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Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-
breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well
as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical
models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently
introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016)] spin-fermion model with overlapping ‘hot spots’
on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical
potential relative to the dispersion at (0,π ); (π,0) and the Fermi surface curvature in the antinodal regions being
the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves,
as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state.
The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the
hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic
phases of the cuprates.
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I. INTRODUCTION

Origin of the pseudogap state [1–3] remains one of the main
puzzles in the physics of the high-Tc cuprate superconductors.
First observed in NMR measurements [4,5], it is characterized
by the loss of the density of states due to the opening of a
partial gap at the Fermi level below the pseudogap temperature
T ∗ > Tc. Studies of the pseudogap by means of ARPES [3,6]
and Raman scattering [7,8] have revealed that it opens around
(0,π ) and (π,0) points of the 2D Brillouin zone, the so-called
antinodal regions. With increasing hole doping both T ∗ and
the gap magnitude decrease monotonously and eventually
disappear. However, modern experiments add many more
unconventional details to this picture, showing that a crucial
role in the pseudogap state is played by the various ordering
tendencies.

To begin with, the point-group symmetry of the CuO2 planes
appears to be broken. Namely, scanning tunneling microscopy
(STM) [9,10] and transport [11,12] studies show the absence
of C4 rotational symmetry in the pseudogap state. More
recently, magnetic torque measurements of the bulk magnetic
susceptibility [13] confirmed C4 breaking occurring at T ∗.
Additionally, an inversion symmetry breaking associated with
pseudogap has been discovered by means of second harmonic
optical anisotropy measurement [14].

Other experiments suggest that an unconventional time-
reversal symmetry breaking is inherent to the pseudogap.
Polarized neutron diffraction studies of different cuprate fam-
ilies reveal a magnetic signal commensurate with the lattice
appearing below T ∗ and interpreted as being due to a Q = 0
intraunit cell magnetic order [15,16]. The signal has been
observed to develop above T ∗ with a finite correlation length
[17] and breaks the C4 symmetry [18] (note, however, that a

recent report [19] does not bear evidence of such a signal).
Additionally, at a temperature TK that is below T ∗ but shares a
similar doping dependence polar Kerr effect has been observed
[20,21], which implies [22,23] that time-reversal symmetry
is broken. Additional signatures of a temporally fluctuating
magnetism below T ∗ are also available from the recent μSr
studies [24,25].

While the signatures described above indicate that the
pseudogap state is a distinct phase with a lower symmetry,
there exist only a few experiments [1,26] that yield a ther-
modynamic evidence for a corresponding phase transition. On
the other hand, transport measurements suggest the existence
of quantum critical points (QCPs) of the pseudogap phase [27],
accompanied by strong mass enhancement [28] in line with the
existence of a QCP.

Additionally, in recent years the presence of charge density
waves (CDW) has been discovered in a similar doping range.
The CDW onset temperature can be rather close to T ∗ [29]
but has been shown to have a distinct dome-shaped doping
dependence in YBCO [30] and Hg-1201 [31]. Diverse probes
such as resonant [29,31–33] and hard x-ray [30,34–36] scatter-
ing, STM [10,37–40], and NMR [41,42] have observed CDW
with similar properties in most of the hole-doped cuprate com-
pounds with the exception of La-based ones (in which the spin
and charge modulations are intertwined [43]). Generally, the
CDWs have the following common properties. The modulation
wave vectors are oriented along the Brillouin zone axes (axial
CDW) and decrease with doping. While the modulations along
both directions are usually observed, there is experimental
evidence [36,40,44] that the CDW is unidirectional locally.
The intraunit cell structure of the CDW is characterized by
a d-form-factor [45] with the charge being modulated at two
oxygen sites of the unit cell in antiphase with each other.
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From the theoretical perspective, one of the initial interpre-
tations was that the pseudogap was a manifestation of fluctuat-
ing superconductivity, either in a form of preformed Bose pairs
[46,47] or strong phase fluctuations [48]. However, the onset
temperatures of superconducting fluctuations observed in the
experiments [49–51] are considerably below T ∗ and have a
distinct doping dependence. Another scenario dating back to
the seminal paper [52] attributes the pseudogap to the strong
short-range correlations due to strong on-site repulsion [53,54].
Numerical quantum Monte Carlo simulations [55–58] of the
Hubbard model support this idea. However, this scenario ‘as is’
does not explain the broken symmetries of the pseudogap state.
More recently, these results have been interpreted as being
due to topological order [59,60] that can also coexist with the
breaking of discrete symmetries [61].

A different class of proposals for explaining the pseudogap
behavior involves a competing symmetry-breaking order. One
of the possible candidates discussed in the literature is the
Q = 0 orbital loop current order [62]. Presence of circulating
currents explicitly breaks the time reversal symmetry, allowing
one, with appropriate modifications, to describe the phenom-
ena observed in polarized neutron scattering [63] and polar
Kerr effect [64] experiments. However, it does not lead to a gap
on the Fermi surface at the mean-field level. Numerical studies
of the three-band Hubbard model give arguments both for
[65,66] and against [67–69] this type of order. Other proposals
for Q = 0 magnetic order include spin-nematic [15,70], oxy-
gen orbital moment [71], or magnetoelectric multipole [72,73]
order.

Charge nematic order [74] and the related d-wave Pomer-
anchuk instability [75,76] of the Fermi surface have also been
considered in the context of the pseudogap state. It breaks
the C4 rotational symmetry of the CuO2 planes in agreement
with numerous experiments [9–13]. While not opening a gap,
fluctuating distortion of the Fermi surface can result in an
arclike momentum distribution of the spectral weight and
non-Fermi-liquid behavior [77–79]. Evidence for this order
comes from numerical studies of the Hubbard model with
functional renormalization group [75], dynamical mean-field
theory [80,81], and other [82,83] methods, as well as analytical
studies of forward-scattering [84] and spin-fermion [85,86]
models.

Another possibility is the CDW [87–89]. More recent
studies focus on the important role of the interplay between
CDW and superconducting fluctuations [90], preemptive or-
ders and time reversal symmetry breaking [91] (that can
result in the polar Kerr effect [92,93]), vertex corrections for
the interactions [94,95], CDW phase fluctuations [96], and
possible SU(2) symmetry [97–99]. Additionally, pair density
wave—a state with modulated Cooper pairing amplitude—has
been proposed to explain the pseudogap and CDW [100–102],
which can be also understood with the concept of ‘intertwined’
SC and CDW orders [103].

An interesting alternative is the d-density wave [104]
(DDW) state (also known as flux phase [105,106]) which is
characterized by a pattern of bond currents modulated with the
wave vector Q = (π,π ) that is not generally accompanied by
a charge modulation. This order leads to a reconstructed Fermi
surface consistent with the transport [27,107] and ARPES
[108] signatures of the pseudogap. Moreover, the time-reversal

symmetry is also broken and a modified version of DDW can
explain the polar Kerr effect [109] observation. Additionally,
model calculations show [110,111] that the system in the DDW
state can be unstable to the formation of axial CDWs. Studies
aimed at a direct detection of magnetic moments created
by the DDW have yielded results both supporting [112,113]
and against [114] their existence (or with the conclusion
that the signal is due to impurity phases [115]). However,
theoretical estimates of the resulting moments are model
dependent [116,117]. There also exists indirect evidence from
superfluid density measurements [118]. Theoretical support
for the DDW comes from renormalization group [119] and
variational Monte Carlo [120] studies of the Hubbard model,
DMRG studies of t − J ladders [121], and mean-field studies
of t − J [122] as well as single [123] and three-orbital [124]
models. However, the regions of DDW stability found in these
studies vary significantly and depend on the value of particular
interactions [123,124] or details of the Fermi surface [120].

Overall, the question of possible competing orders in the
cuprates has turned out to be a rather complicated one. In-
terestingly, state-of-the-art numerical calculations comparing
different methods show that the energy difference between
distinct ground states can be minuscule [125] explaining some
of the difficulties. Thus, analytical approaches which allow one
to study the influence of different parameters in detail can be
of interest.

In this paper, we deduce leading nonsuperconducting orders
using a low-energy effective theory for fermions interacting
with antiferromagnetic (AF) fluctuations. While such theories
can be in principle derived from the microscopic Hubbard
or t − J Hamiltonians [126], we employ here a semiphe-
nomenological approach in the spirit of the widely used
spin-fermion (SF) model [90,91,97,127,128]. Our take on this
problem differs in that we relax the usual assumption that the
interaction, being peaked at (π,π ), singles out eight isolated
‘hot spots’ on the Fermi surface. In contrast, we consider
that neighboring hot spots may strongly overlap and form
antinodal ‘hot regions.’ This assumption agrees well with the
ARPES results [3] demonstrating that the pseudogap covers
the full antinodal region without pronounced maxima at the
‘hot spots’ of the standard SF model. Moreover, the electron
spectrum in the antinodal regions has been found [108,129]
to be shallow with respect to the pseudogap energy scale
for the hole-underdoped samples, i.e., the pseudogap opens
also at points that are not in immediate vicinity of the Fermi
surface. From the spin fluctuation perspective this can be
anticipated if the AF fluctuations correlation length is small
enough such that the resulting interaction between fermions is
uniformly smeared covering the full antinodal regions. Indeed,
the neutron scattering experiments [130,131] show that the
correlation lengths at the temperatures and dopings relevant
for the pseudogap amount to several unit cells lengths.

SF model with overlapping hot spots has been introduced
in our recent publications [85,86], where we have considered
normal state properties as well as charge orders corresponding
to intraregion particle-hole pairing. For the case of a small
Fermi surface curvature, it has been shown that the d-wave
Pomeranchuk instability is the leading one for sufficiently
shallow electron spectrum in the hot regions. This is in contrast
to the diagonal d-form factor CDW usually being the leading
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particle-hole instability in the standard SF model [90,97,128].
As a result of Pomeranchuk transition, the C4 symmetry gets
broken by a deformation of the Fermi surface and an intra-unit-
cell charge redistribution. Additionally, as the Pomeranchuk
order leaves the Fermi surface ungapped, we have shown that at
lower temperatures an axial CDW with dominant d-form factor
and d-wave superconductivity may appear. These results are in
line with the simultaneous observation of the commensurate
C4 breaking [9–13] and axial d-form factor CDWs [39,45].
At the same time, these order parameters, although being in
agreement with the experimental observations, do not readily
explain the time-reversal symmetry breaking phenomena as
well as the possible Fermi surface reconstruction into hole
pockets [27].

In this paper, we consider a possibility of an inter-region
particle-hole pairing, akin to the excitonic insulator proposed
long ago [132]. The resulting state is similar in properties to
the d-density wave [104], having staggered bond currents. In
addition, we find also evidence for an incommensurate version
thereof. It turns out (Secs. III and IV) that the Fermi surface
curvature in the antinodal regions (assumed to be small in
Refs. [85,86]) is the most important ingredient that stabilizes
this state against the charge orders, thus leading to a rich phase
diagram. We further discuss the relation of our findings to the
pseudogap state in Sec. V.

The paper is organized as follows. In Sec. II we present the
model and assumptions that we use. In Sec. III we analyze
a simplified version of the model ignoring retardation effects
and identify the emerging orders. In Sec. IV we present the
results for the full model and discuss the approximations used.
In Sec. V we discuss the relation of our results to the physics
of underdoped cuprates, and in Sec. VI we summarize our
findings.

II. MODEL

The spin-fermion model describes the low-energy physics
of the cuprates in terms of low-energy fermions interacting via
the antiferromagnetic paramagnons. The latter are assumed
to be remnants of the parent insulating AF state destroyed
by hole doping [127]. The resulting interaction is strongly
peaked at the wave vector Q0 = (π,π ) corresponding to the
antiferromagnetic order periodicity and is described by a
propagator

1

(q − Q0)2 + 1
ξ 2

AF
− (

ω
vs

)2 .

Then, one can identify eight ‘hot spots’ on the Fermi surface
mutually connected by Q0 where the interaction is expected
to be strongest (see the left part of Fig. 1). A conventional
approximation motivated by the proximity to AF quantum
critical point (QCP) where ξAF → ∞ is to consider only
small δp ∼ 1/ξAF vicinities of the ‘hot spots’ to be strongly
affected by the interaction. However, at temperatures relevant
for the pseudogap state this argument does not have to hold—
the experimentally reported correlation lengths [130,131] are
indeed rather small. Moreover, ARPES experiments [3] show
that the effects of the pseudogap extend well beyond the ‘hot

~1/ξ

FIG. 1. Overlapping hot spots on the Fermi surface typical for the
hole-doped cuprates.

spots’ to the Brillouin zone edges (π,0),(0,π ) without being
significantly weakened.

A different approach has been introduced in Refs. [85,86].
As ξAF becomes smaller, the ‘hot spots’ expand and and can
eventually overlap and merge forming two ‘hot regions’ (see
the right part of Fig. 1). For the latter to occur the fermionic
dispersion in the antinodal region should be shallow (see
also the formal definition below), which is supported by the
experimental data [108,129]. To describe this situation we
consider the following Lagrangian:

LSF =
∑

p,ν=1,2

cν†
p [∂τ + εν(p)]cν

p

+ 1

2

∑
q

�ϕ−q
(−v−2

s ∂2
τ + q2 + 1/ξ 2

) �ϕq

+ λ
∑
p,q

[
c

1†
p+q �ϕq �σc2

p + c
2†
p+q �ϕq �σc1

p

]
, (2.1)

where cν
p and �ϕq are the fermionic and bosonic (paramagnon)

fields, respectively, and εν(p) is the fermionic dispersion where
the index ν enumerates the two ‘hot regions.’ Additionally, as
the quantity |ε((0,π )/(π,0)) − μ| has been observed [3,108]
to be of the order of the pseudogap energy or smaller, one
expects the fermions in the whole region to participate in the
interaction. Consequently one has to consider the dispersion
relation not linearized near the Fermi surface. Due to the saddle
points present at (π,0) and (0,π ) the minimal model for the
dispersion is:

ε1(p) = αp2
x − βp2

y − μ, ε2(p) = αp2
y − βp2

x − μ, (2.2)

where α has the meaning of the inverse fermion mass and β/α

controls the Fermi surface curvature. Note that the chemical
potential of the system is determined by the full Fermi surface.
As the Fermi energies (measured from the � point) in hole-
doped cuprates are quite large we neglect the temperature
dependence of the chemical potential, and, consequently,μ. On
the other hand, as the relevant temperatures for the pseudogap
onset are still sizable, we shall not consider the effects of
simultaneous development of multiple instability channels due
to the van Hove singularities [133].

In Refs. [85,86] the limit β → 0 has been considered.
For this case the condition of ‘shallowness’ leading to the
merging of the hot spots reads 1/ξAF � √

μ/α. However, in
order to keep the simple quadratic form of the paramagnon
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dispersion we also assume ξAF � a0, where a0 is the lattice
spacing. Here we will consider the consequences of finite β

for the model (2.1) under the same assumption of the strong
hot spot overlap. As in Refs. [85,86] we will concentrate
on the particle-hole (nonsuperconducting) orders. Note that
for interaction being via the antiferromagnetic paramagnons
only, d-wave superconductivity is expected to overcome the
particle-hole orders [90,128]. However, additional interactions
present in real systems, such as nearest-neighbor [134] or
remnant low-energy Coulomb repulsion [85], should suppress
it with respect to the particle-hole orders.

III. PHASE DIAGRAM FOR A SIMPLIFIED MODEL

To address qualitative features of the emerging orders
we can use a simplified version of the model (2.1) also
introduced previously by us [85]. It amounts to substitution
of the paramagnon part of the Lagrangian with a constant
inter-region interaction between the fermions. This is also
equivalent to taking the ξ → 0 limit for the paramagnon
propagator. Additionally, we neglect the self-energy effects for
this case.

We start with the following Lagrangian∑
p,ν=1,2,σ

cν†
p [∂τ + εi(p)]cν

p − λ0

6

∑
p,p′,q

[
c

1†
p+q �σc2

p + c
2†
p+q �σc1

p

]

× [c1†
p′−q �σc2

p′ + c
2†
p′−q �σc1

p′
]
. (3.1)

The spin structure of the interaction is taken here in full analogy
to the original spin-fermion model. Additionally, the integrals
that appear below are cut off at momenta px, py ∼ 1/ξ and
we assume that the inequality α/ξ 2 � μ,T (strong overlap of
hot spots) is fulfilled.

In addition to the d-wave superconductivity, one can identify
two attractive singlet channels (the triplet channels, as in the
SF model, are subleading with the effective coupling being
three times weaker). Corresponding order parameters can be
written in terms of the averages (spin indices are suppressed):

W = 〈
c

1†
p+Q/2c

1
p−Q/2

〉 = −〈c2†
p+Q/2c

2
p−Q/2

〉
, (3.2)

D = 〈
c

1†
p+Q/2c

2
p−Q/2

〉 = −〈c2†
p+Q/2c

1
p−Q/2

〉
. (3.3)

The interaction for the orders without the sign change between
the regions (corresponding to s-form factor charge order) is
repulsive and consequently such orders are not expected to
appear on the mean-field level. As is shown in detail below, the
order parameter W , Eq. (3.2), corresponds to a charge order
with a d-form factor. Due to the change of the sign between the
regions the charge is modulated only at the oxygen orbitals of
the unit cell corresponding to the bonds in a single-band model.
In the case Q 
= 0 [Fig. (2a)] this order represents the d-form
factor charge density wave while for Q = 0 [Fig. (2b)] it leads
to an intra-unit cell redistribution of charge accompanied by a
d-wave Pomeranchuk deformation of the Fermi surface.

A nonzero average D, Eq. (3.3), on the other hand, leads to
a pattern of bond currents modulated with wavevector (π,π ) +
Q without any charge density modulation. In the case Q = 0
[see Fig. 3(a)] this state is similar to the DDW [104] or the
staggered flux phase [106]. Additionally, the order parameter

Q Q=0(a) (b)

FIG. 2. Illustration of charge modulations for (a) d-form factor
CDW with Q along the diagonal (b) d-wave Pomeranchuk phase.

is purely imaginary in this case (D = −D∗) and therefore
breaks only a discrete symmetry. Finite Q 
= 0 correspond
to a modulation of the current pattern incommensurate with
the lattice [see Fig. 3(b)], which results in a breaking of a
continuous rather then discrete symmetry. We will call the
resulting state incommensurate DDW (IDDW).

In order to obtain a phase diagram containing the orders
discussed above for the model described by the Lagrangian
(3.1) we calculate critical temperatures of the corresponding
transitions using linearized mean field equations

1

ν0λ0
= χ1

W (TW ,Q) = χ2
W (TW ,Q), (3.4)

1

ν0λ0
= χD(TD,Q), (3.5)

where ν0 = S/(2π )2, S being the area of the 2D system and

χl
W (T ,Q) = T

∑
n

∫
dp

−1(
iωn − εl

p+Q/2

)(
iωn − εl

p−Q/2

) ,
χD(T ,Q) = T

∑
n

∫
dp

−1(
iωn − ε1

p+Q/2

)(
iωn − ε2

p−Q/2

) ,
(3.6)

where ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency. Evaluating the susceptibilities (3.6) one can find the
critical temperatures for the instabilities considered here. To
map out the phase diagram we fix the leading instability
temperature Tins and identify the order having the largest χ

as the leading one. The control parameters are then μ/Tins and
β/α.

Q

(a) (b)

FIG. 3. Illustration of current modulations for (a) DDW
(b) IDDW with Q along the diagonal. Only the currents between
nearest neighbors are depicted.
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β/α

μ/T

DDW

IDDWP

CDW
(diag)

FIG. 4. Phase diagram of the model (3.1). ‘P’ is for the d-wave
Pomeranchuk instability, ‘CDW(diag)’ is the d-form factor charge
density wave with wave vector along the BZ diagonal, and ‘DDW’
(‘IDDW’) stand for (incommensurate) d-density wave [Q 
= 0 in
(3.3)]. Axial CDW can emerge from Pomeranchuk or DDW phases
at a lower temperature (see text).

In Fig. 4 we present the resulting phase diagram where
χW,D have been calculated using α/(ξ 2T ) = 50. In contrast
to the previous studies of the SF model [90,128,134], where
a diagonal d-form factor CDW has been universally found
to be the leading particle-hole order, one obtains now three
novel instabilities here: to the d-wave Pomeranchuk phase
with a deformed Fermi surface and intra-unit-cell charge
nematicity, as well as current orders in the form of DDW
and its incommensurate variation (IDDW). Note that the
experimentally observed [39,45] axial d-form factor CDW is
a subleading instability, which is, however, expected to occur
at lower temperatures within the Pomeranchuk [85] or DDW
[110] phases.

Two general trends are evident from Fig. 4. First, the charge
order is generally favorable at low Fermi surface curvature β/α

while the current orders dominate at larger ones. Secondly,
small values of μ are seen to stimulate the Pomeranchuk
and IDDW phases among the charge and current phases,
respectively.

The qualitative reason for the dominance of the DDW at
moderate β/α can be seen in the dispersion (2.2): For β = α

one has ε1 = −ε2 for αp2 � μ. As α/ξ 2 � μ, the Fermi
surfaces of the two regions are nearly nested in the large
part of the regions, in contrast to a CDW, for which nesting
is restricted to a vicinity of a single point in p space. It is,
however, surprising that the current phases start dominating at
β/α considerably smaller than 1. Below we provide analytical
results leading to the phase diagram of Fig. 4 as well as a
detailed description of the emerging orders.

Charge density wave is represented by Eq. (3.2) with a finite
value of Q. Due to the sign change between the two FS regions
the amplitude of the on-site charge modulation proportional to∑

p W (p) ∼ W1 + W2 vanishes.
It has been shown [85,90], however, that the charge mod-

ulation on oxygen sites is related to bond operators in the

single-band model as:

δnO ∼ δ〈c†i+1,σ ci,σ + c
†
i,σ ci+1,σ 〉CO,

where i and i + 1 are two neighboring copper sites. The
proportionality coefficient depends on additional assumptions:
In Ref. [85] p/8 has been obtained using a Zhang-Rice singlet
doping picture. Transforming the expression to the momentum
space one obtains

δnOx
(r) ∼ eiQr(W1 − W2) + c.c.,

δnOy
(r) ∼ −eiQr(W1 − W2) + c.c. (3.7)

Let us compute now the corresponding susceptibility,
Eq. (3.6). First of all, one can conclude from Eq. (3.4) that
only Qx = Qy ≡ Q satisfies χ1

W = χ2
W , i.e., the wave vector

is directed along the diagonal. This is in line with the previous
results on the spin-fermion model [90,128]. The momentum
integrals for the present model with overlapping hotspots can
be evaluated explicitly for two limiting cases (for the details of
calculation see Appendix A). In the limit β → 0 one obtains:

χCDW(T ,Q) = T

α

∑
ωn

iπ sgn[ωn]
√

α/ξ 2

(iωn + μ − αQ2/4)
√

iωn + μ
.

(3.8)

In the opposite limit β/ξ 2 � μ,T one gets

χCDW(Q) ≈ T√
αβ

∑
|ωn|<β/ξ 2

−iπsgn[ωn]arctanh
√

γ

γ−iωn−μ

√
γ
√

γ − iωn − μ
,

(3.9)

where γ = (α − β)Q2/4. The expression in the sum in
Eq. (3.9) is obtained for ωn � β/ξ 2. However, as the resulting
sum is logarithmically large for β/ξ 2 � μ,T ,we can simply
disregard the contribution from higher Matsubara frequencies.

Pomeranchuk instability corresponds to the anomalous
average (3.2) with Q = 0. It leads to a d-wave-like deformation
of the Fermi surface breaking C4 symmetry without opening
a gap. Additionally, the Pomeranchuk order should be accom-
panied by an intra-unit-cell redistribution of the charge on the
two oxygen orbitals, which can be readily seen from (3.7).

The expressions for the susceptibilities can be obtained from
Eqs. (3.8) and (3.9) by taking the Q → 0 limit. Moreover,
the sign of ∂χCDW

∂Q2 |
Q=0

allows one to check the stability of the

Pomeranchuk phase with respect to the CDW.
For β → 0 we get

χPom = T

α

∑
ωn

iπ sgn[ωn]
√

α/ξ 2

(iωn + μ)3/2
(3.10)

and

∂χCDW

∂Q2

∣∣∣∣
Q=0

= T

4

∑
ωn

iπ sgn[ωn]
√

α/ξ 2

(iωn + μ)5/2
. (3.11)

Numerical calculation shows that the expression (3.11)
changes sign from positive to negative for μ/T < 1.1. There-
fore, the Pomeranchuk phase is stable for μ/Tins < 1.1 for
β → 0 (in agreement with Ref. [85]). In the opposite limit
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β/ξ 2 → ∞, however, the expansion of (3.9) yields

∂χCDW

∂Q2
≈ α − β

4

2T

3α

∑
|ωn|<β/ξ 2

iπsgn[ωn]

(iωn + μ)2

= α − β

4

2T

3α

∑
0<ωn<β/ξ 2

4πωnμ(
ω2

n + μ2
)2 (3.12)

which is always positive. Thus, to obtain the phase boundary
between CDW and Pomeranchuk phases at finite β one needs
to perform the momentum integration assuming finite values of
β/ξ 2. The general result is rather cumbersome and is presented
in Appendix A [Eq. (A1)]. For μ/T � 1 a simple expression
is found(μ

T

)CDW

cr
= π2

7ζ (3)

α

α − β

T

β/ξ 2
≈ 1.17

α

α − β

T

β/ξ 2
.

(3.13)

One can see that (μ/T )cr decreases for β < 0.5 and then starts
to increase. However, as we shall see, this upturn is located in
the region where DDW is the leading instability. Note that in
Fig. 4 the Pomeranchuk/CDW boundary is found from the full
expression (A1) numerically for (α/ξ 2)/T = 50.

Current Phases (DDW/IDDW) are represented by the
anomalous average (3.3). This order parameter does not result
in any charge modulations on both the copper and the oxygen
orbitals. In the former case this is guaranteed by the d-wave
symmetry, while for the oxygen orbitals (e.g., Ox):

δnOx
(r) ∼ Re

[
ei(Q+(π,π))r

∑
p

cos px

×〈c†p+[(π,π)+Q]/2cp−[(π,π)−Q]/2〉
]

= 2Re

[
ei(Q+(π,π))r

∑
p

sin(px)D

]
= 0.

However, it can be shown that the order parameter D induces
a staggered pattern of currents flowing through the lattice. The
current between the lattice sites i and j is given by [124]:

Iij = −i
tij

h̄
〈ĉ†i ĉj − ĉ

†
j ĉi〉, (3.14)

where tij is the hopping parameter. For example, the current
Ii,i+x between nearest neighbor sites along x can be estimated
as

Ii,i+x ≈ 4Re

[
it

h̄
ei(Q+(π,π))Ri−iQx/2D

]
. (3.15)

In Fig. 3 an illustration of the current patterns is presented. Note
that, in general, currents between non-nearest neighbors are
induced, too. However, as this effect depends on the structure
of the DDW amplitude in the entire Brillouin zone, we will not
consider it in this work.

To calculate the resulting magnetic fields one should how-
ever calculate the current density jq rather than the current. For
a square lattice with nearest-neighbor hopping t one can obtain
the following result neglecting the smearing of atomic wave

functions with respect to the current variation length (see also
[116,117]):

jx,y(q) = −8etDiei(π,0)ex,y ex,y

× (qex,y)−1
∑
Kn

δ(q − QAF + Kn),

D = i

(2πξ )2
(〈ĉ1ĉ

†
2〉 − 〈ĉ2ĉ

†
1〉), (3.16)

where ex(y) is a unit vector alongx(y) axis and Kn is a reciprocal
lattice vector. Additionally, one can calculate the magnetic field
along the z direction produced by the DDW Bz assuming that
DDWs are aligned in-phase along z axis

Bz(q) = 4πi

c

qxjy − qyjx

q2
. (3.17)

Note that in the full model (Sec. IV) the order parameter is
frequency dependent due to the retardation effects and D has
to be calculated using a corresponding anomalous Green’s
function. Thus, D is not, in general, simply related to the
magnitude of the pseudogap or T ∗ as would be the case for
the constant interaction.

Let us now present the results for the thermodynamic
susceptibilities. For the commensurate (Q = 0) state, one
obtains in the limit β → 0

χD(T ) = π2

2α
tanh μ/2T . (3.18)

In the opposite limit β/ξ 2 → ∞, we have instead

χD(T ) ≈ 4arctanh(
√

β/α)T

α + β

∑
|ωn|<β/ξ 2

iπ sgn[ωn]

iωn + μ
. (3.19)

For the case Q 
= 0, let us first consider the stability of the DDW
with respect to an infinitesimal discommensuration vector Q.
The general expression obtained from ∂2χD

∂Q2
1
|
Q=0

= ∂2χD

∂Q2
2
|
Q=0

=
0 is presented in Appendix A [Eq. (A4)]. Numerical solution
of the resulting equation is represented by the DDW/IDDW
critical line in the phase diagram of Fig. 4. Qualitatively, low
values of μ favor IDDW. For μ/T � 1, α − β � α the result
can also be expressed analytically(μ

T

)DDW

cr
≈ 0.7(1 − β/α)2. (3.20)

Furthermore, we have studied the dependence of the direction
and magnitude of Q maximizing χDDW(Q) numerically. For
this purpose, expressions [(A5)–(A7)] have been used.

In Fig. 5 the result is presented for μ/T = 0.1. Interestingly,
the orientation of Q in the IDDW phase is almost always along
the axes. While there seems to be a transition to a diagonal
phase at low curvatures, the charge order is dominant in that
region, as is shown below.

Competition between charge and current orders. We are
now in position to compare the tendencies to form charge
(CDW/Pomeranchuk) and current (DDW/IDDW) order. For
β � α, comparing (3.8) and (3.10) to (3.18) one finds an
additional factor

√
α/ξ 2 in the former. After the summa-

tion this translates into a large parameter of the order of
∼
√

(α/ξ 2)/[T ,μ] present in the susceptibilities for charge
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βQ2

T

AD

β/α
FIG. 5. Dependence of the IDDW incommensurability

(βQ2/T )max on β/α for μ/T = 0.1. Dashed line is (βQ2/T )max for
Q along the diagonal. Vertical lines mark transitions between different
phases. In the leftmost region (D) Q has diagonal orientation, in the
middle (A) axial, and in the rightmost DDW is commensurate.

instabilities. Incommensurability of the DDW does not change
this conclusion [see Eq. (A3)].

In the case β ∼ α, β/ξ 2 � μ,T one gets large logarithmic
contributions in Matsubara sums for both charge and current
orders. Therefore, one can estimate the transition line by
equating the prefactors of the sums (3.9) and (3.19), which
leads to the following equation

1√
αβ

= 4arctanh(
√

β/α)

α + β
.

Numerical solution of this equation yields (β/α)cr ≈ 0.29,
this value being independent of μ/T . The finite slope of the
charge/current boundary in Fig. 4 results from finite values
of (α/ξ 2)/T taken in the numerical calculations. One can,

= +
a b a b a

= +

FIG. 6. Diagrammatic structure of approximations used; a and b

correspond to different regions (1 or 2).

however, show that the slope is strongly suppressed being
proportional to log−1((β/ξ 2)/T ).

IV. CHARGE AND CURRENT ORDERS
IN THE FULL MODEL

We turn now to the analysis of the full SF model (2.1). Let
us first consider the effects of interactions in the normal state.
The interactions renormalize the Green’s function G of the
fermions and D of the paramagnons leading to:

Gν
αβ(εn,p) = δαβ

if (εn,p) − εν(p)
,

(4.1)
Dmm′(ωn,q) = − δmm′

�(ωn,q)/v2
s + q2 + 1/ξ 2

,

where α,β are fermion spin indices, ν = 1,2 is the ‘hot region’
index, and m,m′ = (x,y,z) enumerate the components of the
paramagnon field ϕ. Additionally, f (εn,p) = εn + i�(εn,p)
and �(ωn,q) = ω2

n + v2
s �(ωn,q), �(εn,p) and �(ωn,q) be-

ing the fermionic self energy and polarization operator for
paramagnons, respectively. In this section εn = (2n + 1)πT

and ωn = 2nπT stand for fermionic and bosonic Matsubara
frequencies, respectively.

To calculate the self energies we use the approximations
illustrated diagrammatically in Fig. 6. This is justified by
a small parameter

√
[T ,μ,v2

s /α]/(α/ξ 2) for β/ξ 2 � μ (see
Appendix C 1). To study the formation of the DDW we will,
however, use these approximations for all values of β assuming
that the results are nevertheless correct at least qualitatively.

The resulting momentum-dependent self-consistency equations have the same form as the ones presented in Ref. [85]. Assuming
the strong overlap of hot spots expressed by the inequality α/ξ 2 � μ, one can perform the momentum integration in the self
energies. In the limit β � α the latter can be shown to be momentum independent. For larger β we approximate the self energies
by their values at zero incoming momentum. Additionally, we have evaluated the momentum integral in the polarization operator
for the paramagnons without any cutoff. It turns out that to reproduce our previous results [85] one needs to introduce a cutoff
� such that α�2 → ∞ while β�2 → 0. Physically, � is related to the deviation of the fermionic spectrum from the form (2.2)
outside the ‘hot regions.’ Here we will assume for simplicity that β�2 � μ,T which should be valid for not too small β. Further
details of the calculations can be found in Appendix C 2. Introducing an energy scale � = √

λ2v2
s /α (note that in our previous

work [85] a different scale (λ2vs/
√

α)2/3 has been used) the resulting equations can be cast in a dimensionless form where all
quantities are assumed to be normalized by � to the appropriate power

f (ε) − ε = 1.5T

π

∑
ε′

sgn[Refε′ ]arctanh
{√�ε−ε′+a−(ifε′+μ)v2

s /β

�ε−ε′+a

}
√

�ε−ε′ + a
√

(�ε−ε′ + a)β/α − (ifε′ + μ)v2
s /α

,

�(ω) − ω2 = T

1 + β/α

∑
ε

sgn[Ref +
ε ]sgn[Ref −

ε ]√
if +

ε + μ
√

if −
ε + μ

+ 4iarctanh(
√

β/α)/πsgn[Re(fε)] + 1

ifε + μ

−2i

π

sgn[Ref +
ε ]arctanh

{√
α
β

√
if +

ε +μ

if −
ε +μ

}+ sgn[Ref −
ε ]arctanh

{√
α
β

√
if −

ε +μ

if +
ε +μ

}
√

if +
ε + μ

√
if −

ε + μ
, (4.2)
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FIG. 7. Leading particle-hole instability temperatures for the SF
model. (a) a = 0.05, v2

s /α = 0.05, μ = 0.02, (b) a = 0.05, v2
s /α =

0.05, μ = 0.05. Gray dashed line is a guide to the eye.

where a = v2
s /ξ

2, �ω = ω2 + v2
s �(ω), f+ = (αfε+ω +

βfε)/(α + β), and f− = (αfε + βfε+ω)/(α + β). The value
�(0) has been absorbed into redefinition of 1/ξ 2. Now we
proceed to the analysis of the emergence of the particle-hole
orders. The general mean-field equation for the Pomeranchuk
order has been derived in Ref. [85]. For the charge density
wave order parameter WQ(ε,p) one obtains

WQ(ε,p) = 3λ2T
∑
ε′,p′

D(ε − ε′,p − p′)WQ(ε′,p′)
AW

,

AW = G−1
a (ε′,p′ + q/2)G−1

a (ε′,p′−q/2)−|WQ(ε′,p′)|2,
while the equations for the DDW and IDDW can be written as

D(ε,p) = 3λ2T
∑
ε′,p′

D(ε − ε′,p − p′)D(ε′,p′)
AD

,

AD = G−1
a (ε′,p′ + q/2)G−1

b (ε′,p′ − q/2) − |DQ(ε′,p′)|2.
These equations can be used to study the full temperature,
momentum, and Matsubara frequency dependence of the order
parameters, provided the expressions for the normal self
energies are suitably modified (see Ref. [85] for the case of
Pomeranchuk order at small β). Here we will concentrate
on the critical temperatures of the emerging orders in order
to check if the general trends observed in Sec. III still hold.
Therefore, we simply use Eqs. (4.2) for the normal state self
energies in our study.

Assuming the order parameters to be momentum
independent we integrate over momenta (for details see
Appendix C 2) in the equations for charge and current orders.
The resulting equations for the Pomeranchuk P (ε), CDW
C(ε), DDW D(ε), and IDDW DI (ε) order parameters near the
critical temperature are rather cumbersome, and we present
them in Appendix C 2 [Eq. (C6)]. All quantities in (C6) are
normalized by �. Additionally, to obtain a closed-form answer
for IDDW, we have assumed Q along the diagonal. While
this assumption does not allow one to study the orientation
of Q, for small Q it is supposed to yield a correct critical
temperature, allowing us to draw conclusions about the
commensurate DDW stability. From Eq. (C6) it is already
evident that for β/ξ 2 � 1 the r.h.s. of the equation for the
charge orders contains a large factor 1/

√
v2

s /α, ultimately
meaning that current orders do not appear in this case.

In Fig. 7 results of numerical solution of the equations
(C6) are presented for two sets of parameters. The value of

parameters characterizing the incommensurability for CDW
and IDDW have been chosen to maximize the critical temper-
atures. Considering the qualitative character of our approxima-
tions for finite β below we analyze only the general features
of the obtained results. One can see that the Pomeranchuk
instability is considerably more robust to increasing β than is
expected from the simplified model (3.13). Additionally, the
IDDW seems to play a more important role. Actually, both the
results can be qualitatively understood as being a consequence
of the renormalization of the fermionic self energy resulting
in the replacement ε → f (ε). At low frequencies one obtains
Ref (ε) ∼ ε/Z, where Z < 1. Therefore, the parameter μ is
renormalized to a smaller value Zμ. As smaller values of
μ qualitatively favor Pomeranchuk and IDDW phases, this
explains the observed tendency.

As for charge/current order competition one can draw a
conclusion that the boundary between charge and current
phases (β/α)cr appears to be remarkably close to the one
obtained in the simplified model. The dip in critical tem-
peratures at intermediate β/α is actually also qualitatively
present in the simplified model, however there we concentrated
on competition between phases at a given T . One could
expect that in this region superconductivity will re-emerge as
a leading instability even if the remnant Coulomb interaction
acts against it. One should also keep in mind that closeness of
the different phases in energy may induce strong fluctuations
that can modify the results obtained here in the mean field
approximation. These effects, however, should be important
only close to phase boundaries. Thus, we suggest that the
fluctuations will not change the results qualitatively but leave
detailed investigations for future studies.

V. DISCUSSION

Considering the obtained nonsuperconducting phases, two
tentative scenarios can be anticipated for the pseudogap state.
In the first one, Pomeranchuk instability is the leading one
and is expected to occur at TPom � T ∗. Then, at T ∗ the
pseudogap would open due to the formation of an axial CDW
[85]. However, the time reversal symmetry breaking does not
appear naturally in this scenario unless more complicated
form factors for the CDW are considered [91,93]. Moreover,
while in some compounds [29] TCDW has been observed to
be close to T ∗ this does not seem to be the general case
[30,31]. Additionally, more recent transport data suggests a
Fermi surface reconstruction taking place at TCDW < T < T ∗
[27] to be distinct from the one caused by the CDW [135].

In the other scenario the leading instability is the DDW that
has its onset at T ∗. This is consistent with transport [27] and
ARPES [108] signatures of the pseudogap. It has also been
shown that an axial d-form factor CDW can emerge on the
Fermi surface reconstructed by the DDW [110,111]. DDW
breaks time reversal symmetry but, as it breaks also the transla-
tional symmetry, additional Bragg peaks at (π + Qx,π + Qy)
are expected to appear in the DDW phase. While definitive
experimental evidence for these peaks seems to be lacking
[112–115], we note that the magnitude of the signal predicted
by the BCS-like theories [104] should change in the case of
a strongly frequency-dependent order parameter, such as the
one in the SF model. Thus it is possible that the magnitude of
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the additional peaks predicted using a frequency-independent
order parameter could be overestimated. Moreover, the
Q = 0 signal, observed experimentally [15,16] might originate
from higher-order processes, but this possibility has not been
investigated theoretically so far.

Additionally, at low dopings there is evidence for a (π +
Qx,π + Qy) order not accompanied by the CDW from neutron
scattering experiments [130]. We suggest that this observation
can be explained in terms of the incommensurate IDDW order
studied in the present work. Unlike previous works, where a
similar state has been suggested [122], in our case IDDW is
not accompanied by a charge modulation.

Let us discuss now the values of parameters of the model
(2.1) that might be most suitable for the cuprates. Relevant
values of μ have been identified in our previous work [85]
and are usually of the order of T ∗ for the underdoped case.
The Fermi surface curvature β/α appears now to be another
crucial parameter controlling the phase diagram. One can
relate β/α to the tight-binding parametrization of the disper-
sion in the full Brillouin zone ε(p) = −2t(cos px + cos py) −
4t ′ cos px cos py − 2t ′′(cos 2px + cos 2py).

β

α
= t + 2t ′ − 4t ′′

t − 2t ′ + 4t ′′

Taking the result from literature one obtains β/α ≈ 0.11 for
Bi-2201 [136] and β/α ≈ 0.15 for BSCCO [137]. Tight-
binding fits for YBCO (Ref. [138] and references therein)
yield negative values for β/α not considered here. At the
same time, the electronic structure around the antinodes in
YBCO has also interpreted [139] in terms of an extended
Van Hove singularity corresponding to β = 0 case. Moreover,
there are theoretical arguments that such a behavior should be
stabilized by interactions [140]. Anyway, the curvatures are
rather low and seemingly constrain us to the regime where the
Pomeranchuk instability is the leading one. However, drawing

quantitative conclusions about the appearance of the current
orders demands taking into account renormalization of the
Fermi surface curvature by the low-energy interactions, which
is beyond the scope of the present paper.

VI. CONCLUSION

We have studied particle-hole instabilities in the spin-
fermion model in the regime where shallowness of the
antinodal dispersion combined with finite AF correlation
length leads to a strong overlap of the ‘hot spots’ on the
Fermi surface. A rich phase diagram has been obtained as
a function of the chemical potential (doping) relative to the
dispersion saddle points and Fermi surface curvature in the
antinodal regions. The phases obtained include Pomeranchuk
and current-ordered phases previously not encountered in the
SF model. We have shown that for small curvatures β/ξ 2 �
μ,T an Eliashberg-like approximation is justified by a small
parameter

√
[T ,μ,v2

s /α]/(α/ξ 2). The self-energy effects have
been found to promote Pomeranchuk and incommensurate
current orders. The current orders possess attractive features for
an explanation of the pseudogap phase, namely, the particle-
hole asymmetric gap in the antinodal regions, time reversal
symmetry breaking, and Fermi surface reconstruction into hole
pockets. Moreover, the incommensurate current order obtained
in this paper can potentially explain the incommensurate
magnetism observed at low dopings. Finally, we expect our
results to be also of relevance to other itinerant systems with
strong antiferromagnetic fluctuations.
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APPENDIX A: MATSUBARA SUSCEPTIBILITIES FOR SIMPLIFIED MODEL

1. Charge orders

In the limit β/ξ 2 → 0 the integral over one of the momenta in (3.6) yields a factor of 2/ξ , while for the second one limits
can be taken to ±∞ for α/ξ 2 � μ,ωn. As the resulting sum over ωn converges we can neglect the contribution from ωn � α/ξ 2

resulting in (3.8).
In the opposite case β/ξ 2 � ωn, μ one can extend the integration limits for both momenta to ±∞. The resulting integrals

can be evaluated in this case using:
1

a1a2
=
∫ 1/2

−1/2
dx

1

[(a1 − a2)x + (a1 + a2)/2]2
.

One has:
(a1 − a2)x + (a1 + a2)/2 ≡ (2αp1Q1 − 2βp2Q2)x + α

(
p2

1 + Q2
1/4
)− [

β
(
p2

2 + Q2
2/4
)+ iω + μ

]
= α(p1 + Q1x)2 − β(p2 + Q2x)2 − (

iω + μ + (
αQ2

1 − βQ2
2

)
(x2 − 1/4)

)
.

The resulting integrals over momenta converge for all x. Consequently one can exchange the integration order to obtain:

−
∫ 1/2

−1/2
dx

∫ ∞

−∞
dp2

∫ ∞

−∞
dp1

1{
αp2

1 − βp2
2 − [iω + μ + γ (4x2 − 1)]

}2

=
∫ 1/2

−1/2
dx

∫ ∞

−∞
dp2

iπsgn[ωn]

2
√

α

1[
βp2

2 + iω + μ + γ (4x2 − 1)
]3/2

=
∫ 1/2

−1/2
dx

iπsgn[ωn]√
αβ[iω + μ + γ (4x2 − 1)]

=
−iπsgn[ωn]arctanh

√
γ

γ−iω−μ√
αβ

√
γ
√

γ − iω − μ
.
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The sum over Matsubara frequencies appears to diverge at large ωn, but only logarithmically. This allows one to obtain the leading
contribution to χCDW(Q) by introducing a cutoff at ωn ∼ β/ξ 2 in the sum and neglecting the region ωn � β/ξ 2 provided that
β/ξ 2 � μ,T .

To study the stability of the Q = 0 phase at finite β we expand the CDW susceptibility in Eq. (3.6) in powers of Q. One
obtains that ∂χi

∂Qj
|
Q=0

as well as ∂2χi

∂Q1∂Q2
|
Q=0

vanish. Since Q is along the diagonal the condition for the critical value of μ is

∂2χ1

∂Q2
1

+ ∂2χ2

∂Q2
1
|
Q=0

= ∂2χ1

∂Q2
2

+ ∂2χ2

∂Q2
2
|
Q=0

= 0. Performing the expansion and integrating over momenta (αξ 2 � μ,ωn is assumed) one

obtains:

αQ2

4
ν0T

∑
ωn

iπ sgn[ωn]

3
√

αβ

3(iωn + μ) + 2β/ξ 2

(iωn + μ)2

√
β/ξ 2

(β/ξ 2 + iωn + μ)3

−βQ2

4
ν0T

∑
ωn

iπ sgn[ωn]

6
√

αβ

√
β/ξ 2(9(iωn + μ)2 + 10(iωn + μ)β/ξ 2 + 4(β/ξ 2)2)

(iωn + μ)2(iωn + μ + β/ξ 2)(5/2)
= 0. (A1)

Expanding this result for μ � T one obtains (3.13) after summation.

2. Current orders

For Q = 0 we rewrite the expression in (3.6)

1(
iωn − αp2

1 + βp2
2 + μ1

)(
iωn − αp2

2 + βp2
1 − μ2

)
= 1

α + β

1

(α − β)p2
2 − (iωn + μ−)

{
α

αp2
1 − (

βp2
2 + iωn + μ1

) − α − β

(α − β)p2
1 − (iω + μ+)

}

+ α

α + β

1[
(α − β)p2

1 − (iω + μ+)
][

αp2
2 − (

iωn + βp2
1 − μ2

)] .
Assuming only α/ξ 2 � μ,ωn one can evaluate the integral over momenta analytically. This yields

χD(T ) = T
∑
ωn

4πi sgn[ωn]arctanh
{√

α/ξ 2

β/ξ 2+iωn+μ

}
(α + β)(iωn + μ)

+ 4

α + β

arctanh
{√ (α−β)/ξ 2

iωn+μ

}
arctanh

{√ (α−β)/ξ 2

iωn+μ

}
iωn + μ

. (A2)

From this equation one can obtain (3.18) and (3.19). For finite Q a closed form for χD(Q) can be obtained for β/ξ 2 � T ,μ using:

1

a1a2
=
∫ 1/2

−1/2
dx

1

[(a1 − a2)x + (a1 + a2)/2]2
.

For the momentum integral in (3.6) we obtain:

−
∫ ∞

−∞
dp1

∫ ∞

−∞
dp2

∫ 1/2

−1/2
dx

1

[...]2
,

[...] =
[

(α + β)x + α − β

2

](
p2

1 + Q2
1/4
)+

[
(α − β)x + α + β

2

]
p1Q1

+
[
−(α + β)x + α − β

2

](
p2

2 + Q2
2/4
)+

[
(α − β)x − α + β

2

]
p2Q2 − (iω + μ).

To change the integration order we need to assume Q1,Q2 
= 0 as ±(α + β)x + (α − β)/2 can vanish inside the x integration
region while (α − β)x ± (α + β)/2 does not cross zero for all x. To integrate over p1 we rewrite [...]:

[...] =
[

(α + β)x + α − β

2

](
p1 + (α − β)x + (α + β)/2

(α + β)x + (α − β)/2

Q1

2

)2

+ Q2
1

4

4αβ(x2 − 1/4)

(α + β)x + (α − β)/2

−
[

(α + β)x − α − β

2

](
p2 + −(α − β)x + (α + β)/2

(α + β)x − (α − β)/2

Q2

2

)2

− Q2
2

4

4αβ(x2 − 1/4)

(α + β)x − (α − β)/2
− (iω + μ).
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Now one can simplify the calculation by shifting the integration variables. First let us integrate over p1. The answer depends on
the sign of (α + β)x + α−β

2 :

−1

2
([

(α + β)x − α−β

2

]
p2

2 + Q2
2αβ(x2−1/4)

(α+β)x−(α−β)/2 − Q2
1αβ(x2−1/4)

(α+β)x+(α−β)/2 + iω + μ
)(3/2)

·
⎧⎨
⎩

−iπ sgn[ωn]√
(α+β)x+ α−β

2

if x > − α−β

2(α+β)

π√
−(α+β)x− α−β

2

if x < − α−β

2(α+β)

.

The remaining integral over p2 yields:∫ ∞

−∞
dp2

1([
(α + β)x − α−β

2

]
p2

2 + Q2
2αβ(x2−1/4)

(α+β)x−(α−β)/2 − Q2
1αβ(x2−1/4)

(α+β)x+(α−β)/2 + iω + μ
)(3/2)

= 1

iω + μ + Q2
2αβ(x2−1/4)

(α+β)x−(α−β)/2 − Q2
1αβ(x2−1/4)

(α+β)x+(α−β)/2

·

⎧⎪⎨
⎪⎩

2√
(α+β)x− α−β

2

if x >
α−β

2(α+β)

−2isgn[ωn]√
−(α+β)x+ α−β

2

if x <
α−β

2(α+β)

.

Combining the results above one obtains two contributions. The first one is:

I1 =
∫ α−β

2(α+β)

− α−β

2(α+β)

dx
π√

(α − β)2/4 − (α + β)2x2

× (α + β)2x2 − (α − β)2/4

(iω + μ)[(α + β)2x2 − (α − β)2/4] + αβ(x2 − 1/4)
{(

Q2
2 − Q2

1

)
(α + β)x + (

Q2
2 + Q2

1

)
(α − β)/2

} .
Or, after a change of variables x → (α − β)x/(α + β)/2 and some algebra:∫ 1

−1
dx

π

α + β

√
1 − x2

(iω + μ)[1 − x2] + αβ

α−β

(
1 − x2

(
α−β

α+β

)2){δQ2x + Q2}
,

where Q2 = (Q2
1 + Q2

2)/2 and δQ2 = (Q2
2 − Q2

1)/2. For δQ2 = 0 one can evaluate the integral analytically to obtain

I1(Q,Q) = π2

α + β

1

iω + μ + αβ(α−β)Q2

(α+β)2

⎡
⎣1 −

√√√√4α2β2Q2/(α + β)2/(α − β)

iω + μ + αβQ2

α−β

⎤
⎦.

The second contribution is:

I2 =
∫ 1

2

α−β

2(α+β)

+
∫ − α−β

2(α+β)

− 1
2

dx
iπsgn[ωn]√

(α + β)2x2 − (α − β)2/4

× (α + β)2x2 − (α − β)2/4

(iω + μ)[(α + β)2x2 − (α − β)2/4] + αβ(x2 − 1/4){2δQ2(α + β)x + Q2(α − β)}

=
∫ α+β

α−β

1
+
∫ −1

− α+β

α−β

dx

α + β

iπsgn[ωn]√
x2 − 1

1

iω + μ + αβ[(α−β)2x2−(α+β)2]{δQ2x+Q2}
(α−β)(α+β)2(x2−1)

.

For δQ2 = 0 the integral in I2 can be evaluated to obtain

4iπsgn[ωn]

(α + β)
[
iω + μ + α(α−β)βQ2

(α+β)2

]
⎛
⎝arctanh

√
β

α
−
√√√√ αβ

(α+β)2
αβQ2

α−β

iω + μ + αβQ2

α−β

⎛
⎝ iπsgn[ωn]

2
+ arctanh

√√√√ αβQ2

α−β

iω + μ + αβQ2

α−β

⎞
⎠
⎞
⎠

Combining this with the first contribution we get:

χDDW(Q,Q) = π2

α + β

1

iω + μ + αβ(α−β)Q2

(α+β)2

+ 4iπsgn[ωn]

(α + β)
[
iω + μ + α(α−β)βQ2

(α+β)2

]
⎛
⎝arctanh

√
β

α
−
√√√√ αβ

(α+β)2
αβQ2

α−β

iω + μ + αβQ2

α−β

arctanh

√√√√ αβQ2

α−β

iω + μ + αβQ2

α−β

⎞
⎠. (A3)
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The expression (A3) can be used to calculate the IDDW/DDW phase boundary because for small Q one can show that χD(Q →
0) ≈ a + b(Q2

x + Q2
y). From the condition ∂2χD

∂Q2
1

= 0 we get after evaluation of the Matsubara sum:

− i

2π (α + β)2

[
(αβ)3/2

α − β
+ αβ(α − β)

α + β
arctanh

[√
β

α

]](
ψ ′
[

1

2
+ iμ

2πT

]
− ψ ′

[
1

2
− iμ

2πT

])
+ (α − β)αβπ2

8(α + β)3 cosh2[μ/2T ]
= 0.

(A4)

This expression has been used to calculate the IDDW/DDW boundary numerically. As is evident from Fig. 4 μ/T becomes small
for (α − β) � α. Expanding (A4) for μ/T � 1,(α − β) � α one obtains Eq. (3.20).

For numerical calculations of χDDW and orientation of Q we have evaluated the Matsubara sum before the integrals in I1,I2.
Using T

∑ 1
iω+a

= tanh(a/2T )/2 one obtains for I1:

χ1
DDW = π

2(α + β)

∫ 1

−1

dx√
1 − x2

tanh

⎧⎨
⎩ μ

2T
+ α

α − β

1 − (
α−β

α+β

)2
x2

1 − x2

βQ2 + βδQ2x

2T

⎫⎬
⎭. (A5)

Calculating the derivative dχ1
DDW

dδQ2 one obtains that it is negative for δQ2 > 0 and positive for δQ2 < 0. Consequently,

J1 has a global maximum at δQ2 = 0. Moreover, one can see that χ1
DDW increases with Q2. For I2 the resulting

Matsubara sum diverges logarithmically, however one can subtract the divergent part T
∑ 1

|ω| . Using T
∑ isgn[ωn]

iω+a
− 1

|ω| =
[2ψ(0, 1

2 ) − ψ(0, 1
2 + ia

2πT
) − ψ(0, 1

2 − ia
2πT

)]/2π one obtains:

χ2
DDW = 1

2(α + β)

∫ α+β

α−β

1
+
∫ −1

− α+β

α−β

dx√
x2 − 1

[
2ψ

(
0,

1

2

)
− ψ

(
0,

1

2
+ iκ

2πT

)
− ψ

(
0,

1

2
− iκ

2πT

)]
,

κ = μ + αβ[(α − β)2x2 − (α + β)2]{δQ2x + Q2}
(α − β)(α + β)2(x2 − 1)

. (A6)

The divergent part is then evaluated with a cutoff at ω = β/ξ 2. The expressions (A5) and (A6) have been used to calculate
χDDW(Q) numerically:

χDDW = χ1
DDW + χ2

DDW +
4arctanh

√
β

α

α + β

(
ψ

(
0,1 + β/ξ 2

2πT

)
− ψ(0,1/2)

)
. (A7)

Orientation and magnitude of Q are found maximizing χDDW(Q). One can get some analytical insight on the possible orientation
of Q in the case β � α. I2 can be approximately evaluated taking x ≈ ± α−β

2(α+β) in the integral:

I2 ≈
2iπsgn[ωn]

√
β

α

α
[
iω + μ + βQ2

1

]
(

1 −
√

βQ2
1

iω + μ + βQ2
1

arctanh

√
iω + μ + βQ2

1

βQ2
1

)

+
2iπsgn[ωn]

√
β

α

α
[
iω + μ + βQ2

2

]
(

1 −
√

βQ2
2

iω + μ + βQ2
2

arctanh

√
iω + μ + βQ2

2

βQ2
2

)
.

At T ,μ � βQ2 one can go to integration over ω. The second terms in the brackets yield after integration over ω:
√

β/α3const +
O(μ/βQ2), consequently:

χ2
DDW ≈

∫
dω

2π

2iπsgn[ωn]
√

β

α

α
[
iω + μ + βQ2

2

] +
2iπsgn[ωn]

√
β

α

α
[
iω + μ + βQ2

2

] +
√

β/α3const + O(μ/βQ2)

∼ 2
√

β/α3 log{(β/ξ 2)2/[(βQ2 + μ)2 − (βδQ2)2]} + O(μ/βQ2) + const.

χ1
DDW(Q) can be shown to be bounded from above by π2

2(α+β) . Consequently, for β/ξ 2 � βQ2 � μ,T contribution from χ2
DDW

is dominant and maximizing δQ2 is favorable. The maximal absolute value of δQ2 is Q2 that is reached for Q along one of the
BZ axes. However as β decreases χ2

DDW eventually becomes less important due to the factor
√

β/α. As χ1
DDW has been shown

above to be maximal for δQ2 = 0 one expects a transition to diagonal Q at low β/α. This is in line with the results of numerical
calculation in Fig. 5.
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APPENDIX B: EXPRESSION
FOR THE CURRENT DENSITY

The definition of the current density directly follows from
the standard expression for the magnetic part of the action Smag

in the presence of a vector potential A(r). Here we derive the
bare part S0[A] of the action S in the presence of an external
potential A(r) and derive the expression for the current using a
standard formula from electrodynamics for the magnetic part
Smag of the action

Smag = −1

c

∫
j(τ,r)A(τ,r)dτdr. (B1)

For simplicity we consider the energy operator to be of the
form

ε̂(−i∇) = J (2 − cos(−i∇ax) − cos(−i∇ay)). (B2)

In Eq. (B2) ax and ay are lattice vectors directed along x and
y bonds of the CuO lattice, respectively, and |ax | = |ay | = a0.

The energy operator for the system with the vector potential
can easily be written using the minimal coupling equivalent to
the Peierls’ substitution in Eq. (B2)

−i∇ → − i∇−e

c
A. (B3)

Then, the energy operator takes the form

ε̂
(
−i∇−e

c
A(r)

)
= −J

[
cos

((
−i∇−e

c
A(r)

)
ax

)
× cos

((
−i∇−e

c
A(r)

)
ay

)
− 2
]
. (B4)

The current operator should be defined calculating the linear
term of the expansion of the action Smag in A(r).

As the vector potential A(r) does not commute with the
gradient, the expansion in A(r) is not trivial and we use time
ordering products. For any noncommuting operators A and B

one has

exp(A + B) = exp ATα exp

(∫ 1

0
B̃(α)dα

)

= T A
α exp

(∫ 1

0
B̃A(α)dα

)
exp A, (B5)

where

B̃(α) = e−AαBeAα, B̃A(α) = eAαBe−Aα, (B6)

and Tα and T A
α are time-ordering and anti-time-ordering

operators, respectively.
Introducing operators

Ã(r,α) = e−αax∇A(r)eαax∇ = A(r−αax),
(B7)

ÃA(r,α) = eαax∇A(r)e−αax∇ = A(r+αax),

one comes to the following expressions

exp

[
±
(

∇− ie

c
A(r)

)
ax

]

= exp [±ax∇] exp

[
∓ ie

c

∫ 1

0
axA(r∓αax)dα

]

= exp

[
∓ ie

c

∫ 1

0
axA(r±αax)dα

]
exp [±ax∇]. (B8)

Using Eq. (B8) we rewrite the energy operator ε̂(−i∇− e
c
A(r)).

This leads to the following expression for the action

S0[A] = −t

∫
c†(τ,r)

[
e− ie

c

∫ 1
0 axA(r+αax )dαc(τ,r + ax)

+ e
ie
c

∫ 1
0 axA(r−αax )dαc(τ,r − ax) − 2c(τ,r)

]
dτdr.

(B9)

Now, expanding the exponentials in the vector potential
A(r), and comparing the linear in A(r) term with Smag,
Eq. (B1), we bring the correlation function for the current
density to the form

jx,y(τ,r) = − i

2
eJax,y

×
∫ 1

0
[〈c†(τ,r−αax,y)c(τ,r + (1 − α)ax,y)〉

− 〈c†(τ,r+αax,y)c(τ,r−(1 − α)ax,y)〉]dα,

(B10)

where jx,y are x and y components of the current density. The
angular brackets in Eq. (B10) stand for averaging with the
action S of the system. We will use for this averaging the action
in the mean field approximation.

We emphasize that the current density jx,y(τ,r) is a function
of the continuous coordinate r and Eq. (B10) is valid not only
on the sites of the lattice. This is very important because in
some cases nonzero circulating currents turn to zero at these
points.

In order to calculate physical quantities can expand the
fields c(r) in the Bloch functions ψP

c(r) =
∫

cPψP(r)
dP

(2π )2 , (B11)

where ψP(r) has the standard form

ψp(r) = eiPrup(r). (B12)

up(r) is periodic function with the period ax,y and P is a
quasimomentum in the first Brillouin zone. Note that in the
main text the quasimomenta are defined in units of the inverse
lattice spacing.

However, as we use the spectrum, Eq. (B4), corresponding
to a tight-binding limit, the eigenfunctions of the Hamiltonian
are localized near the lattice sites and it is convenient to expand
the Bloch functions in Wannier functions wRn

(r) representing
the functions ψP(r) as

ψP(r) =
∑
Rn

eiPRnwRn (r), (B13)

where Rn= axnx + ayny, n =(nx,ny), nx,ny = 0,±1,±2,

±3.... and N is the total number of the sites. Then,

c(r) =
∑
Rn

∫
cPeiPRnwRn (r). (B14)

The functions wRn
(r) are localized near the sites with

the coordinates r − Rn. The function w0(r) is localized near
r = 0, and wRn (r) = w0(r − Rn). The Wannier functions are
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normalized as follows∫
|wRn (r)|2dr = 1. (B15)

Taking the Fourier transform of the current

jx,y(τ,q) =
∫

jx,y(τ,r)e−iqrdr, (B16)

we substitute Eq. (B14) into Eq. (B10) and the latter into
Eq. (B16). The we shift r → r−αax,y in the first term in jx,y(r)
and r → r + αax,y in the second one and use the fact that
the product wRn1

(r)wRn2
(r ± ax,y) is essentially different from

zero only for Rn1 = Rn2 ∓ ax,y . The the integral over r reduces
to the following expression∫

e−iqrw2
0(r)dr � 1 (B17)

for |q| � l−1
c , where lc is the localization radius of the function

w0(r).
The calculation of the sum over Rn is performed using the

Poisson formula∑
Rn

eiRn(P2−P1−q) =
(

2π

a0

)2∑
Kn

δ(P2 − P1 − q − Kn),

(B18)

where Kn is the vector of the reciprocal lattice, Kn =
2π
a0

(nx,ny). The summation over the vectors of the reciprocal
lattice is important because q is not necessarily located in the
first Brillouin zone.

As a result, we come to the following expression for the
current density (as it does not depend on time, we omit from
now on the variable τ )

jx,y(q) = eex,y

∑
Kn

∫
δ(P′ − P − q − Kn)

×〈c†P(τ )vx,y
q (P)cP′ (τ )〉dPdP′

(2π )2 , (B19)

where ex,y = ax,y/a0 is the unit vector along x or y bond. In
Eq. (B19) integration is performed over all P and P′ inside the
first Brillouin zone. The effective velocity v

x,y
q (P) equals

vx,y
q (P) = Ja0

∫ 1

0
sin[(P+αq)ax,y]dα. (B20)

In the limit q → 0, the function v
x,y
q (p) is just the conventional

velocity

v
x,y

0 (P) = Ja0 sin(Pax,y). (B21)

Averaging in Eq. (B19) we reduce the latter to the form

jx,y(τ,q) = 2eex,y

∑
Kn

∫
δ(P′ − P − q − Kn)

× vx,y
q (P)gP′,P(0)

dPdP′

(2π )2 , (B22)

where

gP′,P(0) = −〈cP′ (τ )c∗
P(τ )〉. (B23)

The factor 2 in Eq. (B22) is due to spin.

The main contribution in the integral over P in Eq. (B19)
comes from the hot regions, and it is again convenient to change
to the variables c1,2, Eq. (2.1), and the momenta p counted from
the middle of the edges of the reciprocal lattice. Then, using
the symmetry relation

g12
p (0) = −g21

p (0) (B24)

and the fact that

eiQxax,y = −eiQyax,y , (B25)

where Qx = (π/a0,0), Qy = (0,π/a0) Eq. (B22) can be writ-
ten in the form

jx,y(q) = 2eex,ye
iQxax,y

∑
Kn

∫
dp

(2π )2 v̄x,y
q (p)g12

p (0)

× [δ(q + Kn + QAF) + δ(q + Kn − QAF)],

(B26)

where

v̄q(p) = ta0

∫ 1

0
sin[(p+αq)ax,y]dα

= t
cos pax,y − cos((p + q)ax,y)

qex,y

. (B27)

Integrating in Eq. (B26) over p we reduce this equation to
the form

jx,y(q) = −8etDieiQxax,y ex,y

× sin2(qax,y/2)

qex,y

∑
Kn

δ(q − QAF + Kn), (B28)

where

D = i

∫
g12

p (0) cos(pax,y)
dp

(2π )2

≈ i

(2πξ )2
(〈ĉ1ĉ

†
2〉 − 〈ĉ2ĉ

†
1〉). (B29)

As the order parameter, Eq. (3.3), is imaginary, the coefficient
D is real. The current has peaks at points QAF + Knx

and
QAF + Kny

. The function jx,y(q) can be further simplified at
the peak values and represented in the form

jx,y(q) = −8etDieiQxax,y ex,y

× (qex,y)−1
∑
Kn

δ(q − QAF + Kn). (B30)

Nevertheless, the sine function can be relevant if the peaks are
smeared.

The particle conservation reads

qj(τ,q) = qjx(τ,q) + qjy(τ,q)

= 8etD
∑
Kn

(eiQxax + eiQxay )δ(q − QAF + Kn) = 0.

(B31)

The current density can also be written in the real space.
It is important to emphasize that q is a momentum (not a
quasimomentum) and therefore the current density in the real
space j(r) can be written for the continuous coordinate r using
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(b)(a)

FIG. 8. Self-energy diagrams of the same order (a) without
(b) with vertex corrections.

the standard Fourier transform, Eq. (B16). A simple calculation
leads to the following expression

jx,y(r) = −etDa3
0e

iQxax,y

π2
ex,y

×
∑
Rn

[
cos (QAFRn)

∫ 1

0
δ(r − Rn + αax,y)dα

]
.

(B32)

Equation (B32) describes currents circulating around the el-
ementary cells. The currents oscillate with the period QAF

and form the bond current antiferromagnet. This picture
corresponds to the one proposed in Ref. [104].

In order to avoid a confusion we would like to note that
jx,y(τ,r) is the two-dimensional current density. The three-
dimensional current density Jx,y(r) can be written as

Jx,y(r) =
∞∑

m=−∞
jx,y(r,m)δ(z − mc0), (B33)

where z is the coordinate perpendicular to the planes and c0

is the distance between the layers. Provided the currents in
different layers are in phase [the function jx,y(r,m) does not
depend on m] one can approximate for rough estimates the 3D
current density as follows

Jx,y(r) � jx,y(r)/c0. (B34)

In the next subsection we use this approximation in order to
visualize roughly the structure of the magnetic field.

The circulating currents produce magnetic fields that can be
measured by various techniques. As the explicit expression for
the spontaneous currents has been obtained, the magnetic field
can be determined without difficulties. The Fourier transform
of the magnetic field B(τ,q) can easily be written using the
Maxwell equation

B(τ,q) = 4πi

c

q × J(τ,q)

q2
. (B35)

With the approximation (B34), only the z component Bz of the
field,

Bz(τ,q) = 4πi

c

qxjy − qyjx

q2
(B36)

is not equal to zero.

APPENDIX C: DETAILS OF CALCULATIONS FOR THE SF MODEL

1. Estimate of vertex corrections

Here we show that the vertex corrections contain a small parameter
√

[T ,μ,v2
s /α]/(α/ξ 2) if β � α. As an example we compare

the two self-energy diagrams presented in Fig. 8 for β = 0.
The bare propagators for fermions Ga = (iε + μ − αp2

a)−1 are assumed to be much ’sharper’ in momentum space than the
bosonic ones D = (ω2/v2

s + p2 + 1/ξ 2)−1 due to α/ξ 2 � μ. The incoming momenta p are taken to be ∼√
μ/α � 1/ξ in

magnitude. This allows one to simplify the resulting integrals neglecting the dispersion in the bosonic propagators along a, b, or
both. We get

(a) ∼ λ4T 2
∑
ε′,ε′′

∫
dp′dp′′D(ε − ε′,p − p′)G2

a(ε′,p′)D(ε′ − ε′′,p′ − p′′)Gb(ε′′,p′′)

= λ4T 2
∑
ε′,ε′′

∫
dp′dp′′ 1

(ε − ε′)2/v2
s + (p − p′)2 + 1

ξ 2

1

(iε′ + μ − α(p′
a)2)2

× 1

(ε′ − ε′′)2/v2
s + (p′ − p′′)2 + 1

ξ 2

1

iε′′ + μ − α(p′′
b )2

.

Using the strong overlap 1/ξ � √
[μ,T ]/α we can neglect p and p′

a in the first bosonic propagator and p′
a and p′′

a in the second
one. We proceed to obtain

λ4T 2
∑
ε′,ε′′

∫
dp′dp′′ 1

(ε − ε′)2/v2
s + (p′)2

b + 1
ξ 2

1

(iε′ + μ − α(p′
a)2)2

1

(ε′ − ε′′)2/v2
s + (p′′

a )2 + (p′
b)2 + 1

ξ 2

1

iε′′ + μ − α(p′′
b )2

∼ λ4 v2
s

α

�2

∑
ε′,ε′′

T 2√
(ε − ε′)2 + v2

s

ξ 2

1

(iε′ + μ)3/2

1√
(ε′ − ε′′)2 + v2

s

ξ 2

1√
iε′′ + μ

,
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where all quantities having dimensions of energy after
∑

are normalized to �. For diagram (b) we get

(b) ∼ λ4T 2
∑
ε′,ε′′

∫
dp′dp′′D(ε − ε′,p − p′)Ga(ε′,p′)Gb(ε′,p′′)D(ε′ − ε′′,p′ − p′′)Ga(ε + ε′′ − ε′,p + p′′ − p′)

≈ λ4T 2
∑
ε′,ε′′

∫
dp′dp′′ 1

(ε − ε′)2/v2
s + (p′)2

b + 1
ξ 2

1

iε′ + μ − α(p′
a)2

1

iε′′ + μ − α(p′′
b )2

1

(ε′ − ε′′)2/v2
s + (p′

b)2 + 1
ξ 2

· 1

i(ε + ε′′ − ε′) + μ − α(p + p′′ − p′)2
a

∼ λ4
( v2

s

α

)3/2

�5/2

∑
ε′,ε′′

T 2√
(ε − ε′)2 + v2

s

ξ 2

1√
iε′ + μ

1√
iε′′ + μ

1

(ε′ − ε′′)2 + v2
s

ξ 2

1√
i(ε + ε′′ − ε′) + μ

,

where p and p′
a are neglected in the first bosonic propagator and (p′ − p′′)a and p′′

b in the second. Taking �2 = λ4 v2
s

α
we get 1 in

front of the sum for (a) and
√

(v2
s /α)/� for (b). Let us now estimate the Matsubara sums for two cases. For T ∼ � � μ,vs/ξ

sums in (a) and (b) are both of the order 1 and we get the total result (b) ∼ √
(v2

s /α)/� · (a).
For the calculations in Sec. IV a more relevant approximation would be T ∼ μ,v2

s /α � �. It follows then that vs/ξ =√
(v2

s /α) · (α/ξ 2) � μ,T ,v2
s /α. Sums in (a) is estimated as follows. For the one over ε′ one can neglect ε′ in the bosonic

propagators. For ε′′ the sum evaluated this way diverges, however for an estimate one can use vs/ξ/� as a high-frequency cutoff

with
∑

T 1√
ε

∼ √
εmax. In total one gets (a) ∼ (( vs

ξ�
)3/2
√

T
�

)
−1

. Estimating (b) in the same way one gets (b) ∼
√

v2
s

α�
( vs

ξ�
)−5/2.

Comparing the expressions we obtain (b)/(a) ∼
√

T/(α/ξ 2) � 1.
For nonzero β the fermionic propagators start to disperse along both directions in each region and consequently the argument

is not valid. E.g., for β ∼ α one can ignore the momentum dependence of the first bosonic propagator in (a) completely, leading
to the same overall form of the answer as in (b). On the other hand, if β/ξ 2 � μ one can ignore β in the fermionic propagators,
vindicating the argument. Thus the vertex corrections can be neglected at least for β/ξ 2 � μ.

2. Momentum-independent equations for finite β

First we calculate the fermionic renormalization related to the self-energy f 1(2)(εn,p) − εn = i�1(2)(εn,p).

f a(εn,p) − εn = −3iλ2T
∑
ε′
n

∫
dp′

(2π )2
D(εn − ε′

n,p − p′)Gb(ε′
n,p

′)

= −3iλ2T

∫
dp′

adp
′
b

(2π )2

−1

�(εn − ε′
n,p − p′)/v2

s + (p − p′)2 + 1
ξ 2

1

if b(ε′
n,p

′
a,p

′
b) − αp′2

b + βp′2
a + μ

.

Let us first consider the dependence of f a on pa . For pa ∼ |√(if + μ)/α| � |√�/v2
s + 1/ξ 2| one can neglect pa in the bosonic

propagator. It follows then that f a(b) can be taken as independent from pa(b) for such momenta. Consequently, one can then
perform the integration over p′

b (as the relevant momenta are ∼|√(if + μ)/α| we neglect p′
b in the bosonic propagator):∫

dp′
a

4π
√

α

1

�(εn − ε′
n,p

′
a, − pb)/v2

s + p′2
a + p2

b + 1
ξ 2

isgn[Ref b(ε′
n,p

′
a)]√

if b(ε′
n,p

′
a,0) + βp′2

a + μ
.

Integral over p′
a has relevant momenta ∼1/ξ . We can neglect the dependence of � on p′

a provided that |�(εn − ε′
n,1/ξ,0) −

�(εn − ε′
n,0,0)|/v2

s � 1/ξ 2 (see calculation for � below). For f the condition is |f (ε′
n,1/ξ,0) − f (ε′

n,0,0)| � β/ξ 2 + μ. Using

∫
dx

1√
x2 + a(x2 + b)

=
arctanh

√
b−a

b
x√

a+x2√
b
√

b − a
.

We then obtain:

f a(εn) − εn = 3λ2T

2π
√

αβ

sgn[Ref b(ε′
n)]√

�(εn − ε′
n)/v2

s + 1
ξ 2

√
�(εn − ε′

n)/v2
s + 1

ξ 2 − (if b(ε′
n) + μ)/β

·

· arctanh

⎧⎨
⎩
√√√√�(εn − ε′

n)/v2
s + 1

ξ 2 − (if b(ε′
n) + μ)/β

�(εn − ε′
n)/v2

s + 1
ξ 2

⎫⎬
⎭.
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Now we turn to calculation of �(ωn,p) = (�(ωn,p) − ω2
n)/v2

s :

�(ωn,p) = 2λ2T
∑
εn,p

G1(εn + ωn,p + q)G2(εn,p) + G2(εn + ωn,p + q)G1(εn,p).

Let us consider the momentum integral in the first term:∫
d2p

(2π )2

1

if 1(εn + ωn) − α(p1 + q1)2 + β(p2 + q2)2 + μ

1

if 2(εn) − αp2
2 + βp2

1 + μ
,

where we neglect the dependence of f a(b) on the momenta due to arguments presented above. The dependence of the result on q
is actually controlled by β: For β � α one can see that after p1 → p1 − q1 the integral has no dependence on q. We shall take
q = 0 in our calculations, which is strictly valid only for small β/α � 1. We also introduce a momentum cutoff � physically
motivated by the finite extension of the region, where deviations of the fermionic dispersion from the quadratic form can be
ignored. The momentum integral for �(q,ωn) is very similar to the DDW susceptibility in the simplified model and we evaluate
it in full analogy. First we rewrite the integrand:

1(
z+ − αp2

1 + βp2
2

)(
z − αp2

2 + βp2
1

) = 1

αz+ + βz + (β2 − α2)p2
1

[
β

βp2
2 − αp2

1 + z+
+ α

βp2
1 − αp2

2 + z

]

= α

α + β

1[
(α − β)p2

1 − αz++βz

α+β

][
αp2

2 − (
z + βp2

2

)]
+ α

α + β

1[
(α − β)p2

2 − αz+βz+
α+β

][
αp2

1 − (
βp2

1 + z
)]

− α − β

α + β

1[
(α − β)p2

1 − αz++βz

α+β

][
(α − β)p2

2 − αz+βz+
α+β

] ,
where z+ = ifε+ω + μ, z = ifε+ω + μ. The result of the integration is:

λ2T
∑

ε

4

π2

arctanh
{√ (α2−β2)�2

i(αfε+ω+βfε)+(α+β)μ

}
arctanh

{√
i(αfε+ω+βfε)+(α+β)μ
i(βfε+ω+αfε)+(α+β)μ

√
α�2

β�2+ifε+ω+μ

}
√

i(αfε+ω + βfε) + (α + β)μ
√

i(βfε+ω + αfε) + (α + β)μ

+ 4

π2

arctanh
{√ (α2−β2)�2

i(βfε+ω+αfε)+(α+β)μ

}
arctanh

{√
i(βfε+ω+αfε)+(α+β)μ
i(αfε+ω+βfε)+(α+β)μ

√
α�2

β�2+ifε+μ

}
√

i(αfε+ω + βfε) + (α + β)μ
√

i(βfε+ω + αfε) + (α + β)μ

− 4

π2

arctanh
{√ (α2−β2)�2

i(αfε+ω+βfε)+(α+β)μ

}
arctanh

{√ (α2−β2)�2

i(βfε+ω+αfε)+(α+β)μ

}
√

i(αfε+ω + βfε) + (α + β)μ
√

i(βfε+ω + αfε) + (α + β)μ
.

It can be seen that for β → 0, β�2 → 0, α�2 → ∞ one recovers our previous result [85]. Note that taking the limit � → ∞
before β → 0 leads to a different answer. However, assuming � � 1/ξ in the region β ∼ α we can simplify the answer using
β�2 � μ,T :

�(ωn 
= 0,p) = λ2T
∑

ε

−2i

π

sgn[Re(αfε+ω + βfε)]arctanh
{√

α
β

√
i(αfε+ω+βfε)+(α+β)μ
i(βfε+ω+αfε)+(α+β)μ

}
√

i(αfε+ω + βfε) + (α + β)μ
√

i(βfε+ω + αfε) + (α + β)μ

− 2i

π

sgn[Re(βfε+ω + αfε)]arctanh
{√

α
β

√
i(βfε+ω+αfε)+(α+β)μ
i(αfε+ω+βfε)+(α+β)μ

}
√

i(αfε+ω + βfε) + (α + β)μ
√

i(βfε+ω + αfε) + (α + β)μ

+ sgn[Re(αfε+ω + βfε)]sgn[Re(βfε+ω + αfε)]√
i(αfε+ω + βfε) + (α + β)μ

√
i(βfε+ω + αfε) + (α + β)μ

,

�(0,p) = λ2T
∑

ε

−4iarctanh(
√

β/α)/πsgn[Re(fε)] − 1

(α + β)(ifε + μ)
.

As the main objective of current work is to study the effects of finite β this expression has been used for numerical calculations.
One notes however that �(0,p) is logarithmically divergent. In what follows we absorb this divergence into the value of 1/ξ 2 by
subtracting �(0,p) from �(ωn 
= 0,p).
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Let us now derive the self-consistency equations for the competing order parameters. For the Pomeranchuk instability order
parameter P (εn) one has (P (εn) ≡ P1(εn) = −P2(εn)):

P (εn) = −3λ2T
∑
ε′
n

∫
dp′

adp
′
b

(2π )2

1

�(εn − ε′
n)/v2

s + (p − p′)2 + 1
ξ 2

P (ε′
n)(

if (ε′
n) − αp′2

a + βp′2
b + μ

)2 .

Evaluating the momentum integral under the same assumptions as for the fermion self-energy we obtain:

P (εn) = 3iλ2T
∑
ε′
n

P (ε′
n)sgn[Refε′ ]

4π
√

α

⎧⎨
⎩

arctanh
{√ ifε′+μ−β(�ε−ε′ /v2

s +1/ξ 2)
β(�ε−ε′ /v2

s +1/ξ 2)

}
√

�ε−ε′/v2
s + 1/ξ 2

(
ifε′ + μ − β

(
�ε−ε′/v2

s + 1/ξ 2
))3/2

−
√

β

(ifε′ + μ)
(
ifε′ + μ − β

(
�ε−ε′/v2

s + 1/ξ 2
))
}

,

where we have used:

∫ ∞

−∞
dx

1

(x2 + a2)3/2

1

x2 + b2
= −2

1

a2(a2 − b2)
+

2arctan
{√

a2−b2

b2

}
b(a2 − b2)3/2

.

For β � α we can also obtain the equation for CDW. In this case it is clear that QCDW is along the diagonal QCDW = (Q,Q) and
the equation for the CDW order parameter C(εn) is:

C(εn) = −3λ2T
∑
ε′
n

∫
dp′

adp
′
b

(2π )2

1

�(εn − ε′
n) + (p − p′)2 + 1

ξ 2

· C(ε′
n)(

if (ε′
n) − α(p′

a + Q/2)2 + βp′2
b + μ

)(
if (ε′

n) − α(p′
a − Q/2)2 + βp′2

b + μ
) . (C1)

Evaluating the momentum integral under the same assumptions as for the fermion self energy we obtain:

C(εn) = 3iλ2T
∑
ε′
n

C(ε′
n)sgn[Refε′ ]

4π
√

α

×
⎧⎨
⎩

arctanh
{√ ifε′+μ−β(�ε−ε′+1/ξ 2)

β(�ε−ε′+1/ξ 2)

}
√

�ε−ε′ + 1/ξ 2(ifε′ + μ − αQ2/4 − β(�ε−ε′ + 1/ξ 2))
√

ifε′ + μ − β(�ε−ε′ + 1/ξ 2)

+
√

βarctanh
{√

αQ2/4
αQ2/4−ifε′−μ

}
√

αQ2/4 − ifε′ − μ
√

αQ2/4(ifε′ + μ − β(�ε−ε′ + 1/ξ 2))

⎫⎬
⎭, (C2)

where we have used: ∫
dx

1

x2 + c2

1

x2 − a2

1√
x2 + b2

= −
arctan

{√
b2−c2x

c
√

b2+x2

}
c(a2 + c2)

√
b2 − c2

−
arctanh

{√
a2+b2x

a
√

b2+x2

}
a(a2 + c2)

√
a2 + b2

.

For DDW the equations take form [we use D(εn) ≡ D1(εn) = −D2(εn)]:

D(εn) = −3λ2T
∑
ε′
n

∫
dp′

adp
′
b

(2π )2

1

�(εn − ε′
n)/v2

s + (p − p′)2 + 1
ξ 2

· D(ε′
n)(

if (ε′
n) − αp′2

a + βp′2
b + μ

)(
if (ε′

n) − αp′2
b + βp′2

a + μ
) .

(C3)

First we rewrite the integrand in a similar way to the polarization operator �(q,ωn):

1(
ifε′ − αp2

1 + βp2
2 + μ

)(
ifε′ − αp2

2 + βp2
1 + μ

)
= 1

(α + β)ifε′ + αμ + βμ + (β2 − α2)p2
1

[
β

βp2
2 − αp2

1 + ifε′ + μ
+ α

βp2
1 − αp2

2 + ifε′ + μ

]
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= α

α + β

1[
(α − β)p2

2 − (ifε′ + μ)
][

αp2
1 − (

ifε′ + βp2
2 + μ

)] + α

α + β

1[
(α − β)p2

1 − (
ifε′ + μ

)][
αp2

2 − (
ifε′ + βp2

1 + μ
)]

− α − β

α + β

1[
(α − β)p2

2 − (ifε′ + μ)
][

(α − β)p2
1 − (ifε′ + μ)

] .
If α − β ∼ α we can neglect the dependence of the bosonic propagator on p1(p2) for the first (second) term in the integral, and
we can neglect the momenta in the bosonic propagator altogether for the third term. We obtain as an intermediate result:

D(εn) = 3λ2T

α + β

∑
ε′
n

iD(ε′
n)sgn[Refε′ ]

π

{
arctanh(

√
β/α) − iπsgn[Refε′ ]/2

[ifε′ + μ]
[
�ε−ε′/v2

s + 1/ξ 2 + (ifε′ + μ)/(α − β)
]

+
√

α/β

α − β

arctan
{√ (ifε′+μ)/β−(�ε−ε′ /v2

s +1/ξ 2)
�ε−ε′ /v2

s +1/ξ 2

}
√

�ε−ε′/v2
s + 1/ξ 2

[
�ε−ε′/v2

s + 1/ξ 2 + (ifε′ + μ)/(α − β)
]√

(ifε′ + μ)/β − (
�ε−ε′/v2

s + 1/ξ 2
)
⎫⎬
⎭

− D(ε′
n)

4

1

ifε′ + μ

1

�ε−ε′/v2
s + 1/ξ 2

. (C4)

We use our assumptions α − β ∼ α and |√(if + μ)/α| � |
√

� + 1/ξ 2| to further simplify the answer:

D(εn) = 3λ2T

α + β

∑
ε′
n

D(ε′
n)

�ε−ε′/v2
s + 1/ξ 2

isgn[Refε′ ]arctanh(
√

β/α)/π + 1/4

ifε′ + μ
. (C5)

The result is reminiscent of the expression for χDDW in the toy model. To study qualitatively the presence of IDDW within the
spin-fermion model we use the following equation that can be easily derived assuming β/ξ 2 � |if + μ| and incommensurability
(Q,Q) along the diagonal using the result (A3):

DI (εn) = 3λ2T

α + β

∑
ε′
n

DI (ε′
n)

�ε−ε′ + 1/ξ 2

⎧⎨
⎩ isgn[Refε′ ]arctanh(

√
β/α)/π + 1/4

ifε′ + μ + αβ(α−β)Q2

(α+β)2

− isgn[Refε′ ]/π

ifε′ + μ + αβ(α−β)Q2

(α+β)2

√√√√ αβ

(α+β)2
αβQ2

α−β

ifε′ + μ + αβQ2

α−β

arctanh

√√√√ αβQ2

α−β

ifε′ + μ + αβQ2

α−β

⎫⎬
⎭.

Introducing an energy scale � = √
λ2v2

s /α (note that in our previous work a larger scale (λ2vs/
√

α)2/3 has been used) we can
bring the equations to a dimensionless form:

P (ε) = 3iT
∑
ε′
n

P (ε′)sgn[Refε′ ]

4π

⎧⎨
⎩

v2
s /α · arctanh

{√ (ifε′+μ)v2
s /α−β/α(�ε−ε′+a)

β/α(�ε−ε′+a)

}
√

�ε−ε′ + a
[
(ifε′ + μ)v2

s /α − (�ε−ε′ + a)β/α
]3/2

−
√

β/α

[ifε′ + μ]
[
v2

s /α(ifε′ + μ) − β/α(�ε−ε′ + a)
]
⎫⎬
⎭,

C(ε) = 3iT
∑
ε′
n

C(ε′)sgn[Refε′ ]

4π

×
⎧⎨
⎩

v2
s /α · arctanh

{√ (ifε′+μ)v2
s /α−β/α(�ε−ε′ +a)

β/α(�ε−ε′+a)

}
√

�ε−ε′ + a
[
(ifε′ + μ − αQ2/4)v2

s /α − (�ε−ε′ + a)β/α
]√

(ifε′ + μ)v2
s /α − (�ε−ε′ + a)β/α

+
√

β/αarctanh
{√

αQ2/4
αQ2/4−ifε′−μ

}
√

αQ2/4 − ifε′ − μ
√

αQ2/4
[
(ifε′ + μ)v2

s /α − (�ε−ε′ + a)β/α
]
⎫⎬
⎭,

D(ε) = 0.75T

1 + β/α

∑
ε′

D(ε′)
�ε−ε′ + a

4isgn[Refε′ ]arctanh(
√

β/α)/π + 1

ifε′ + μ
,
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DI (ε) = 0.75T

1 + β/α

∑
ε′

DI (ε′)
�ε−ε′ + a

{
4isgn[Refε′ ]arctanh(

√
β/α)/π + 1

ifε′ + μ + αβ(α−β)Q2

(α+β)2

− 4isgn[Refε′ ]/π

ifε′ + μ + αβ(α−β)Q2

(α+β)2

√√√√ αβ

(α+β)2
αβQ2

α−β

ifε′ + μ + αβQ2

α−β

arctanh

√√√√ αβQ2

α−β

ifε′ + μ + αβQ2

α−β

⎫⎬
⎭. (C6)

The equations have been solved numerically by an
iteration method with nonlinearities 1/(10|D(ε′)|2 +
1),1/(10|P (ε′)|2 + 1) introduced to the r.h.s. of the order
parameter equations to enforce convergence below critical
temperature. The values of critical temperatures are not
affected by this procedure. The number of Matsubara
frequencies taken has been 300 + 1/(πT ), but not larger then
800.

While solving equations numerically two obstacles were
encountered. First, the equations contain nonanalytic functions
of a complex argument. To exclude ambiguity, we exclude the
half-axis Rez < 0,Imz = 0 and check that arguments never
cross it. In practice this means that the square roots should
be evaluated from combinations like if + μ which always
do have an imaginary part and never cross Rez < 0,Imz = 0
as functions of ε but not of (if1 + μ) ∗ (if2 + μ) or (if1 +
μ)/(if2 + μ) as these can cross the negative axis as functions
of ε.

The second obstacle is that at low μ spurious solutions for
D appear. They don’t converge even for large numbers of iter-
ations. However the convergence can be greatly improved by
the following trick, which is a simplified version of Newton’s
method. For T > TPom,DDW we have an equation:

�X = Aij
�Xj,

and the Newton’s method looks:

�Xn+1 = �Xn + (1 − A)−1(A �Xn − �Xn).

Evaluating the matrix (1 − A)−1 is a rather slow operation.
However in our case Aij ∼ (�i−j + a) and thus diagonal
elements dominate. We can approximately use then:

�Xn+1 = �Xn + diag(1 − Aii)
−1(A �Xn − �Xn).

This allows us to get rid of the spurious solutions and improve
convergence to obtain consistent TPom/DDW values.
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