′ − q/2)

− T
∑

p

(
3

2
V s

0 (p + q/2)V s
0 (p − q/2)

+ 1

2
V c

0 (p + q/2)V c
0 (p − q/2)

)

×G0(k − p)[�q(k′; p) + �q(k′; −p)], (D3)
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(a)

(b)

(c)

MT ALHartree

FIG. 9. (a) Schematic linearized CDW equation for general wave
vector q. (b) Examples of the VCs generated by solving the linearized
CDW equation. (c) Higher-order AL processes.

where V s
0 (q) = U + U 2χs

0 (q), V c
0 (q) = −U + U 2χc

0 (q), and
�q(k; p) ≡ G0(k + q

2 )G0(k − q
2 )G0(k − p). The subscript 0

in Eq. (D3) represents the functions with �� = 0.
By solving the linearized CDW equation (D2), many higher-

order vertex corrections (VCs) are systematically generated.
Some examples of the generated VCs are shown in Fig. 9(b). If
we drop the Hartree term and MT term in K(q; k,k′), we obtain
the series of higher-order AL-VCs shown in Fig. 9(c). The AL
terms drive the q = 0 CDW instability since its functional form
∝∑

k χs(k + q)χs(k) is large for q ≈ 0 [43].
Figure 10(a) shows the obtained q dependence of λq

for αS = 0.995 at T = 50 meV. Here, we introduced the
quasiparticle damping γ = 0.3 eV into G0(k). Here, λq is the
largest at q = 0, and the second largest maximum is at q = Qa.
αS ≡ Umaxq{χ0

0 (q)} is the spin Stoner factor. We also show
the eigenvalue λAL

q (and the second-largest eigenvalue λAL,2nd
q ),

which is obtained by dropping the Hartree and MT terms in the
kernel. That is, λAL

q is given by the higher-order AL processes
shown in Fig. 9(c). At q = 0 and Qa, λAL

q is almost equal to
the true eigenvalue λq .

In the present analysis, we dropped the εn dependence of
��q(k) by performing the analytic continuation (iεn → ε)
and putting ε = 0. We also dropped the εn dependence of
the quasiparticle damping γ . Due to these simplifications, the
obtained λq is overestimated. Therefore, we do not put the
constraint λq < 1 here.

In Fig. 10(b), we show the eigenvalue λMT
q , which is

obtained by dropping the Hartree and AL terms in the kernel.
It is much smaller than λq at q = 0 and Qa, whereas λq

at q = Qd is comparable to the true eigenvalue. Therefore,
the origin of the CDW instability at q = 0 and Qa is the
AL process, whereas that at q = Qd is mainly the MT
process.

Figure 10(c) shows the eigenvalues at q = 0, Qa, and Qd
as a function of αS . As the spin susceptibility increases (αS �
0.98), λq is drastically enlarged by the VCs, and λq=0 becomes
the largest due to the AL processes. The form factor at q = 0,
��0(k), has the d-wave symmetry, as shown in Fig. 10(d).

We stress that the eigenvalue λq is quickly suppressed by
increasing γ , which is actually large in cuprates. Figures 10(e)

FS

pp

a a

a

a

a

a

d

d

d

)b()a(

)d()c(

)f()e(

FIG. 10. (a), (b) q dependencies of λq , λAL
q , λAL,2nd

q , and λMT
q for

αS = 0.995 and γ = 0.3 eV. (c) λq at q = 0, Qa, and Qd as function
of αS for γ = 0.3 eV. (d) Form factor for q = 0 (d wave). (e), (f)
λq as function of αS for γ = 0.6 eV in the cases of �Ep = 0 and
�Ep = 0.1 eV, respectively.

and 10(f) show the CDW susceptibilities for the larger damping
rate γ = 0.6 eV in the cases of �Ep = 0 and �Ep = 0.1
eV, respectively. (Note that the damping rate is renormalized
to be ∼γ /5 in cuprates.) In Fig. 10(e), λq reaches unity
first at q = 0 with increasing αS . In the nematic state with
�Ep = 0.1 eV shown in Fig. 10(f), λq at q = Qx

a exceeds λQd

for αS > 0.996. The corresponding eigenvalue is ∼1.4, which
decreases with increasing γ . This result supports the main
result of the present RG + cRPA study shown in Fig. 4(a) in the
main text.

In summary, we analyzed the linearized CDW equation
based on the d-p Hubbard model, by including both the
MT and AL VCs into the kernel. When the spin fluctuations
are strong (αS � 0.98), the uniform nematic CDW has the
strongest instability. The axial CDW instability is strongly
magnified under the uniform CDW order, as we explain the
main text. The results obtained are consistent with the results
by the RG + cRPA in the main text. Thus, it is concluded that
the higher-order AL processes give the CDW orders at q = 0
and Qa.
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