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Enhanced pairing susceptibility in a photodoped two-orbital Hubbard model
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Local spin fluctuations provide the glue for orbital-singlet spin-triplet pairing in the doped Mott insulating
regime of multiorbital Hubbard models. At large Hubbard repulsion U , the pairing susceptibility is nevertheless
tiny because the pairing interaction cannot overcome the suppression of charge fluctuations. Using nonequilibrium
dynamical mean field simulations of the two-orbital Hubbard model, we show that out of equilibrium the pairing
susceptibility in this large-U regime can be strongly enhanced by creating a photoinduced population of the
relevant charge states. This enhancement is supported by the long lifetime of photodoped charge carriers and a
built-in cooling mechanism in multiorbital Hubbard systems.

DOI: 10.1103/PhysRevB.97.165119

I. INTRODUCTION

Inducing or stabilizing electronic orders by driving a
correlated electron system into a nonthermal state is a new
and promising strategy for the control and manipulation of
material properties. Examples include the observation of light-
induced superconductivity in phonon-driven cuprates [1,2]
and fulleride compounds [3], as well as the enhancement
of excitonic order by photoexcitation of electron-hole pairs
[4]. While several theoretical proposals for the enhancement
of excitonic and superconducting condensates have been put
forward [5–18], most scenarios can be understood within
an equilibrium picture because they rely on changes of the
bandwidth [6,10] or interaction parameters [8,9], or they do
not fully take into account the competing effects of heating and
nonthermal energy distributions in driven systems [5,8,11–16].
Since heating effects can strongly reduce electronic orders in
driven systems [19], interesting transient states can be expected
to occur in situations where the energy absorption is minimal
(e.g., in the case of subgap driving [1]), or where a large
part of the injected energy is transiently stored as potential
energy [20,21]. Here, we demonstrate an example of the
second type, namely, a strongly enhanced spin-triplet pairing
susceptibility in a photodoped two-orbital Hubbard model with
a large Mott gap. This enhancement can neither be explained
by chemical doping of the Mott insulating parent state nor by
increasing temperature, and hence is a genuine nonequilibrium
effect.

Multiorbital Hubbard models with Hund coupling exhibit
an orbital-singlet spin-triplet superconducting phase at low
temperature [22–25]. In equilibrium and at intermediate Hub-
bard interaction, this pairing instability is closely connected to
the spin-freezing crossover [26] that occurs as the half-filled
Mott insulator is approached by changing the filling at fixed
interaction strength [25,27]. In the spin-freezing crossover
regime, slowly fluctuating local moments appear, which induce
pairing at low temperature. Closer to half-filling, the local

moments freeze and the resulting incoherent metal state is
characterized by a suppressed pairing susceptibility.

In the strongly correlated regime, the pairing interaction
cannot overcome the suppression of charge fluctuations by the
Hubbard repulsion U , and the spin-triplet pairing susceptibility
is very low, both in the Mott phases at integer filling, and in
the chemically doped Mott state (see illustration in Fig. 1).
Our study of the two-orbital Hubbard model, however, reveals
that the injection of triplon and singlon charge carriers into
the half-filled Mott insulator creates a photodoped metal state
with a strongly enhanced pairing susceptibility. The increased
density of singlons and triplons enables the charge fluctuations
associated with pairing in a half-filled system, while local
spin-flip excitations [28] cool the photodoped carriers down
to a temperature of the order of the Hund coupling within a
few inverse hopping times. Further cooling by a boson bath
results in a substantial increase of the pairing susceptibility
with respect to the values achievable by chemical doping in
equilibrium. The phenomenon is related to the metastable
superfluidity in a strongly repulsive Hubbard model discussed
in Ref. [20], but it is demonstrated here for a moderate
density of photodoped carriers that move in a background
of half-filled doublon states, and with a formalism that
captures the heating effect associated with the photodoping
process.

The paper is organized as follows: In Sec. II we describe
the model and the method used to calculate the nonequilibrium
spin-triplet pairing susceptibility and the local spin susceptibil-
ity. Section III A investigates the relation between pairing and
spin susceptibility in the equilibrium model, while Sec. III B
discusses the effect of photodoping on these susceptibilities
in the strongly interacting Mott regime. A summary and
conclusions are presented in Sec. IV. The Appendix contains
a derivation of the dynamical mean field self-consistency
equation for the two-orbital Hubbard model with spin-triplet
superconductivity.
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FIG. 1. Illustration of the proposed mechanism for the enhance-
ment of the spin-triplet pairing susceptibility in a strongly correlated
two-orbital system. In the half-filled equilibrium Mott insulator, the
dominant local states are high-spin doublon states (top panel), while
electron doping produces a substantial population of triplon states
(middle panel). In both systems, the coherent tunneling of spin-triplet
pairs is suppressed by the local Coulomb repulsion U . Photodoping
produces both singlon and triplon states (bottom panel), which enable
the charge fluctuations associated with spin-triplet pairing.

II. MODEL AND METHOD

We consider a two-orbital Hubbard model with Hamiltonian

Hlatt(t) =
∑
i �=j

∑
α=1,2

∑
σ

vα
ij (t)c†i,ασ cj,ασ

+
∑

i

∑
α=1,2

[Uni,α↑ni,α↓ − μ(ni,α↑ + ni,α↓)

+Bz(t)(ni,α↑ − ni,α↓)]

+
∑

i

∑
σ

[(U − 2J )ni,1σ ni,2σ̄

+ (U − 3J )ni,1σ ni,2σ ] + Hpair field, (1)

where vα
ij is the hopping amplitude between sites i and j for

orbital α, σ denotes spin, μ the chemical potential, Bz the
magnetic field, U the intraorbital interaction, and J the Hund
coupling. Spin-flip and pair-hopping terms are neglected in
this study. (Pair hopping is irrelevant for J > 0. Spin flips
would typically suppress spin-triplet superconductivity [25],
but neglecting them can be viewed as the introduction of a spin
anisotropy which may originate from spin-orbit coupling.) To
measure the spin-triplet pairing susceptibility, we also add a
pair-field term

Hpair field = −
∑

i

P (t)(c†i,1↑c
†
i,2↑ − c

†
i,1↓c

†
i,2↓ + H.c.). (2)

For the lattice we assume a Bethe lattice with infinite coordi-
nation number.

To investigate the nonequilibrium properties of this model,
we use the nonequilibrium extension of dynamical mean field
theory [29,30]. In dynamical mean field theory (DMFT) [31],

the lattice model (1) is mapped to a two-orbital quantum
impurity model with action

S =
∫
C
dt dt ′ψ†(t)�(t,t ′)ψ(t ′) +

∫
C
dt Hloc(t), (3)

where the local terms represented by Hloc are identical to those
of the lattice model (1), and in the hybridization term, we
introduced the four-component spinor ψ† = (c†1↑,c2↑,c

†
1↓,c2↓)

as well as the matrix-valued hybridization function

�(t,t ′) =

⎛
⎜⎜⎜⎜⎝

�c†c
1↑1↑ �c†c†

1↑2↑ 0 �c†c†

1↑2↓
�cc

2↑1↑ �cc†

2↑2↑ �cc
2↑1↓ 0

0 �c†c†

1↓2↑ �c†c
1↓1↓ �c†c†

1↓2↓
�cc

2↓1↑ 0 �cc
2↓1↓ �cc†

2↓2↓

⎞
⎟⎟⎟⎟⎠. (4)

(Note that we allow for anomalous components associated with
interorbital pairing, but set those associated with intraorbital
pairing to zero.) The hybridization function � is determined
self-consistently in such a way that the impurity model Green’s
function

G(t,t ′) = −i〈T ψ(t)ψ†(t ′)〉S

=

⎛
⎜⎜⎜⎜⎝

Gcc†

1↑1↑ Gcc
1↑2↑ 0 Gcc

1↑2↓
Gc†c†

2↑1↑ Gc†c
2↑2↑ Gc†c†

2↑1↓ 0

0 Gcc
1↓2↑ Gcc†

1↓1↓ Gcc
1↓2↓

Gc†c†

2↓1↑ 0 Gc†c†

2↓1↓ Gc†c
2↓2↓

⎞
⎟⎟⎟⎟⎠, (5)

with components Gab
ασβσ ′ ≡ −i〈T aασ (t)bβσ ′(t ′)〉S (a, b stands

for c or c†), becomes equal to the local lattice Green’s function.
In the nonequilibrium version of DMFT, this self-consistent
solution is computed on the Kadanoff-Baym contourC [29,30],
which runs from time 0 to time t along the real-time axis, back
to time 0 along the real-time axis, and then to −iβ along the
imaginary-time axis (β is the inverse temperature of the system,
and T the contour ordering operator).

In a Bethe lattice with nearest-neighbor hopping and co-
ordination number z, the components of the � matrix are
determined by the condition

�(t,t ′) =
z∑

j=1

V ∗
j (t)G(0)

jj (t,t ′)Vj (t ′), (6)

with Vj (t) = diag(v1
j0(t), − v2

0j (t),v1
j0(t), − v2

0j (t)). Here,

G
(0)
jj (t,t ′) is the cavity Green’s function of the lattice, on a site

next to the cavity at site 0 [31]. In the spirit of DMFT, we can
replace G

(0)
jj (t,t ′) by G(t,t ′). If the hopping amplitudes are

real and independent of the bond, we can furthermore replace
them in the limit z → ∞ by vα

j0 = vα
0j → vα/

√
z to obtain the

usual self-consistency condition for the infinite-dimensional
Bethe lattice:

�(t,t ′) = V (t)G(t,t ′)V (t ′), (7)

with V (t) = diag(v1(t), − v2(t),v1(t), − v2(t)). For a deriva-
tion based on the cumulant expansion, see the Appendix.

To solve the impurity problem, we use the lowest-order
self-consistent hybridization expansion (noncrossing approx-
imation, NCA) [32,33]. This approximation is expected to be
good in the Mott insulating phases, while the metallic solutions
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are more strongly affected by the constraint of noncrossing
hybridization lines. Nevertheless, we will show that the NCA
captures the qualitative features of the doping-dependent phase
diagram, including the correlation between spin-triplet pairing
and enhanced local spin fluctuations at moderate U . Most of the
following analysis will be performed in the symmetric phase at
T > Tc, and will be based on the measurement of spin-triplet
pairing and local spin susceptibilities. To measure the pairing
susceptibilityχP , we apply a small static pairing fieldP (t) = p

(also on the Matsubara axis) and measure the resulting order
parameter

OP (t) = Re〈c†1↑c
†
2↑〉 = 1

4 〈c†1↑c
†
2↑ − c

†
1↓c

†
2↓ + H.c.〉(t), (8)

which yields

χP (t) = OP (t)/p. (9)

The dynamical contribution to the local spin susceptibility
is defined in equilibrium as [25]

�χ = −
∫ β

0
dτ [CSS(τ ) − CSS(β/2)], (10)

where CSS(τ ) = −〈Tτ Sz(τ )Sz(0)〉S is the local spin correlation
function measured on the imaginary-time axis. On the real-time
axis, and in terms of the retarded correlation function CR

SS(t) =
−iθ (t)〈[Sz(t),Sz(0)]〉, we can express the same quantity as

�χ =
∫ ∞

0
dt CR

SS(t)[−1 + tanh(πt/β)]. (11)

While the local spin correlation function can be measured
directly in the NCA as a sum of bubbles of pseudoparticle
Green’s functions, it turns out that this approximation is
very poor and not consistent with the NCA dynamics. This
is evident, for example, by the fact that the peak of the
resulting equilibrium �χbubble does not occur in the doping
region where the pairing susceptibility is largest, which is
in contrast to quantum Monte Carlo (QMC) based results
for moderate U [25,27]. We can understand the problem by
considering the case of a half-filled Mott insulator, where
the dominant local states are half-filled high-spin states. The
bubble approximation to the spin correlation function lacks the
important contributions from time sequences where the spin
state flips from up to down (or vice versa) between the two
measurement times.

To get a result which is consistent with the DMFT time evo-
lution, we apply a magnetic field pulse. The local susceptibility
δ〈Sz,j 〉/δBz,j on a given site j can be obtained by calculating
the time evolution of the magnetization m(t) = 〈Sz〉S|� (t) in
the impurity model after a short magnetic field pulse Bz(t) =
bδ(t − tp), where the hybridization function �(t,t ′) is fixed to
the value without the magnetic field pulse. Keeping � fixed is
consistent with the cavity construction on the infinite coordina-
tion Bethe lattice, in which a single site has a negligible effect
on the hybridization function [34]. Since the induced magnetic
moment is proportional to the retarded correlation function, by
multiplying it with [−1 + tanh(π (t − tp)/β)] and integrating
over t > tp, we obtain the following more accurate estimate of
the dynamical contribution to the local spin susceptibility:

�χpulse = 1

b

∫ ∞

tp

dt m(t)[−1 + tanh(π (t − tp)/β)]. (12)

In practice, we integrate up to some time tmax and apply a short
magnetic field pulse of finite width, centered at t = tp and with
integral b.

In some calculations, we also introduce energy dissipation
to a bosonic heat bath by adding a Migdal-type self-energy
diagram [35]

�boson(t,t ′)ab = ig2D
(ω0,β)
0 (t,t ′)G(t,t ′)aaδab (13)

to the diagonal components of the hybridization matrix (a,b

are Nambu-spin indices). Here, g is the coupling strength and
D

(ω0,β)
0 is the equilibrium free propagator for Holstein phonons

with energy ω0 at inverse temperature β [35].
In the rest of the paper, we consider an infinite-

dimensional Bethe lattice with degenerate bands of band-
width W = 4v and set v = 1 as the unit of energy (1/v

as the unit of time). In the nonequilibrium simulations, the
initially Mott insulating system is driven out of equilib-
rium by a hopping modulation vα(t) = [1 + afδ,βcut (t − tp)
sin(�(t − tp))]v with a the amplitude, � the driv-
ing frequency, and fδ,βcut (t − tp) = 1/({1 + exp[βcut(t − tp −
δ/2)]}{1 + exp[−βcut(t − tp + δ/2)]}) a window function of
length δ, centered at tp, with smooth Fermi-function-like
cutoffs parametrized by βcut. Unless otherwise stated, we use
the driving frequency � = U , which results in an efficient
photodoping of the Mott insulator, and βcut = 60. The ad-
vantage of the hopping modulation compared to an electric
field excitation is a simplification in the implementation of
the self-consistency (see the Appendix). Since the phenomena
discussed in this paper mainly depend on the density of pho-
toinduced singlon and triplon states, and multiorbital systems
have an efficient built-in cooling mechanism [28], we expect
that the results do not depend qualitatively on the excitation
protocol.

III. RESULTS

A. Equilibrium system

We start by presenting some results which demonstrate the
spin-triplet pairing in equilibrium and its connection to local
spin fluctuations. The left panel of Fig. 2 shows the NCA
phase diagram in the space of interaction U and filling n

obtained for fixed J = 0.875 at inverse temperature β = 50.
(The physical regime corresponds to U > 3J = 2.625, above
the black dashed line.) We only plot the filling range 2 �
n � 4 since the model is particle-hole symmetric. There is
a Mott insulating solution at half-filling (n = 2), and an n =
3 Mott insulator for U � Uc(n = 3) ≈ 5.875, while a spin-
triplet superconducting phase is found for U � 4.1 and fillings
around n = 3. The orbital-singlet spin-triplet superconducting
order parameter OP at U = 3.5 is plotted as a function of n

in the middle panel. It reaches its maximum near n = 2.93.
The violet line in the left panel tracks the maximum order
parameter in the U -n space. It connects to the end point of
the n = 2 Mott insulator since for U < Uc(n = 2) (in the
unphysical regime with attractive interorbital interactions) the
highest Tc is reached at half-filling. The appearance of this
superconducting phase and its stability region in U and T

space is qualitatively consistent with numerically exact data
based on a QMC impurity solver [27,36]. The main quantitative
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FIG. 2. Left panel: NCA phase diagram for β = 50 and J = 0.875 in the intermediate-U region. The pink line shows the boundary of the
spin-triplet superconducting (SC) region and the violet line the location of the maximum superconducting order parameter. The physical region
with repulsive interactions is above the dashed line (U > 3J ). Black bars indicate the Mott insulating solutions at filling n = 2 and 3. Middle
panel: filling dependence of the order parameter OP and of �χ with (dark blue) and without (light blue) vertex corrections (β = 50, U = 3.5).
Right panel: retarded spin-spin correlation functions evaluated with (dark blue) and without (light blue) vertex corrections in the underdoped
and optimally doped regime (β = 50, U = 3.5). The spin correlation functions and susceptibilities are calculated in the normal phase.

difference is that the superconducting instability is shifted to
larger fillings in the NCA solution.

In the QMC phase diagram [27], at intermediate U , the su-
perconducting phase extends along the spin-freezing crossover
line [26], where the dynamical contribution to the local spin
susceptibility �χ reaches its maximum. As is shown in the
middle panel of Fig. 2 (light blue line), the NCA bubble
approximation of �χ peaks near n = 2.19, outside of the
filling range where the superconducting solution appears. This
inconsistency is resolved by the magnetic field pulse measure-
ment of the local spin susceptibility. This more accurate NCA
estimate of �χ , which takes vertex corrections into account,
is shown by the dark blue line in the middle panel, and indeed
exhibits a peak in the doping region where the superconducting
order parameter reaches its maximum.

The large effect of the vertex corrections is illustrated for
U = 3.5 and two different fillings in the right-hand panel of
Fig. 2, which plots the retarded spin-spin correlation function
CR

SS(t) evaluated in the NCA bubble approximation (light blue)
and obtained by the pulse measurement according to Eq. (12)
(dark blue). Near half-filling, in the spin-frozen regime, the
bubble strongly overestimates the local spin correlations, while
near optimal doping, in the spin-freezing crossover regime, it
does not capture the slow decay of the spin correlations. The
result obtained with the pulse measurement is qualitatively
consistent with the susceptibility obtained on the imaginary
axis by QMC [Eq. (10)].

We next discuss the changes in the pairing susceptibility
χP which occur as one moves into the large-U regime. These
changes are a consequence of the suppression of charge
fluctuations near half-filling and the appearance of the n = 3
Mott insulating phase at U > Uc(n = 3) ≈ 5.875. The left
panel of Fig. 3 plots χP at β = 25 for different values of U .
This temperature is above the maximum Tc in the considered
interaction range, and hence the pairing susceptibility does
not diverge. As the system approaches Uc(n = 3), the peak
in χP near n = 3 gets suppressed, and for U > Uc(n = 3)
the susceptibility reaches a global minimum in the n = 3
Mott insulating state. As a consequence, χP exhibits a broad
maximum for some filling n < 3, which shifts towards n = 2
as U is increased. At very large interaction, the NCA estimate

of χP is strongly suppressed in the entire doping range 2 <

n < 3, and does not significantly exceed the values in the two
bordering Mott phases.

In the middle and right panels of Fig. 3, we compare the pair-
ing susceptibility χP in the intermediate- and large-U regimes
to the dynamical contribution to the local spin susceptibility
(�χ ) evaluated by the pulse measurement (blue line). For
U = 3.5 (middle panel) peaks in the pairing susceptibility and
in �χ are observed near n = 3 in agreement with the previous
discussion of the low-temperature phase diagram. However,
for U = 20 (right panel) the doping evolution of �χ no longer
correlates with the pairing susceptibility. While �χ exhibits a
pronounced maximum near n = 2.5 and is suppressed by only
about a factor of 2 compared to the U = 3.5 case, the pairing
susceptibility shows a very weak maximum near n = 2 and its
value is suppressed by a factor of 100 with respect to the U =
3.5 result. This strong suppression of χP despite persistent spin
fluctuations is consistent with QMC based DMFT simulations
in the strong-coupling regime. According to Ref. [25], the local
spin fluctuations provide the “pairing glue” for the orbital-
singlet spin-triplet superconductivity. Hence, the peak in �χ

at U = 20 indicates that the very low pairing susceptibility
observed at U = 20 is not due to a lack of pairing interactions,
but due to the strongly reduced charge fluctuations at large
U and the proximity of the chemically doped system with
2 < n < 3 to the n = 2 and n = 3 Mott insulators.

B. Photodoped system

We now move to the discussion of the nonthermal metal
state obtained by photodoping the half-filled Mott insulator.
The photodoping excitation is mimicked by a periodic mod-
ulation of the hopping parameter, with frequency � = U ,
as explained in Sec. II. This hopping modulation creates a
certain density of triplons (|N = 3〉) and singlons (|N = 1〉)
on top of a background of predominantly half-filled sites in
a high-spin configuration (|N = 2,S = 1〉). In the large-gap
regime, the lifetime of these photoexcited charge carriers grows
exponentially with increasing U [28,37], and for U = 20 we
can neglect the recombination of triplons and singlons on the
timescales accessible in the simulations. We start by discussing
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FIG. 3. Equilibrium results for the chemically doped system at β = 25 (T > Tc,max in the considered interaction range). Left panel: pairing
susceptibility χP for different U as a function of filling. For U > Uc(n = 3) ≈ 5.875 there exists an n = 3 Mott insulator. Middle panel: filling
dependence of χP and the dynamical contribution to the local spin susceptibility �χ for U = 3.5. Right panel: filling dependence of χP and
�χ for U = 20. Also indicated is the product p(N = 2)p(N = 4) of local state probabilities.

the isolated system and then consider the effect of the coupling
to a boson bath.

1. Isolated system

To illustrate the evolution of the pairing susceptibility, we
apply a small constant pair seed field P (t) = p = 0.001 and
calculate the order parameter OP (t). This yields the estimate
χP (t) = OP (t)/p. The left panel of Fig. 4 shows the result for
different modulation amplitudes a and a pulse which lasts from
t ≈ 0.5 to t ≈ 3. Also plotted for comparison is the largest
value of the pairing susceptibility χP that can be reached in
equilibrium at β = 25 in the filling range 2 � n � 3. The
photodoping leads to a prompt increase of χP and the effect
grows with the amplitude of the pulse. Even though the pulse
injects energy, and the pairing susceptibility of the equilibrium
system decreases with increasing temperature, we find that
the photodoped system reaches pairing susceptibilities that are
substantially larger than in equilibrium, and that the effect is
long lived in the absence of singlon-triplon recombination.

In the middle panel we plot the local state probabilities as a
function of pulse amplitude a in the steady state reached after
the pulse (t = 12.5). The main effect of the pulse is to transform
high-spin doublon states into singlons and triplons. At small
pulse amplitudes, there is also a significant increase in the

density of low-spin doublon states of the type |↑ , ↓〉 or |↓ , ↑〉
(“n1n2 = 1”) with increasing a. At large pulse amplitudes, the
singlon and triplon density saturates at 0.25. A further increase
in the pulse amplitude or the length of the pulse then mainly
leads to the generation of |N = 0〉 and |N = 4〉 states at the
expense of the remaining high-spin doublons.

One remarkable observation is that the pairing susceptibility
continues to increase after the end of the pulse (between t ≈ 3
and t ≈ 6). To understand this behavior, let us look at the time
evolution of the probabilities of the different atomic states.
For the pulse with amplitude a = 0.5, the result is shown in
the right panel of Fig. 4. The pink line shows the probability
of a given site to be in a triplon state [p(N = 3), which
by symmetry is equal to the probability of the singlon state
p(N = 1)], while the blue curve plots the probability of not
being in the high-spin doublon state [1 − p(N = 2,S = 1)].
We can see that the number of triplons is indeed conserved
after the pulse, up to some rapidly damped oscillations associ-
ated with (N = 1)(N = 3) ↔ (N = 2,S = 1)(N = 2,S = 1)
hopping processes, which also lead to strong oscillations in
the kinetic energy. During the pulse, the probability of the
high-spin doublon state is reduced, while the occupation of
singlon, triplon, and low-spin doublon states grows. The in-
crease of the pairing susceptibility after the pulse is associated
with a further transformation of high-spin doublon states into
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low−spin doublontriplon

high−spin doublon triplon

E

EE      + J

E     − Jloc

kin

kin

loc

FIG. 5. Illustration of the cooling by local spin excitations. A
triplon with kinetic energy Ekin scatters with a high-spin doublon
(local energy Eloc) to produce a low-spin doublon at an energy cost
of J .

low-spin doublon states at fixed density of singlons and
triplons. This is a clear signature of the cooling of the
photodoped singlons and triplons by local spin excitations (see
illustration in Fig. 5), similarly to what has been demonstrated
in Ref. [28]. This cooling is also evident in the time evolution
of the kinetic energy, which decreases after the pulse on the
same timescale as the observed transformation of high-spin
doublon states into low-spin doublon states.

By measuring the time-dependent spectral function of the
photodoped state as the Fourier transform of the retarded
component of the local Green’s function [38] A(ω,t) =
− 1

π
Im

∫ tmax

t
dt ′eiω(t ′−t)GR

11(t ′,t) and the occupation function
A<(ω,t) = 1

2π
Im

∫ tmax

t
dt ′eiω(t ′−t)G<

11(t ′,t) as the Fourier trans-
form of the lesser component [39], we can define the nonequi-
librium distribution function f (ω,t) = A<(ω,t)/A(ω,t). The
top panel of Fig. 6 plots f (ω,t) in the energy range of
the upper Hubbard band, for times immediately after the
hopping modulation pulse with amplitude a = 0.5. In contrast
to the paramagnetic single-orbital model, where a nonthermal
distribution of photocarriers persists for a long time after a
photodoping pulse [37] we observe a relaxation of the high-
energy triplons to an approximate Fermi-Dirac distribution
with a shifted chemical potential on the timescale of the inverse
hopping [41]. The effective temperature of the photodoped
triplons depends on the pulse amplitude (bottom panel of
Fig. 6) or “photodoping concentration” p(N = 1) + p(N =
3), but it is of the order of the Hund coupling J . The evolution
of the nonequilibrium distribution function thus provides
further evidence for the ultrafast cooling of the photodoped
triplons and singlons by local spin excitations, to an effective
temperature of the order of J . (Additional cooling is possible
if energy quanta smaller than J can be dissipated to some heat
bath, see Sec. III B 2.) As the pulse amplitude reaches a ≈ 1,
the high-spin doublon states are depleted (Fig. 4) and local spin
excitations with energy cost J become rare. In this regime, the
effective temperature grows beyond Teff = J with increasing
a (or increasing length of the pulse), while the photodoping
concentration saturates near 0.5.

To compare the susceptibility of the photodoped system
to that of a chemically doped equilibrium system at inverse
temperature β = 25, we plot in Fig. 7 the pairing susceptibility
and the local spin susceptibility as a function of carrier con-
centration [p(N = 1) + p(N = 3) in the photodoped case and
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FIG. 6. Effective triplon temperature in the photodoped system.
Top panel: time-dependent energy distribution function f (ω,t) for
U = 20, J = 0.875, initial β = 25 and pulse amplitude a = 0.5, and
comparison to a Fermi-Dirac distribution function with T = 0.54 and
μ = 8.7. Bottom panel: effective triplon temperature at time t = 5
plotted as a function of the photodoping concentration p(N = 1) +
p(N = 3). The dashed horizontal line indicates the value of J .

p(N = 3) in the chemically doped case]. While the chemically
doped system at U = 20 shows a very weak maximum in
χP near n = 2, there is a clear increase with increasing
photodoping concentration in the nonequilibrium state. The
effect saturates near p(N = 1) + p(N = 3) = 0.5 since this
corresponds to the largest singlon/triplon density that can be
reached using a pulse excitation with � = U . As mentioned
above, the cooling by local spin fluctuations becomes less
effective as this limit is approached.

We also plot the dynamical contribution to the local suscep-
tibility, evaluated with Eq. (12) and β = 25 in the quasi-steady
state reached after the pulse (tp = 6). Since the global temper-
ature of the nonequilibrium state is not defined, it is a priori not
clear how to apply this formula, and by inserting the “effective
temperature” 1/β ≈ J of the triplons, one would obtain much
smaller values of �χ . By using the low temperature of the
initial state, Eq. (12) essentially measures the long-time decay
of the retarded spin-spin correlation function, and Fig. 7 thus
allows us to compare these decays in the chemically doped
and photodoped states. The result is rather similar, apart
from the reduction near p(N = 1) + p(N = 3) = 0.5 in the
photodoped state, which can be assigned to heating effects.

Figure 7 demonstrates a correlation between χP in the
photodoped state at U = 20 and �χ , which is qualitatively
similar to what is found in equilibrium in the moderately
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FIG. 7. Susceptibilities in the photodoped and chemically doped
system with U = 20, J = 0.875. Top panel: pairing susceptibility χP

in the photodoped system plotted against the “photodoping concentra-
tion” p(N = 1) + p(N = 3), and dynamical contribution to the local
spin susceptibility �χ evaluated according to Eq. (12) with β = 25.
Bottom panel:χP and�χ of the chemically doped equilibrium system
at β = 25 plotted against the “doping concentration” p(N = 3).

correlated regime [U < Uc(n = 3)] (see middle panel of
Fig. 3). This indicates that the buildup of coherence in this
photodoped metastable state is connected to local spin fluctu-
ations in much the same way as was found for the moderately
correlated, chemically doped equilibrium system.

Let us comment at this point on the functional depen-
dence of χP on the doping concentration. In equilibrium, at
U = 3.5, the pairing susceptibility peaks near n = 3 and it
correlates with the product p(N = 2)p(N = 4) of local state
probabilities (Fig. 3). This is natural since, in an equilibrium
system with three electrons per site, the triplet pairing is
associated with fluctuations between N = 2 and 4 states. In
the photodoped half-filled Mott insulator, the singlons and
triplons move in a background of predominantly high-spin
N = 2 states. Hence, the analogy to the moderately correlated
equilibrium superconductor suggests a correlation between
χP and p(N = 1)p(N = 3) = p(N = 3)2 in the photodoped
system. The top panel of Fig. 7 shows a different scaling
[very roughly χP ∼ p(N = 3)1/2]. We argue that this is a
consequence of the doping-dependent effective temperature of
the photodoped system, and will come back to this point at the
end of the next section, which discusses the effect of cooling
by a bosonic heat bath.

2. System coupled to a heat bath

We finally consider the evolution of the photodoped state
in the presence of a bosonic heat bath. As discussed in the
previous subsection, local spin excitations provide a very
efficient cooling mechanism for the photodoped triplons and
singlons, so that only a few inverse hopping times after the
pulse, the effective temperature of these carriers is of the order
of J . Below this effective temperature, the kinetic energy of the
singlons and triplons is too low to excite high-spin states into
low-spin states, so that the intraband relaxation is limited by an
effect analogous to the “phonon bottleneck” discussed in the
context of photoexcited electron-phonon systems [42,43]. In
the presence of a bosonic heat bath described by the self-energy
(13) with boson energy ω0 < J , further cooling of the singlons
and triplons is possible, on a timescale determined by ω0 and
the coupling strength g, and it is interesting to explore how this
cooling affects the pair susceptibility of the photodoped state.

In the left panel of Fig. 8 we show the time evolution of
the pairing susceptibility for pulse amplitude a = 1, boson
frequency ω0 = 0.1, and different coupling strengths g. First
of all, we note that in equilibrium, the coupling to a boson
bath decreases the pairing susceptibility relative to the model
without heat bath (although the effect is very small in the
half-filled Mott insulator). In the photodoped state, however,
the additional cooling by the boson bath results in a further
enhancement of the pairing susceptibility. While χP imme-
diately after the pulse is reduced compared to the system
without heat bath (a result of the detrimental effect of the bath
self-energy, and changes in the photodoping concentration), a
strong boson coupling results in a substantial increase of the
pairing susceptibility at later times. The growth rate is faster for
larger g because the energy dissipation rate of photocarriers is
determined by λ = 2g2/ω0 if the initial kinetic energy is much
larger than ω0 [44].

In the middle panel of Fig. 8, we show results for a fixed
λ = 2 and different boson frequencies. (Here, the pulses are
longer, but their amplitude is reduced to a = 0.5.) The density
of triplons in the photodoped state decreases slightly from
0.226 to 0.210 as ω0 is increased from 0.2 to 0.5 and then there
is a substantial drop to 0.171 for ω0 = 0.75. Despite this trend,
the pairing susceptibility initially increases substantially with
increasing boson frequency, which implies a more efficient
cooling. Hence, in a situation where the effective temperature is
already reduced by local spin excitations to a value of the order
of J = 0.875 and ω0 is not much smaller than this energy scale,
the dynamics depends explicitly on ω0, even for fixed effective
coupling λ. As the boson frequency becomes comparable to
J , the additional cooling by the boson bath becomes more
and more limited, which manifests itself in a saturation of
the susceptibility. On the numerically accessible timescales,
the largest pairing susceptibility is reached for ω0 ≈ 0.3, but
we expect that smaller boson frequencies will lead to an even
bigger enhancement at later times.

The right-hand panel of Fig. 8 plots the evolution of the
pairing susceptibility for fixed λ = 2, ω0 = 0.25, and a long
pulse with amplitude a = 0.5, with pulse frequency � varying
in the range 19 � � � 20.75. Also indicated is the density of
triplons in the photodoped state. This data set confirms that
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a = 0.5, and different pulse frequencies �. The number between brackets is the density of triplon states p(N = 3) after the pulse.

for fixed λ, the largest pairing susceptibility is reached if the
triplon density is saturated at p(N = 3) = 0.25.

We finally plot in Fig. 9 a comparison between the doping-
dependent pairing susceptibility in equilibrium and in the
photodoped metal state at different times. The bath parameters
are λ = 2 and ω0 = 0.25 and the inverse temperature of
the initial state and the boson bath is β = 25. The pairing
susceptibility in the equilibrium state is about 0.027, similar to
the case without heat bath (see Fig. 7). In the photodoped state,
χP increases with the density of carriers p(N = 1) + p(N =
3) = 2p(N = 3) and with increasing time (cooling of the
carriers). With the chosen bath parameters, we observe an
approximately 20-fold increase of the pairing susceptibility in
the strongly photodoped system on the accessible timescales.

In contrast to the isolated system, which exhibited an
unusual scaling of χP with p(N = 3), as illustrated in the top
panel of Fig. 7, the photodoped system with boson bath exhibits
an approximately quadratic dependence of χP on p(N = 3) at
later times. This shows that the pairing susceptibility in this
cooled photodoped Mott insulator correlates with the product
p(N = 1)p(N = 3). Since spin-triplet pairing in a half-filled
system is associated with fluctuations between N = 1 and

 0
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FIG. 9. Pairing susceptibility χP as a function of p(N = 3) in
the equilibrium system with β = 25, and as a function of p(N =
1) + p(N = 3) in the photodoped system at indicated values of the
time t . The parameters of the boson bath are λ = 2, ω0 = 0.25, and
β = 25.

3 states, this indicates that populating these charge states
to overcome the suppression of charge fluctuations by U

helps superconductivity. We thus find that the photodoped
large-U insulator exhibits a correlation between the pairing
susceptibility χP , the dynamical contribution to the local
spin susceptibility �χ , and the product of state probabilities
p(N = 1)p(N = 3), which is qualitatively different from the
chemically doped U = 20 insulator, but analogous to the
moderately correlated equilibrium system at U < Uc(n = 3).
In the latter case, the pairing susceptibility peaks near three-
electron filling, and correlates with the doping evolution of �χ

and p(N = 2)p(N = 4).

IV. SUMMARY AND CONCLUSIONS

We studied the spin-triplet pairing susceptibility in a
photodoped two-orbital Hubbard model using nonequilibrium
DMFT in combination with an NCA impurity solver. Multior-
bital Hubbard models with J > 0 exhibit an orbital-singlet
spin-triplet superconducting phase if one dopes the half-
filled insulator at low temperature. The pairing is induced by
slowly fluctuating local moments in the spin-freezing crossover
regime, as evidenced by the close correlation between the
maximum Tc (or maximum pairing susceptibility χP ) and
the maximum in the dynamical contribution to the local spin
susceptibility �χ [25,27]. This correlation holds up to U �
Uc(n = 3), whereas the appearance of the n = 3 Mott insulator
and the suppression of charge fluctuations at larger interactions
leads to a strongly reduced Tc in the filling range 2 < n < 3.

While the NCA approximation has clear limitations in
the application to multiorbital systems, we found that this
simple impurity solver, combined with a magnetic field-pulse
measurement of the local spin susceptibility, captures the main
qualitative features of the equilibrium DMFT phase diagram,
such as the orbital-singlet spin-triplet superconducting insta-
bility in the doped Mott insulator, the correlation between χP

and �χ for U � Uc(n = 3), and the strong suppression of
χP for U > Uc(n = 3) in the filling range 2 < n < 3. Since
perturbative strong-coupling expansions are at present the only
available methods for the real-time simulation of multiorbital
impurity models in the strong correlation regime, and the
numerically more expensive one-crossing approximation [45]
does not necessarily result in a qualitative improvement [28],
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we used the NCA solver in our study of the nonequilibrium
pairing susceptibility of the photodoped two-orbital model.

In the moderately correlated regime U < Uc(n = 3), pho-
toexcitation with pulse frequency � = U leads to a rapid
heating of the system and a corresponding suppression of the
pairing susceptibility. The reason is a pronounced change in
the spectral function of a photodoped multiorbital model: a
non-negligible density of singlon and triplon states leads to
sidebands split off by an energy ≈3J , which substantially
reduce or completely fill the gap. This enables a fast recombi-
nation of singlons and triplons in the intermediate-U regime
and results in a strong heating. We thus focused our study on the
large-U regime, where the gap size is so large that the density of
photodoped singlons and triplons is approximately conserved
on the numerically accessible timescales. In this case, a large
part of the injected energy is stored as potential energy, which
helps the emergence of interesting “low-temperature” quantum
phenomena such as superconductivity.

The photodoped large-U Mott insulator represents a gen-
uine nonequilibrium state of matter, with properties that are
distinct from those of a chemically doped Mott insulator. The
most obvious difference is the nature of the charge carriers.
In a chemically doped Mott insulator with an average density
2 < n < 3, the charge carriers are predominantly triplons. If
spin-triplet pairing occurs near density n = 3, this pairing
is associated with fluctuations between local N = 2 and 4
states. At U > Uc(n = 3), the chemically doped state turns
into a Mott insulator and the proximity to this insulating phase
leads to a strong suppression of the conductivity and pairing
susceptibility near filling n = 3. In the photodoped n = 2
insulator, the charge carriers are singlons and triplons moving
in a background of predominantly high-spin doublon states.
If spin-triplet pairing occurs in such a system, it is associated
with fluctuations between local N = 1 and 3 states. Hence,
producing singlons and triplons by photodoping may be a way
to overcome the suppression of charge fluctuations by U and
to enable a buildup of coherence. In practice, we can reach an
effective doping concentration p(N = 1) + p(N = 3) = 0.5
with resonant pulses (� = U ).

An interesting point is the connection between spin-triplet
pairing and local spin fluctuations. While the close correlation
between χP and �χ is lost in the large-U chemically doped
system, it is recovered in the photodoped half-filled Mott
insulator. The pairing susceptibility in the cooled metastable
state is connected both to the local spin susceptibility and
the product of local state probabilities p(N = 1)p(N = 3)
and thus behaves in an analogous way to the chemically
doped intermediate-U model, which exhibits the same type
of correlations between χP , �χ , and p(N = 2)p(N = 4) near
filling n = 3. The unconventional pairing mechanism revealed
in Ref. [25] thus appears to be active also in the photodoped
nonequilibrium state. Whether or not there are additional
pairing channels in this large-U system is an interesting
question for further investigations. Independent of the pairing
mechanism, the pairing tendency will be enhanced by the
presence of long-lived singlons and triplons in the photodoped
state.

While we have focused in this work on spin-triplet pair-
ing and its relation to local spin fluctuations, it would be
worthwhile to extend the study to intraorbital pairing and

to the photodoped single-orbital case. The illustration in
Fig. 1 suggests that the singlon and triplon states in the
photodoped two-orbital model also enhance the pair tunneling
of intraorbital spin-singlet pairs. We may thus expect an
enhanced spin-singlet pairing susceptibility in the photodoped
half-filled system, which has no analogy to the chemically
doped case near n = 3. (In the latter system, the relevant
fluctuations would be between |N = 4〉 and |N = 2,n1n2 =
0〉, but this low-spin doublon state is suppressed for J > 0.)
The photodoped single-orbital model is equally interesting
in this respect because the gap size in this model is not
strongly affected by the insertion of doublons and holons,
which allows to study the spin-singlet pairing susceptibility
in a system with intermediate U . A previous study [20] has
predicted the appearance of a metastable condensate in a
large-U Hubbard system consisting of doublons moving in
a background of empty sites. A relevant open questions is the
pairing tendency in a photodoped state where doublons and
holons coexist with singly occupied sites. While the cooling
by local spin excitations is absent in this model, an enhanced
pairing susceptibility can be expected in the presence of a
bosonic heat bath.

ACKNOWLEDGMENTS

The calculations have been performed on the Beo04 com-
puter cluster at the University of Fribourg. We acknowledge
financial support from ERC Consolidator Grant No. 724103,
ERC Starting Grant No. 716648, and from the Swiss National
Science Foundation through NCCR Marvel. Some part of this
work was carried out at the Aspen Center for Physics during
the summer 2017 program on “Correlations and Entanglement
in and out of Equilibrium: From Cold Atoms to Electrons.”

APPENDIX: DERIVATION OF THE DMFT
SELF-CONSISTENCY EQUATION

The DMFT self-consistency equation (6) can be de-
rived using the cumulant expansion [46]. We decompose
the lattice action into the contribution of site 0, a cavity
action which describes the lattice without site 0, and a
hopping term which connects the two: Slatt = S0 + S(0) +
�S with �S = ∫

dt
∑

j (ψ†
0V

∗
j ψj + ψ

†
j Vjψ0) ≡ ∫

dt
∑

j

(�H0j + �Hj0) ≡ ∫
dt�H . After cumulant expansion of

〈e−i(S0+�S)〉S(0) and reexponentiation we obtain the expression
for the effective action

−iS = −iS0 +
∞∑

n=1

1

n!

∫
dt1 . . . dtn

×〈(−i�H )(t1) . . . (−i�H )(tn)〉S(0) , (A1)

which in DMFT can be truncated at order n = 2. Thus, the
term to evaluate is

− i

2

∑
ij

〈[�H0i(t) + �Hi0(t)][�H0j (t ′) + �Hj0(t ′)]〉S(0) .

(A2)
The contributions 〈�H0i(t)�H0j (t ′)〉S(0) and 〈�Hi0(t)�
Hj0(t ′)〉S(0) vanish if we consider neither intraorbital pair-
ing nor conventional interorbital hybridizations (excitonic
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order). 〈�Hi0(t)�H0j (t ′)〉S(0) gives the same contribution as
〈�H0i(t)�Hj0(t ′)〉S(0) (after exchanging t ↔ t ′ and i ↔ j ).
Equation (A2) thus evaluates to

−i
∑
ij

〈�H0i(t)�Hj0(t ′)〉S(0)

= (−i)
∑
ij

〈ψ†
0(t)V ∗

i (t)ψi(t)ψ
†
j (t ′)Vj (t ′)ψ0(t ′)〉S(0)

= (−i)

⎡
⎣∑

ij,σ

c
†
10σ (t)v1

0i(t)〈c1iσ (t)c†1jσ (t ′)〉S(0)v1
j0(t ′)c10σ (t ′)

+
∑
ij,σ

c20σ (t)v2
i0(t)〈c†2iσ (t)c2jσ (t ′)〉S(0)v2

0j (t ′)c†20σ (t ′)

−
∑
ij,σσ ′

c20σ (t)v2
i0(t)〈c†2iσ (t)c†1jσ ′(t ′)〉S(0)v1

j0(t ′)c10σ ′(t ′)

−
∑
ij,σσ ′

c
†
10σ (t)v1

0i(t)〈c1iσ (t)c2jσ ′(t ′)〉S(0)v2
0j (t ′)c†20σ ′ (t ′)

⎤
⎦.

(A3)

(Note the minus signs on the anomalous terms.) On a Bethe
lattice, we have the constraint i = j . By defining the cavity

Green’s function G
ab(0)
ij,ασβσ ′ = −i〈T ai,ασ (t)bj,βσ ′(t ′)〉S(0) ,

we thus see that the second-order contribution to the
effective action is given by the hybridization term∫
C dt dt ′ψ†(t)�(t,t ′)ψ(t ′) with the hybridization function

defined in Eq. (6). In DMFT, we furthermore replace the
cavity Green’s functions G

ab(0)
jj,ασβσ ′ by the lattice Green’s

function Gab
jj,ασβσ ′ ≡ Gab

ασβσ ′ , so that the self-consistency
equation becomes

�(t,t ′) =
z∑

j=1

V ∗
j (t)G(t,t ′)Vj (t ′), (A4)

with Vj (t) = diag(v1
j0(t), − v2

0j (t),v1
j0(t), − v2

0j (t)).
Following Ref. [47], we can also derive a self-consistency

condition for a “Bethe lattice with electric field” by considering
a chain (z = 2) and the complex hoppings vα

j0(t) = (vα
0j )∗(t) =

vα(t)eiφα(t), with vα(t) real and φα(t) = ∫ t

0 dt ′Aα(t ′) the inte-
gral of the vector potential along the chain:

�(t,t ′) = W ∗(t)G(t,t ′)W (t ′) + W (t)G(t,t ′)W ∗(t ′),

where W (t) = diag(v1(t)eiφ1(t), − v2(t)e−iφ2(t),v1(t)eiφ1(t),

−v2(t)e−iφ2(t)). In order to recover the usual z = ∞ Bethe
lattice self-consistency in the case without field, we have to
set vα = v/

√
2.
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