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Optical nonlinearities of excitons in monolayer MoS2
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We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2

for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection
rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic
generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized
input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light
using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually
strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource
for coherent nonlinear photonics.
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I. INTRODUCTION

Design bottlenecks arising from energy dissipation and
heat generation in the dense on-chip interconnect of comple-
mentary metal-oxide-semiconductor computing architectures
have led to renewed interest in approaches to all-optical
information processing. The preeminent challenge remains
to develop materials with low loss and large optical nonlin-
earity, which are suitable for incorporation with integrated
nanophotonic structures [1–4]. Looking to the future, the
development of coherent nonlinear photonics may be regarded
as preliminary work toward quantum photonic architectures
that represent and process information utilizing nonclassical
states of light [5–8]. Beyond computation per se, nonlinear
optical materials are fundamental for many other integrated
photonics applications including on-chip frequency comb gen-
eration [9,10], frequency conversion [11], and supercontinuum
generation [12,13].

Atomically thin two-dimensional (2D) materials are
promising candidates for providing optical nonlinearity in
integrated photonic circuits, especially as growth techniques
have advanced in recent years to enable the deposition on top
of lithographically fabricated devices [14]. In particular, mono-
layer MoS2 has attracted great interest following the discovery
that it is indeed a direct band gap semiconductor [15] with
intriguing optical properties such as valley optical selectiv-
ity [16]. The nonlinear optical properties of monolayer MoS2

are now being explored; in this article we aim to characterize
important contributions from its excitonic bound states.

Large collective optical responses from excitonic states are
well known [17,18]. Reduced dimensionality further increases
the optical response of excitons since the most significant
contribution to exciton formation comes from the band edges
where density of states in 2D is much larger than that in
3D. Hence, excitonic states of the transition-metal (Mo, W)
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dichalcogenides (S2, Se2) (TMDs) are expected to contribute
substantial optical nonlinearity even with their atomically thin
layer thickness. Unlike in graphene, which has a significant
linear absorption everywhere in the optical spectrum, nonlinear
processes utilizing the excitonic states of monolayer MoS2 may
preserve a sufficient level of coherence due to the band gap.
This unique set of features make monolayer MoS2 an attractive
material for coherent nonlinear photonics.

The direct band gap around the ±K points in the first
Brillouin zone of monolayer MoS2 is analytically best modeled
by a gapped Dirac cone [16,18–21]. We answer the natural
question of whether the monolayer MoS2 has an optical
nonlinearity comparable to that of graphene. Although there
are numerous results available for the optical properties of
monolayer MoS2 [19,21–24], only a few results on the optical
nonlinearities of monolayer MoS2 are available [25–30]. All
of these focused on the second-order harmonic generation
process, which, according to our study, turns out to be a weak
perturbative effect stemming from the threefold rotational
symmetry, while the third-order nonlinearity may be more
significant considering the symmetries of the excitons.

We calculate the optical susceptibilities of monolayer MoS2

when the frequency of the output light is nearly resonant with
the highly optically responsive exciton energy levels. We show
that while the optical selection rule dictates the substantially
contributing channels in nonlinear processes, that of MoS2

excitonic states inherits the threefold rotational symmetry of
the atomic structure. As a result, several unusual high-order
transition channels can be formed in the excitonic level
transitions, which appear to violate the usual valley selection
rule. Although previously an empirical nonlinear selection
rule was adopted [31,32], we explain the optical selection rules
through the actual calculation of dipole moments based on
massive Dirac Hamiltonian with the perturbative contribution
from the threefold rotational symmetry of the atomic system.
The same reason leads to unusually efficient third-order
harmonic generation and the Kerr nonlinearity with certain
polarization configurations.
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We restrict our analysis to the case where the higher
harmonic frequencies fall below the exciton levels so that
the linear absorption of these higher harmonic frequencies
can be avoided. These transitions are of particular interest
for all-optical information processing as well as quantum
dynamical applications.

This paper consists in the following: Section II contains
the theory of light matter interaction for the monolayer MoS2,
clearly presenting the assumptions made, the Hamiltonians,
and the perturbative approach. Section III presents the
calculation of the linear and the nonlinear susceptibilities
for the interesting linear and nonlinear processes, resolved
by the input light polarizations. Finally, a conclusion with
discussions follows.

The appendix presents a clear derivation of the exciton
creation operator based on our defined completeness relations
in the Hilbert spaces, which necessarily clarifies the dimension
of constants. We also rigorously derived the second quantized
operators for the unbound exciton states in the same appendix.

II. INTERACTION OF MONOLAYER MoS2

WITH A LIGHT FIELD

We assume zero temperature for simplicity. We count only
the radiative transitions, ignoring the coupling to phonon
excitations from the radiatively excited states. Most of the
practical nonidealities are collected phenomenologically in the
linewidth broadening factor. Our primary interest is the linear
and the nonlinear optical processes that involve the bound
exciton states of the monolayer MoS2. We particularly assume
a low-density exciton so that we address only the regime of
a single exciton over the sample. Consequently, we ignore
the exciton-exciton interaction. This makes the perturbative
approach valid. We also ignore the trions and focus solely on
the exciton states.

A. Unperturbed Hamiltonian

1. Excitons

The band structure of MoS2 is well known [16]. Because of
the mismatch between the Mo atom and the S atom, the spatial
inversion symmetry is broken, and hence, the degeneracy
at ±K points of the monolayer MoS2 is lifted. The band
structure is best described by the gapped Dirac Hamiltonian
(see the details in Appendix A). We then proceed to the exciton
description below.

At zero-degree temperature, the ground state is the Fermi
sea |0〉 where all the electrons are in the valence band. A photon
may be absorbed to produce an electron in the conduction
band and a hole in the valence band. The Coulomb attraction
between the two creates an exciton state. Considering that the
exciton size in the monolayer MoS2 is approximately [22]
∼1 nm, which is larger than the unit cell, we adopt the Wannier
exciton Schrödinger equation [17,33]:[

− h̄2∇2

2mr

+ V (r)

]
ψν(r) = Eνψν(r), (1)

where ψν(r) = 〈r|xν〉 with an exciton state ket |xν〉 is the
wave function of an electron-hole pair with the relative position
r = re − rh with the position of the electron re and the
hole rh, respectively, mr = (1/mc + 1/|mv|)−1 is the reduced

mass where we calculate approximately mc = 0.55me and
mv = −0.56me from the energy dispersion equation (A4) with
the electron rest mass me are the effective masses of the
conduction and the valence band electrons, respectively, V (r)
is the Coulomb potential between the electron and the hole,
and Eν is the energy eigenvalue with the quantum number ν.
We note that this Schrödinger equation includes the Bloch state
solutions of the electron and the hole through the renormalized
particle mass mr that reflects the dispersions of the conduction
and the valence bands.

The monolayer MoS2 is a two-dimensional (2D) sheet.
The Coulomb potential, however, is not strictly 2D due to
the dielectric screening effect, and the more appropriate po-
tential for an isolated 2D sheet is the Keldysh-type screened
potential [34]. The main differences between the strictly 2D
Coulomb potential and the Keldysh-type screened potential
are the binding energies and the oscillation strengths [35–37],
but the corrections are relatively small (of order unity) for
the isolated MoS2 2D sheet when we fit the binding energy
of the lowest exciton state to an empirical data (see, for
example, Fig. 3 of Robert et al. [36] When the lowest binding
energies are equalized, the difference in upper level energies
is not significant). In addition, the exciton wave functions
using the Keldysh-type screened potential are obtained usually
through sophisticated numerical methods. Our main goal is
to estimate the magnitude of the nonlinear response of the
exciton states, and the simple strictly 2D Coulomb potential
turns out to be sufficient for our purpose with the advantage of
easier calculation of the transition matrix elements among the
exciton states, based on the well-known analytic 2D hydrogen-
type wave functions. For these reasons, we rather adopt the
simple 2D Coulomb potential to obtain the 2D solution to the
Wannier Schrödinger equation whose energy eigenvalues are,
for the quantum number ν = (n,m) with n = 0,1,2, . . . and
m = −n,−(n − 1), . . . ,n [17],

Eν = −E0
1

(n + 1/2)2
, (2)

where

E0 = e4mr

2(4πε0εr )2h̄2 =
(

mr

me

)(
1

ε2
r

)
Ry, (3)

with the electron charge e = −|e| = −1.6 × 10−19 C, and the
vacuum and the relative material permittivity ε0,εr , respec-
tively. Here, Ry = 13.6 eV is the hydrogen Rydberg energy.
Indeed, later in the text, our calculated results will be shown
to be surprisingly close to the experimental results even with
this simplified picture.

The eigenvalues of Schrödinger equation in Eq. (1) are the
binding energies. Therefore, the actual exciton energy levels
are given throughEc(0) + Eν , whereEc(0) is the lowest energy
of the conduction band [see Eq. (A2)]. It is also noteworthy
that the band structure calculated in Appendix A is essential in
calculating all orders of susceptibilities since it constructs the
exciton creation operator (see Appendix B).

The wave function is [17]

ψn,m(r) =
√

1

πa2
0(n + 1/2)3

(n − |m|)!
[(n + |m|)!]3

× ρ|m|e−ρ/2L
2|m|
n+|m|(ρ)eimφ, (4)
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where a0 = 4πh̄2ε0εr/(e2mr ), ρ = 2r/[(n + 1/2)a0], and
L

p
q (ρ) is the Laguerre polynomials defined by

Lp
q (ρ) =

q−p∑
ν=0

(−1)ν+p (q!)2ρν

(q − p − ν)!(p + ν)!ν!
. (5)

These wave functions satisfy the normalization δν,ν ′ =
〈xν |xν ′ 〉 = ∫

d2r〈xν |r〉〈r|xν ′ 〉 = ∫
d2rψ∗

ν (r)ψν ′ (r), where we
used the completeness relation

∫
d2r|r〉〈r| = 1. Also, one

can consider the Fourier transform pair using an additional
completeness relation

∑
q |q〉〈q| = 1:

ψν(r) = 1√
A

∑
q

ψν(q)eiq·r ,

(6)

ψν(q) = 1√
A

∫
A

d2rψν(r)e−iq·r ,

where A is the entire sample area of the monolayer
MoS2. As an example, for ν = (0,0), we have ψ(0,0)(r) =
(2

√
2/π/a0)e−2r/a0 and the Fourier transform is ψ(0,0)(q) =√

2π/A[8a0/(4 + a2
0k

2)3/2]. The corresponding energy eigen-
value is −4E0.

According to this wave function, the radius of the lowest
exciton state is calculated to be 〈ψ(0,0)|r|ψ(0,0)〉 = a0/2. The
exciton radius of the monolayer MoS2 is experimentally
measured as 6–10 Å at zero temperature [22]. In addition, the
binding energy of the lowest exciton state of the monolayer
MoS2 is estimated as −0.5 to − 0.3 eV [22,23,38,39]. These
two lead to the value of εr , and we chose εr to be 7, which
implies the exciton radius of 6.7 Å and the binding energy of
−0.31 eV.

2. Second quantization of excitons

The total Hamiltonian is the sum of the band Hamiltonian
H and the Coulomb potential V (r) such that H0 = H +
V (r). When additional light-matter interaction Hamiltonian
HI is present, one faces the situation where two interaction
Hamiltonians, V (r) and HI , are both present. This makes the
problem complicated. One approach is to absorb the Coulomb
potential into the unperturbed Hamiltonian and deal with HI

as a perturbing Hamiltonian.
The Hilbert subspace of the single-particle excited states

is spanned by the band basis of a pair of an electron and a
hole: |q,−q ′〉 = α

†
qβ

†
−q ′ |0〉, where α

†
q and β

†
−q ′ are the creation

operators for the electron Bloch state in the conduction and
the hole Bloch state in the valence band, with the momentum
h̄q and −h̄q ′, respectively. Because we know that the exciton
states diagonalize the unperturbed Hamiltonian H0, we now
represent it using the second quantized exciton creation and
annihilation operators.

Following the procedure in Haug et al. [17], we first define
the creation operator of a bound exciton B

†
ν Q = |ν Q〉〈0|,

where ν is the quantum number of the exciton state and h̄ Q
is the combined momentum of the electron hole pair. Then,
using the completeness

∫
d2r|r〉〈r| = 1 and

∑
q |q〉〈q| = 1, it

is straightforward to show [see the Appendix B and Eq. (B6)]

that

B
†
ν Q =

∑
q

ψν

(
q − Q

2

)
α†

qβ
†
Q−q . (7)

At zero temperature, the exciton momentum h̄ Q must be equal
to the momentum of the incoming photon since no phonon is
available. Considering the negligibly small photon momentum
compared to the crystal momentum h̄q, we can approximately
set Q ≈ 0. Then, the bound exciton creation operator is

B†
ν =

∑
q

ψν(q)α†
qβ

†
−q . (8)

Appendix B also derives the creation operator for the
unbound exciton states as C

†
q = α

†
qβ

†
−q . Setting the energy of

the ground-state Fermi sea |0〉 as zero, and using the fact that
the entire Hilbert subspace of the single excitation is spanned
by the bound and the unbound exciton states such that the
completeness relation is (Appendix B)∑

ν

|xν〉〈xν | +
∑

q

|Cq〉〈Cq | = 1, (9)

we finally obtain the second quantized Hamiltonian for the
exciton states:

H0 = h̄
∑

ν

eνB
†
νBν + h̄

∑
q

ωqC
†
qCq, (10)

where the energy is given by h̄eν = Eg + Eν for bound-
state excitons (Eν < 0) and h̄ωq = Eg + h̄2q2/(2mr ) for the
unbound exciton.

B. Interaction Hamiltonian

Let us now consider a monochromatic external field E(t) =
ε̂E(κ)e−iωκ t where ε̂ is the unit vector of polarization and each
photon has a momentum h̄κ . The nature of the interaction
between the external field and the monolayer MoS2 is the
dipole interaction represented by an interaction Hamiltonian
[17]

HI = −
∑

q

[dcv(q)α†
qβ

†
−qE(κ)e−iωκ t + H.c.], (11)

where H.c. stands for the Hermitian conjugate. Momentum
is conserved in this interaction as h̄κ = h̄ Q ≈ h̄q + (−h̄q)
since the crystal momentum q is much larger than κ . Hence,
in principle the incoming photon can excite an electron-hole
pair with any q. Here, the dipole moment for the interband
transition is given by

dcv(q) = 〈cq |er · ε̂|vq〉, (12)

where |cq〉 and |vq〉 are the conduction and the valence band
state with a crystal momentum ±h̄q, respectively. Particularly
for the σ+ circularly polarized light with ε̂ = ε̂+ = (1/

√
2)

(x̂ + i ŷ), the dipole moment is d+
cv(q) = (e/

√
2)〈cq |(r cos φ +

ir sin φ)|vq〉 = (e/
√

2)〈cq |reiφ|vq〉 where we adopted the po-
lar position coordinate r = (r,φ).

We wish to use the second quantized bound and un-
bound exciton operators in the interaction Hamiltonian since
our basis kets are the exciton states. We then calculate the
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following:

α†
qβ

†
−q =

∑
A

δq,Aα
†
Aβ

†
−A

=
∑
A,ν

ψ∗
ν (q)ψν(A)α†

Aβ
†
−A

+
∑
q ′′,A

〈q|Cq ′′ 〉〈Cq ′′ |A〉α†
Aβ

†
−A

=
∑

ν

ψ∗
ν (q)B†

ν +
∑
q ′′,A

〈q|Cq ′′ 〉〈Cq ′′ |A〉α†
Aβ

†
−A, (13)

where the last equation follows from Eq. (8), and the second
equation follows from the following, using the completeness
in Eq. (9):

δq,q ′ = 〈q|q ′〉 =
∑

ν

〈q|xν〉〈xν |q ′〉 +
∑

q ′′
〈q|Cq ′′ 〉〈Cq ′′ |q ′〉

=
∑

ν

ψ∗
ν (q)ψν(q ′) +

∑
q ′′

〈q|Cq ′′ 〉〈Cq ′′ |q ′〉. (14)

Following the treatment of Haug et al. [17], approximating the
band states as the free states allows 〈q|Cq ′′ 〉 ≈ δq,q ′′ . We then
obtain

HI = −
[∑

ν

gνB
†
νE(κ)e−iωκ t +

∑
q

dcv(q)C†
qE(κ)e−iωκ t

]

+ H.c., (15)

where we defined

gν =
∑

q

dcv(q)ψ∗
ν (q) = e〈xν |ε̂ · r|0〉. (16)

C. Optical selection rules and dipole moments

1. Interband transition

The well-known valley selection rule for the first-order
interband transition is explained as follows: The σ+ polarized
light couples only to K valley whereas σ− polarized light
couples only to −K valley. This chiral selection rule can be
deduced from the symmetry considerations. The monolayer
MoS2 at ±K points belong to C3h point symmetry group.
Then, the Bloch wave functions of the valence bands transform
like the states with angular momentum ∓h̄ for ±K valley,
respectively, whereas the conduction bands transform like the
states with zero angular momentum for both valleys [16,40–
43]. This explains the chiral optical selection rule in the angular
momentum conservation scheme. We note, however, that the
σ+ photon couples to the excitation of either a spin-up or
spin-down electron at +K valley, depending on the optical
frequency. Therefore, a broadband σ+ photon will see the
absorption peak at both transitions separated by the spin-orbit
coupling energy.

It is, however, important to recognize that the symmetry
argument is only for ±K points (valley bottoms). For other
k �= ±K , the valley can interact with the opposite circularly
polarized photon as we will confirm below. This is a critical
difference between the interband transitions and the transitions

involving the exciton states as the exciton is a collective
superposition from various q as shown in Eq. (7).

In order to calculate the dipole moment, one can use the
velocity operator v = (1/h̄)∇kH , which leads to dcv(q) =
−(ie/h̄ωq)〈uq,c|ε̂ · ∇qH |uq,v〉, where H is the band Hamil-
tonian for the Bloch functions. An equivalent expression is the
well-known Blount formula [44]:

〈ψk,λ|r|ψk′,λ′ 〉 = −i∇k′ 〈ψk,λ|ψk′,λ′ 〉
+ iδk,k′ 〈uk,λ|∇k|uk,λ′ 〉. (17)

Here, |ψk,λ〉 = eik·r |uk,λ〉 is the wave function of a Bloch state
at band λ with a periodic Bloch function uk,λ(r) = 〈r|uk,λ〉.
For interband transition, the first term vanishes. Now we can
calculate the dipole moment dcv(q) by diagonalizing the band
Hamiltonian and finding the eigenvectors.

If we use the analytical solution for the band states
[derived in Eq. (A2) of Appendix A], we find the dipole
moment for the σ+ light to be d+

cv(q) = 〈cq |er · ε̂+|vq〉 =
−i(

√
2eh̄v/�)(1 − 4h̄2v2q2/�2) for τ = +1 (+K valley),

but d+
cv(q) = −i

√
2eh̄3v3q2ei2φq /�3 for τ = −1 (−K valley).

Here, � = Eg ± τEsoc/2 for up- or down-spin subspace,
respectively, with the energy band gap Eg and the spin-
orbit coupling energy Esoc. Also, q = (qx,qy) = k − τ K ,
and qeiφq = qx + iqy . On the contrary, the σ− light pro-
duces d−

cv(q) = 〈cq |er · ε̂−|vq〉 = i
√

2eh̄3v3q2e−i2φq /�3 for
τ = +1, but d−

cv(q) = i(
√

2eh̄v/�)(1 − 4h̄2v2q2/�2) for τ =
−1. Here, ε̂− = (1/

√
2)(x̂ − iŷ) = ε̂+∗. For the ±K points

where q = 0, this dipole moment explains the valley selection
rule.

For a more accurate result, we numerically obtain the
eigenvectors from the higher order corrected band Hamil-
tonian (see Appendix A). Figure 1 shows the numerically
evaluated dcv±(q) around +K point. Qualitatively the nu-
merical solution dcv+(q) has a negligibly small real value,
matching the analytical result. The maximum is also similar
to the analytical solution. On the other hand, the threefold
rotational symmetry is clearly shown. We note that dcv−(q =
0) = 0 while dcv−(q �= 0) �= 0 at +K point. This confirms
that the chiral valley selection rule is only for ±K points.
Indeed, the symmetry argument breaks on the points away
from ±K .

2. Transition between Fermi sea ground state |0〉 and bound
exciton states |xν〉

The dipole moment gν defined in Eq. (16) is often approx-
imated as gν ≈ ∑

q dcv(0)ψ∗
ν (q) = √

Adcv(0)ψ∗
ν (r = 0) in an

understanding that ψ∗
ν (q) is significant only for |q| � 1/a0

(Haug et al. [17]). Notably for a given quantum number
ν = (n,m) the wave function is ψν(r) ∝ rm, and consequently,
the substantial gν occurs for ν = (n,0). Using these, we
arrive at an approximate analytical solution for the monolayer
MoS2:

g(n,0) = −i

√
A

(2n + 1)π

[
4eh̄v

(2n + 1)a0�

]
. (18)

We numerically calculated both g±
ν for σ±, respectively, based

on the dipole moments shown in Fig. 1. The result is shown
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FIG. 1. Numerically evaluated d+
cv(q) for σ+ polarization (up) and

d−
cv(q) for σ− polarization (down) around +K point, based on the

higher order corrected Dirac Hamiltonian.

in Table I. The values g−
ν are generally small compared to

the substantial g+
ν ’s. Recall that g−

ν = ∑
q ψ∗

ν (q)d−
cv(q). The

envelope ofψν(q) decays asq increases. Sinced−
cv(q = 0) = 0,

g−
ν must be significantly smaller than g+

ν .
We find that only two transition dipoles g−

(1,1) and g−
(2,1)

are substantial. The reason for this is as follows: We recall
that the analytical solution d−

cv(q) ∝ e−2iφq at +K valley. The
higher order correction, however, imposed the weak threefold
rotational symmetry [see Eq. (A4) in Appendix A and the text
underneath]. In perturbative treatment, the dipole moment can
be expressed as [45]

d−
cv(q) = e−2iφq {ξ (0)(q) + cos(3φq)ξ (1)(q)

+ O[cos2(3φq)]}, (19)

where the zeroth-order term does not possess the threefold
rotational symmetry, but the first-order term has a factor
cos(3φq) = (1/2)(ei3φq − e−i3φq ). The net effect is δd−

cv(q) =
d−

cv(q) − e−2iφq ξ (0)(q) ∝ e+iφq while we discard the faster

TABLE I. Numerically calculated g±
ν for +K valley. For −K

valley, g+
ν and g−

ν are switched. All values are relative to g+
(0,0)/

√
A =

i2.28 × 10−20 C. The symbol ≈0 implies that the parameter is
negligibly small (�10−3).

ν = (n,m) g+
ν /g+

(0,0) g−
ν /g+

(0,0)

(0,0) 1 ≈0
(1,1) ≈0 0.022
(1,0) 0.148 ≈0
(1,−1) ≈0 ≈0
(2,2) ≈ 0 ≈0
(2,1) ≈0 0.010
(2,0) 0.068 ≈0
(2,−1) ≈0 ≈0
(2,−2) ≈0 ≈0
(3,3) ≈0 ≈0
(3,2) ≈0 ≈0
(3,1) ≈0 ≈0
(3,0) 0.042 ≈0
(3,−1) ≈0 ≈ 0
(3,−2) ≈0 ≈ 0
(3,−3) ≈0 ≈0
(4,0) ≈0 ≈0
(5,0) 0.053 ≈0
(6,0) 0.086 ≈0
(7,0) 0.055 ≈0
(8,0) ≈0 ≈0
(9,0) −0.034 ≈0
(10,0) −0.046 ≈0
(11,0) −0.040 ≈0
(12,0) −0.026 ≈0
(13,0) −0.011 ≈0
(n(>13),m) ≈0 ≈0

term e−i5φq that will later result in zero while integrating
over φq . The Fourier transformed wave function of exci-
ton is ψ∗

(1,1)(q) = 288ia2
0

√
3πqe−iφq /(4 + 9a2

0q
2)5/2 ∝ e−iφq .

Hence, these two cooperate such that ψ∗
(1,1)(q)δd−

cv(q) does not
depend on φq , resulting in nontrivial value after integrating
over φq . This nontrivial integral over φq produces a substantial
value for g−

(1,1), and g−
(2,1), although the amplitude of the latter

is smaller due to a faster oscillation of ψ∗
(2,1) in the radial

direction than ψ∗
(1,1). For a large n, however, the envelope of

ψν(q) quickly oscillates in the radial direction, resulting in
small values for g−

(n,1) for large n. The same reason causes
decreasing g(n,0) as n increases.

This weak opposite chiral valley response of the bound
exciton states leads to some nontrivial optical nonlinearities
in the monolayer MoS2 as will be presented in the following
sections. Unlike the usual chiral valley selection rule, the
excitons respond to the opposite circularly polarized light
since they are collective excitations including k �= ±K [see
Eq. (16)]. Nonetheless, we note that this opposite chiral re-
sponse is rather weak as they only exists in a weak perturbative
fashion.

3. Transition between bound exciton states |xν〉
The transition dipole moment between two bound exciton

states follow the usual angular momentum conservation rule,
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TABLE II. Examples of the dipole mo-
ment h+

(1,1)ν1
between the bound exciton

states. The value is relative to |e|a0.

ν1 h+
(1,1)ν1

/(|e|a0)

(0,0) 0.344
(1,0) −3.18
(2,0) 0.752
(3,0) 0.320
(4,0) 0.194
(5,0) 0.135
(6,0) 0.102
(7,0) 0.080

which can be deduced from the spherical symmetry of excitons,
since the Wannier Schrödinger equation in Eq. (1) is rotation-
ally symmetric, thus the bound exciton states have well-defined
angular momenta such that the angular momentum of |x(n,m)〉
state is h̄m. Then, the optical selection rule is such that the
transitions |xn,m〉 → |xn′,m±1〉 are allowed and mediated by the
σ± circularly polarized photons, respectively, while all others
are forbidden.

Let us define the dipole moment h±
ν1ν2

≡ e〈xν1 |ε̂± · r|xν2〉
between the two bound exciton states. Then, the optical
selection rule is such that

h±
(n′,m′)(n,m)

{�=0, if m′ = m ± 1,

=0, otherwise. (20)

Some selected dipole moment h+
(n′,m′)(n,m) are shown in Table II,

which we will use later for the Kerr nonlinearity calculation.

4. Transition between bound exciton states |xν〉 and
the unbound exciton states |Cq〉

The relevant dipole moment of this transition is defined as
fν(q) = e〈xν |ε̂ · r|Cq〉. This dipole moment turns out to be
negligibly small, which is rigorously shown in Appendix D.

5. Summary of optical selection rules

The optical selection rule, quantified through the appropri-
ate dipole moments, plays the central role in the optical suscep-
tibility calculations. While the transitions between the bound
excitons (hν1ν2 ) follow usual angular momentum conservation
rule, the transitions from the ground state |0〉 to any bound
exciton states (gν) are not trivial since the corresponding dipole
moments gν weakly inherit the threefold rotational symmetry
from the band states. Figure 2 summarizes the optical selection
rule. It also reveals the values of the dipole moments for
some transitions we will use later to calculate the optical
susceptibilities.

D. Induced current density and susceptibility

For clarity, we present the following procedure to calculate
the susceptibilities, which is indeed well known in the literature
[46]. We will extensively use the calculated dipole moments
to evaluate the susceptibilities in the next section.

When an external field is present, an induced current
is produced as a result of the dipole interaction. It is

FIG. 2. Summary of allowed optical transitions in the +K valley.
The red and blue transitions correspond to |0〉 → |xν〉 and |xν1 〉 →
|xν2 〉, respectively. The solid and dotted lines are mediated by σ+ and
σ− photons, respectively. The values in the circles represent the dipole
moments (gν are in unit of g+

(0,0) while hν1ν2 are in unit of |e|a0.) In
the −K valley, the roles of σ± photons are switched.

obtained as

J = eNe〈v〉 = eNetr[vρ], (21)

where Ne is the free carrier density, v is the velocity operator,
and ρ is the quantum mechanical density operator. The density
operator follows the von Neumann equation ih̄ρ̇ = [H0 +
HI ,ρ]. The solution is recursively obtained:

ρ(t) =− i

h̄

∫ t

−∞
dt ′[H0 + HI ,ρ(t ′)]

=− i

h̄

∫ t

−∞
dt ′

×
[
H0 + HI ,

(
− i

h̄

∫ t ′

−∞
dt ′′[H0 + HI ,ρ(t ′′)]

)]
.

... (22)

Since HI ∝ E(κ), one can expand the perturbative order of
ρ such that ρ(t) = ∑∞

n=0 ρ(n)(t) where ρ(n)(t) involves only
O[En(q)] terms. We then use J = σ E = (

∑∞
n=0 σ (n))E to

resolve σ (n) order by order. Combining the relations J =
∂ P/∂t and P = ε0χ E, one obtains

∂

∂t
[ε0(χ (1) + χ (2) + · · · )E(t)] = (σ (1) + σ (2) + · · · )E(t).

(23)

Equating term by term, the relation between the susceptibility
and the conductivity for each order is obtained, which finally
resolves the optical susceptibilities for various orders.

E. Perturbative solution

The advantage of using the second quantized exciton
Hamiltonian in Eq. (10) is that the exciton states already
diagonalize the unperturbed Hamiltonian H0. Then, solving
the Schrödinger equation perturbatively becomes straightfor-
ward. To obtain the physical quantities such as the induced
current, however, one must represent the operators in the
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exciton basis. It is our task to calculate the velocity operator v
in this exciton basis. For example, in the linear response theory
where the incoming light photon energy is close to the energy
of a bound exciton state |xν〉, our Hilbert space is essentially
two dimensional, with the basis {|xν〉,|0〉}. Consequently, the
velocity operator and the density operator are now 2 × 2
matrices,

v =
(

vxx vx0

v0x v00

)
, ρ =

(
ρxx ρx0

ρ0x ρ00

)
, (24)

where each element is such that, for example, vx0 = 〈xν |v|0〉.
To obtain the matrix elements of the velocity operator, we move
to the Heisenberg picture and connect to the dipole moment as
follows:

v0x = 〈0|ṙ|xν〉 = − i

h̄
〈0|[r,H0 + HI ]|xν〉

= − i

h̄
〈0|[r,H0]|xν〉 = −ieν〈0|r|xν〉. (25)

Here, we used the fact that [r,HI ] = 0 since HI ∝ r as it
involves the dipole moment element. It is also noteworthy
that the diagonal terms of the velocity operator v are all zero
according to the above derivation since the same energies of
the same state cancel each other. We thus need only the off-
diagonal terms of the density matrix to calculate the induced
current:

J = eNe(vx0ρ0x + v0xρx0). (26)

Next, since the normalization of the polarization vectors
is ε̂− · ε̂+ = 1, the velocity matrix component in ε̂+ is v0x =
−ieν〈0|ε̂− · r|xν〉ε̂+. We calculate

〈0|ε̂− · r|xν〉 =
∑

q

ψν(q)〈0|ε̂− · rα†
qβ

†
−q |0〉

=
∑

q

ψν(q)〈v(q)|ε̂− · r|c(q)〉 = g+∗
ν

e
. (27)

This leads to v0x = ε̂+(−ieνg
+∗
ν /e).

All we have left is to solve the Schrödinger equation
for ρ. We first note that 〈xν |[H0,ρ]|0〉 = h̄eνρx0. We then
establish a differential equation for ρx0 in the Schrödinger
picture:

˙ρx0(t) = −ieνρx0(t) − i

h̄
〈xν |[HI ,ρ(t)]|0〉. (28)

From this, we carry out bookkeeping for each order on the
differential equations for n = 0,1,2, . . . :

ρ̇
(0)
x0 (t) = −ieνρ

(0)
x0 (t),

(29)

ρ̇
(n)
x0 (t) = −ieνρ

(n)
x0 (t) − i

h̄
〈xν |[HI ,ρ

(n−1)]|0〉.

Other matrix elements for ρ(n) can be obtained in a similar
manner.

III. LINEAR AND NONLINEAR OPTICAL
SUSCEPTIBILITIES

In this section, we calculate the optical susceptibilities of
the excitonic states from monolayer MoS2. We will first resolve

FIG. 3. Schematic of excitonic energy levels and the first-order
radiative transition of excitonic states. The continuum is the unbound
electron-hole pair states.

the linear susceptibility and the resulting linear absorption and
refractive index. Then, we proceed to the higher order nonlinear
susceptibilities.

A. Linear susceptibility

We are interested in a case where an incoming photon has
an energy closely resonant with an exciton state |xν〉 energy
level (see Fig. 3). The first equation in Eq. (29) describes the
dynamics of ρ

(0)
x0 in the absence of any external perturbation.

It is a free rotation. We then need to solve ρ
(1)
x0 to resolve χ (1).

For this, we first calculate for the case of σ+ photon at +K
valley:

〈xν |[HI ,ρ
(0)]|0〉

= −〈xν |
[∑

ν ′
g+

ν ′ (B
†
ν ′ρ

(0) − ρ(0)B
†
ν ′)

]
|0〉E(κ)e−iωκ t

− 〈xν |
(∑

ν ′
g+∗

ν ′ (Bν ′ρ(0) − ρ(0)Bν ′)

)
|0〉E∗(κ)eiωκ t

= −g+
ν

(
ρ

(0)
00 − ρ(0)

xx

)
E(κ)e−iωκ t

= −g+
ν E(κ)e−iωκ t , (30)

where we used the fact that Bν ′ |0〉 = |xν ′ 〉〈0| with ρ
(0)
00 = 1

and ρ(0)
xx = 0 since the state without the external field at

zero temperature is the Fermi sea. From this, the first-order
differential equation is now

ρ̇
(1)
x0 (t ′) = −ieνρ

(1)
x0 (t ′) + i

h̄
g+

ν E(κ)e−iωκ t ′ , (31)

Integrating over −∞ < t ′ < t yields the following first-order
solution:

ρ
(1)
x0 (t) = g+

ν

h̄

1

(eν − ωκ ) − iε
E(κ)e−iωκ t , (32)

where ε is a positive infinitesimal parameter regulating the
integral at t ′ → −∞.
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From ρ
(1)
x0 (t) = ρ

(1)
x0 (ωκ )e−iωκ t , we easily obtain

ρ
(1)
0x (ωκ ) = ρ

(1)∗
x0 (−ωκ ) = g+

ν

h̄

1

(eν + ωκ ) + iε
E(ωκ ), (33)

where we used E∗(−ωκ ) = E(ωκ ). This is a nonresonant term,
which must be much less than the resonant term ρ

(1)
x0 . Then,

using Eqs. (26) and (25), we obtain

J (1) = eNe

−ieνg
+∗
ν

e

g+
ν

h̄

×
∑

p1=±1

1

eν + p1(ωκ + iε)
ε̂E(κ)e−iωκ t . (34)

From this, we obtain the linear conductivity σ (1), and then,
using the relation in Eq. (23), we obtain the linear susceptibility
of the exciton state:

χ (1)(ωκ ) = eν |g+
ν |2Ne

h̄ε0ωκ

∑
p1=±1

1

eν + p1(ωκ + iε)
. (35)

We now explain how to handle the free carrier density Ne

in the following. The value of g±
ν is generally numerically

evaluated. If, however, we adopt the previous approximation
g±

ν ≈ √
Ad±

cv(q = 0)ψ∗
ν (r = 0), we obtain

χ (1)(ωκ ) =
(

h̄eν

h̄ωκ

)
ANe

ε0
|d+

cv(0)|2|ψν(r = 0)|2

×
∑

p1=±1

1

h̄eν + p1(h̄ωκ + ih̄ε)
. (36)

The induced current density J = tr[e(Neρ)v] in Eq. (21)
captures the density of charge carriers and their movements.
Particularly Neρ with the quantum mechanical density ρ (with
unity maximum value) captures the density of the excited
exciton. Since each exciton carries one excitation and thus one
charge carrier, it is correct to replace Ne → 1/Adeff. Here,
deff ≈ 6.5Å [21,47] is the effective thickness of the monolayer
MoS2. The resulting formula exactly matches the single-spin
electron results in Elliott’s seminal paper [48] as well as the
formula appearing in Haug et al. [17] [see Eq. (10.103)] and
also the formula appearing in Klingshirn [49] [see Eq. (27.52)].
The agreement confirms that our replacement Ne → 1/Adeff

is reasonable.
One must add the responses from the different exciton

levels, resulting in the contribution from the bound exciton
levels as

χ
(1)
B (ωκ ) =

∑
ν

∑
p1=±1

eν |g+
ν |2

h̄ε0ωκdeff

[
1

eν + p1(ωκ + iγB/2)

]
,

(37)

where we used g+
ν = g+

ν /
√

A, which does not depend on
the sample size since gν ∝ √

A. We also introduced the
phenomenological replacement ε → γB/2, where γB is the
decay rate of the bound exciton |xν〉. Wang et al. [19] and
Selig et al. [24] calculated the radiative lifetime of the exciton
at a temperature of 5 K to be ∼200 fs. From the radiative decay
perspective, it is expected that the line broadening will depend

on ν. However, other broadening mechanisms including the
phonon-exciton scattering and the disorder further broadens
the spectrum [19,50] in real samples, and the difference among
various ν from the radiative decay alone is washed out. To ac-
count for the phenomenological linewidth, various values were
used ranging from 1 to 50 meV [15,18,51]. We particularly
choose 10 meV that matches our own experimentally measured
data at 4 K temperature [52], as well as the qualitative curves of
the absorption spectra found in low-temperature experimental
results [22,50,53,54].

The contribution from the unbound excitons is easily de-
duced as

χ
(1)
U (ωκ ) =

∫
d2q

ωq |d+
cv(q)|2

4π2h̄ε0ωκdeff

×
∑

p1=±1

1

ωq + p1(ωκ + iγU/2)
, (38)

where we used the replacement
∑

q → [A/(2π2)]
∫

d2k.
Here, γU is the radiative decay rate (inverse of the radiative
lifetime) of the conduction bands. Using Fermi’s golden rule,
we obtain γU = ω3

q |d+
cv(q)|2/(2πε0h̄c3). With the monolayer

MoS2 parameters, we obtain the radiative lifetime of the
conduction band to be approximately 4 ns.

Finally, we obtain the linear susceptibility: χ (1)A(ωκ ) =
χ

(1)
B (ωκ ) + χ

(1)
U (ωκ ). For a single optical frequency ωκ , the

contribution comes from all the bound and the unbound exciton
states. Note, however, that χ (1)A(ωκ ) is the contribution only
from the spin-up electrons. The exciton states from the up
spin in valley +K are called the A excitons. One must add
the contribution from the B excitons, which comes from the
spin-down electrons. The major difference between the A and
the B excitons is the energy eigenvalues. The B excitons have
higher energy by Esoc. Consequently, all the exciton level
energies are offset by the similar amount. Finally, we obtain
the true physical linear susceptibilities as

χ (1)(ωκ ) = χ (1)A(ωκ ) + χ (1)B(ωκ )

≈ χ (1)A(ωκ ) + χ (1)A(ωκ − Esoc/h̄). (39)

This response is only for the σ+ polarized light, coming from
+K valley. Indeed, σ− polarized light sees the linear response
from +K , too. The relative strength of g−

(1,1) and g−
(2,1) are,

however, only 2% and 1% of g+
(0,0), respectively. Therefore, the

relative strength of the response will be only ∼10−4, compared
to the strongg(0,0). The same applies to the case forσ+ polarized
light and the −K valley. Hence, the linear response of σ+ light
is mostly from +K valley. On the other hand, the contribution
χ

(1)
U (ωκ ) from σ− will increase as ωκ increases well beyond

�/h̄ since d−
cv(q) ∝ q2.

We calculated the χ (1) as shown in Fig. 4. The plot shows
that the contribution only from the nonresonant terms [the sum
of p1 = +1 terms in Eqs. (37) and (38), dash-dotted curves]
is negligibly small. That from the unbound states [dotted
curves, (38)] leaves a long tail in the real part only. Far below
the exciton resonances, the contribution from the nonresonant
term starts gaining. On the other hand, the absorption decays
quickly below the exciton resonances. The contribution from
the bound excitons dominates in the spectral range below the
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FIG. 4. Calculated χ (1) near (up) and below (down) exciton
resonances. The real and the imaginary parts of the nonresonant
[dash-dot, sum of p1 = +1 terms in Eqs. (37) and (38)], unbound
states [dot, Eq. (38)], and the total sum (solid) are shown separately.
The resonance labels indicate either A or B exciton with the quantum
number (n,m).

band edge. Near the band edge, the higher order excitons
contribute significantly. The band edge for the A excitons
(spin-up electron) occurs at 2.16 eV, while that of the B excitons
occurs at 2.31 eV. The contribution from the unbound states
reaches the spectrum below the band edge. Our model does
not include higher conduction levels, which diminishes the
influence of this unbound state contribution in the bound state
resonances.

We also calculate the linear absorption and the reflectance
from the excitonic states (Fig. 5). The complex refractive index
is given as n =

√
1 + χ (1). The imaginary part produces the

absorption coefficient α = 2Im[n]ωκ/c. The linear absorption
from the 2D sheet is given by αdeff = 2deffIm[

√
1 + χ (1)]ωκ/c.

The single-pass absorption does not depend on deff on the
bound exciton resonances due to the large value of |χ (1)|.
Figure 4(b) shows the calculated absorption spectrum. The
calculated absorption peaks for the lowest A and B exciton

FIG. 5. Inferred absorption from the calculated χ (1). The reso-
nance labels indicate either A or B exciton with the quantum number
(n,m).

resonance match reasonably well the measured absorptions
of 10–15%, having similar broadening [22,50,53,54]. We note
that the distortion of the curves are due to the excessive negative
real value of χ (1), caused by underestimated contribution from
the unbound exciton states as we mentioned above. As a
result, the blue side of the resonance curves are much more
exaggerated than the real situation. Nevertheless, both the
absorption and the reflection curves match qualitative features
of the published results.

B. Second-order susceptibility

Let us consider the second-order harmonic generation for
which the output second-order harmonic frequency is nearly
resonant with the exciton energy levels (see Fig. 6). Because of
the energy gap, one can avoid the direct linear absorption for

FIG. 6. Schematic of the second-order harmonic process where
the second harmonic is near resonant with an exciton level.
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the fundamental pump light. If one also avoids the direct linear
absorption for the second harmonic by slightly detuning from
the resonance, one can accomplish a coherent and efficient
second-order harmonic process. The same applies to the
degenerate optical parametric amplifier pumped at the exciton
resonance, amplifying the signal at the half frequency.

This second-order harmonic transition involves the virtual
levels, which sum all possible intermediate levels linking the
initial Fermi sea ground state |0〉 to the final exciton state |xν〉.
We are particularly interested in the resonant second-order
harmonic frequency 2ωκ ∼ e0(=e(0,0)) (the frequency of the
state |x(0,0)〉) since it involves the largest dipole moment g(0,0).
The virtual level can be either the bound or the unbound exciton
states.

1. Bound exciton virtual states

Let us first consider the bound exciton virtual levels. The
composite transition must obey the optical selection rule
explained in Sec. II C. Let us consider the case where the
highest level is |x(0,0)〉. For +K valley, where the second-order
harmonic light is in σ+, the second-order transition involving
two σ+ fundamental photons is not allowed since h+

(0,0)(n,0) = 0
due to the angular momentum conservation rule. This implies
the tensor element χ

(2)
+;++ = 0. Instead, the transition |0〉 →

|x(1(2),1)〉 → |x(0,0)〉 is allowed by absorbing two σ− photons
because the first transition relies on the dipole momentg−

1(2),1( �=
0), and the second transition relies on the dipole moment
h−

(0,0)(1(2),1), which is nonzero. The transition |x(0,0)〉 → |0〉
emits a σ+ photon as explained in previous section. This
corresponds to the susceptibility tensor χ

(2)
+;−−. We note that

χ
(2)
+;−+ = 0 since the dipole element h+

(0,0)(1(2),1) = 0. Also,

χ
(2)
+;+− = 0 since h+

(0,0)(n,0) = 0.
For −K valley, the opposite circularly polarized photons are

used in the same transitions. Since the second-order harmonic
output from −K valley is always σ− photon as we explained
in the previous section, we conclude that χ

(2)
−;−− = χ

(2)
−;+− =

χ
(2)
−;−+ = 0 and χ

(2)
−;++ �= 0.

In summary, we have only two nonzero second-order
susceptibility tensor elements, χ

(2)
−;++ and χ

(2)
+;−−. This result

is consistent with the well-known experimental results for the
second-order harmonic generation in TMDs, where the output
second-order harmonic polarization has the opposite chirality
relative to the input circular polarization [31,32].

Let us quantify the tensor element χ
(2)
+;−− from +K valley.

For this, we solve the second-order differential equation for
the density matrix elements. First, the basis for the Hilbert
space is {|0〉,|x(s,1)〉,|x(0,0)〉}, where s = 1 or 2. Since we now
involve the exciton-exciton transition, we have an additional
interaction Hamiltonian:

H′
I = −

∑
s=1,2

[h−
(0,0)(s,1)B

†
0B(s,1)E(κ)e−iωκ t + H.c.]. (40)

We need to calculate the matrix elements such as ρ
(2)
(1,2)0(t) =

〈x(s,1)|ρ(2)(t)|0〉, ρ
(2)
(0,0)(s,1)(t) = 〈x(0,0)|ρ(2)(t)|x(s,1)〉, and

ρ
(2)
(0,0)0(t) = 〈x(0,0)|ρ(2)(t)|0〉. Using the operator properties

and their action on the states, we obtain that the only substantial

term among three is ρ
(2)
x0 (t), given as (see Appendix C)

ρ
(2)
x0 (t) =E2(κ)e−i2ωκ t

h̄2

× g−
ν h−

(0,0)ν

[eν − (ωκ + iε)][e0 − (2ωκ + iε′)]
. (41)

We already calculated the velocity element v0x =
ε̂+(−ie0g

+∗
(0,0)/e). Using J (2) = ∑

ν eNe(v0xρ
(2)
x0 + ρ

(2)
0x vx0)

and J (2) = σ (2)ε̂+E2(q)e−i2ωκ t , we obtain

σ (2) =
∑

ν

∑
p1=±1

⎛
⎝−iNeg

−
ν h−

(0,0)νg
+∗
(0,0)

h̄2

× 1
[eν+p1(ωκ+iε)][e0+p1(2ωκ+iε′)]

⎞
⎠. (42)

From Eq. (23), the second-order susceptibility for the
second-order harmonic generation is obtained through

χ (2)(ωκ ∼ eν) = σ (2)

−i2ε0ωκ

. (43)

Then, we finally obtain the contribution of the bound virtual
exciton states:

χ
(2)
B,+;−−(ωκ ∼ e0/2)

=
∑

ν

∑
p1=±1

e0g
−
ν h−

(0,0)νg
+∗
(0,0)

2ωκ h̄
2ε0deff

× 1

[eν + p1(ωκ + iγB/2)][e0 + p1(2ωκ + iγB/2)]
.

(44)

Recall that that g−
ν is substantial only for ν = (1,1) and ν =

(2,1). Note that this contains the resonant (p1 = −1) and the
nonresonant (p1 = +1) terms.

Calculating χ
(2)
B,−;++ from −K valley produces the same

result since the only difference between the two valleys is the
switched role between ±σ .

2. Unbound exciton virtual states

We now calculate the contribution from the unbound exciton
virtual states. Let us first consider the case of σ+ polarized
light. The cascaded second-order transition is |0〉 → |C(q)〉 →
|x(0,0)〉 → |0〉. In order to address the second transition, we
need the following interaction Hamiltonian:

H′′
I = −

∑
q

[f(0,0)(q)B†
0CqE(κ)e−iωκ t + H.c.], (45)

where the new dipole transition element fν(q) is given as

fν(q) = e〈xν |ε̂ · r|Cq〉
= e

∑
q ′

ψ∗
ν (q ′)〈Cq ′ |ε̂ · rα†

qβ
†
−q |0〉

= e
∑

q ′
ψ∗

ν (q ′)〈Cq ′ |ε̂ · r|Cq〉. (46)

The physical intuition is that this dipole moment is a su-
perposition of all intraband dipole moment weighted by the
(Fourier-transformed) exciton wave function.
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We can easily deduce χ (2) from this channel based on Eq. (44):

χ
(2)
U (ωκ ∼ e0/2) =

∫
d2q

eνdcv(q)fν(q)g∗
ν

8π2ωκε0h̄
2deff

∑
p1=±1

1

[ωq + p1(ωκ + iγU/2)][eν + p1(2ωκ + iγB/2)]
. (47)

Appendix D derives and concludes that f ±
ν (q) vanishes

due to the symmetry. Hence, the virtual transition through the
unbound exciton to land on a bound exciton state is negligible.
This allows us to ignore in the future any virtual channel
involving the unbound exciton states.

3. Overall second-order susceptibility

We showed the opposite chirality rule between the fun-
damental light and the second-order harmonic light for the
second-order harmonic generation. Since the virtual channels
from the unbound excitons can be ignored, the second-order
susceptibility is χ (2)(ωκ ∼ e0/2) = χ

(2)
B (ωκ ∼ e0/2). Figure 7

shows the calculated χ (2) for a single polarized second-order
harmonic output from a linearly polarized pump light. The
intensity of the second-order harmonic light depends on the ab-
solute value |χ (2)| whereas the phase of χ (2) explains the
phase delay of the second-order harmonic light [46]. The
maximum value of the calculated |χ (2)| at frequency e0/2 is
6.6 × 10−10 m/V. Figure 7 also shows the linear absorption at
the second-order harmonic 2ω. In order to avoid it, one may
want to operate at slight red detuning from the resonance. The
figure also shows the contribution from the nonresonant term
[p1 = +1 in Eq. (44)], which is negligibly small in both real
and imaginary parts. This is expected since the second-order
susceptibility is concentrated near resonance and both the two
factors in the denominator of the resonant term in Eq. (44)
diverge around the resonance.

A few more experimental results on the monolayer MoS2

second-order harmonic generation that quantified the second-
order susceptibility were reported: Malard et al. [55] reported
a sheet susceptibility of 8 × 10−20 m2/V, equivalent to a bulk
χ (2) of 1.2 × 10−10 m/V, and Clark et al. [26] experimentally
obtained 2 × 10−9 m/V while Woodward et al. [56] reported
3 × 10−11 m/V, all with the second-order harmonic at the A

FIG. 7. Numerically evaluated χ
(2)
+;−−(ωκ ∼ e0/2) based on the

higher order corrected gapped Dirac Hamiltonian. Also shown is the
second-order harmonic absorption at 2ω in black.

exciton resonance of 1.9 eV. These match our result within
an order of magnitude. Trolle et al. theoretically calculated
χ (2) through the tight binding band structures and obtained
4 × 10−9 m/V [29], which also agrees with our result approx-
imately within an order of magnitude, although the approach
was different.

Compared to the typical χ (2) value 2 × 10−11 m/V of
lithium niobate, which is the common material for the second-
order harmonic generation, the single-pass second-order ef-
fect in the monolayer MoS2 is equivalent to approximately
only nanometer-thick lithium niobate material. Hence, the
monolayer MoS2 does not appear to be a strong second-order
harmonic nonlinear material.

C. Third-order susceptibility

The third-order processes that can avoid the direct linear
absorption are the third-order harmonic generation and the
two-photon process (i.e., Kerr effect and two-photon absorp-
tion) as shown in Fig. 8.

1. Third-order harmonic generation

We first consider the third-order harmonic generation pro-
cess whereωκ ∼ e0/3 [see Fig. 8(a)]. This process involves two
virtual levels between |0〉 and |x(0,0)〉. As we have seen from the
previous calculation for χ (2), the virtual contribution from the
unbound excitons is negligible. We then count only the virtual
levels from the bound exciton states. This requires a modifica-
tion of the second interaction Hamiltonian in Eq. (40) as

H′
I = −

∑
ν1,ν2

[
hν1ν2B

†
ν1

Bν2E(κ)e−iωκ t + H.c.
]
. (48)

This third-order harmonic generation process involves the
four states |0〉,|xν1〉,|xν2〉,|x(0,0)〉 with the successive transition
|0〉 → |xν1〉 → |xν2〉 → |x(0,0)〉 → |0〉.

FIG. 8. Third-order processes with low-frequency input light. (a)
Third-order harmonic generation where 3ωκ ∼ e0. (b) Two-photon
process where 2ωκ ∼ e0.
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The optical selection rule where only |x(n,m)〉 → |x〉(n,m±1)
are allowed from the polarization σ±, respectively, applies here
as well for efficient virtual transitions. For σ+ input light alone,
there are no cascaded transitions to arrive at |x(0,0)〉 through
the two virtual bound exciton states. The same applies to σ−.
This forces the tensor elements χ

(3)
T H,±;+++ = χ

(3)
T H,±;−−− = 0.

On the other hand, if both σ± photons are present, they
can cooperate and incur the following transition: |0〉 →
|x(s,0)〉 → |xs ′,−1〉 → |x(0,0)〉 → |0〉 with s = 0,1,2, . . . and
s ′ = 1,2, . . . . The sequential transitions are mediated by σ+,
σ−, σ+, σ+ for +K valley involving the dipole moments

g+
(s,0),h

−
(s ′,−1)(s,0),h

+
(0,0)(s,−1),g

+∗
(0,0), respectively, leaving the out-

put polarization in σ+ light of the third harmonic. The opposite
polarization sequence applies to the −K valley, leaving the
output third-order harmonic light in σ−.

Let us consider the tensor element
χ

(3)
T H,+;+−+(=χ

(3)
T H,+;++− = χ

(3)
T H,+;−++) from the +K valley.

The detailed calculations reveal that the only nonzero matrix
element in the density matrix ρ(3) are ρ

(3)
(0,0)0 = 〈x(0,0)|ρ(3)|0〉

and ρ
(3)
(s ′,−1)(0,0) = 〈x(s ′,−1)|ρ(3)|x(0,0)〉 (see Appendix C):

ρ
(3)+−+
(0,0)0 =

∑
s ′,s

h+
(0,0)(s ′,−1)h

−
(s ′,−1)(s,0)g

+
(s,0)

h̄3

ε3(κ)e−3iωκ t

(es − ωκ − iε)(es ′ − 2ωκ − iε′)(e0 − 3ωκ − iε′′)
, (49)

and

ρ
(3)+−+
(s ′,−1)(0,0) = −

∑
s ′,s

g+∗
(0,0)h

−
(s ′,−1)(s,0)g

+
(s,0)

h̄3

ε3(κ)e−3iωκ t

(es − ωκ − iε)(es ′ − 2ωκ − iε′)(es ′ − e0 + ωκ + iε′′)
. (50)

We then calculate the induced current for the third-order harmonic generation: J (3) = ∑
ν1

eNe(v(0,0)0ρ
(3)
0(0,0) + ρ

(3)
(0,0)0v0(0,0) +

v(s ′,−1)(0,0)ρ
(3)
(0,0)(s ′,−1) + ρ

(3)
(s ′,−1)(0,0)v(0,0)(s ′,−1)). After resolving the velocity matrix elements in a similar way to Eqs. (25) and (56),

we use J (3) = σ (3)ε̂+E3(κ)e−i3ωκ t with the following relation:

∂

∂t
ε0χ

(3)
T H (ωκ ∼ eν)E3(κ)e−i3ωκ t = σ (3)E3(κ)e−i3ωκ t , (51)

which leads to χ
(3)
T H (ωκ ∼ eν) = σ (3)/(−i3ε0ωκ ), we finally obtain the third-order susceptibility for the third-order harmonic

generation as

χ
(3)
T H,B,+;+−+(ωκ∼ e0/3) =

∑
s,s ′

g+∗
(0,0)h

+
(0,0)(s ′,−1)h

−
(s ′,−1)(s,0)g

+
(s,0)

3ωκε0h̄
3deff

(∑
p1=±1

e0
[es+p1(ωκ+iγB/2)][es′ +p1(2ωκ+iγB/2)][e0+p1(3ωκ+iγB/2)]

−∑
p2=±1

es′ −e0

[es+p2(ωκ+iγB/2)][es′ +p2(2ωκ+iγB/2)][es′ −e0−p2(ωκ+iγB/2)]

)
.

(52)

Here, s = 0,1, . . . and s ′ = 1,2, . . . . There are four terms in
the above for a given s,s ′ pair. The first term with p1 = −1 is
the resonant term with all frequency difference denominator
factors, while the other three terms are nonresonant terms
with at least one frequency sum in the denominator. This
is the response from +K valley only. Since we ignore the
virtual channel through the unbound exciton states, we obtain
χ

(3)
T H,+;++−(ωκ ∼ e0/3) = χ

(3)
T H,B,+;++−(ωκ ∼ e0/3). The re-

sponse from the other valley is identical since σ± polarizations
switch roles. Hence, we obtain the tensor elements

χ
(3)
T H,±;±±∓(ωκ ∼ e0/3) = χ

(3)
T H,±;∓±±(ωκ ∼ e0/3)

= χ
(3)
T H,±;±∓±(ωκ ∼ e0/3), (53)

all having the same result as in Eq. (52). All the other tensor
elements are negligible.

We evaluated this susceptibility tensor element numerically
(see Fig. 9). Just as the second-order harmonic generation,
what matters in the third-order harmonic generation efficiency
is the amplitude |χ (3)

T H |, while the phase of χ
(3)
T H determines the

phase of the third-order harmonic output light. The maximum
|χ (3)

T H | of the monolayer MoS2 is 1.5 × 10−17 m2/V2, which
can be favorably compared to the typical nonlinear bulk
crystal third order susceptibility [46] ∼10−24 m2/V2. The
linear absorption at the third harmonic (dotted black) shows a

significant absorption at near resonance. Hence, for an efficient
third-order harmonic generation, one would operate at slight
red detuning.

The figure also shows the contribution from the nonresonant
terms (dotted in red and blue). Both the real and the imaginary
values from the nonresonant terms are negligible. The reason
is as follows: The biggest contribution in the nonresonant term
is from the second term in Eq. (52) with p2 = −1. However,
the magnitude of the resonant denominator’s real values |es −
ωκ | and |es ′ − 2ωκ | are still quite large since ωκ ∼ e0/3. In
addition, the third-order harmonic generation susceptibility is
concentrated near resonance.

2. Two-photon process

Next, let us turn to the two-photon transition shown in
Fig. 8(b). We consider the case where the input light frequency
is such that ωκ ∼ e0/2. This process involves two virtual levels,
one mediating the upward transition and the other mediating
the downward transition, corresponding to |0〉 → |xν1〉 →
|x(0,0)〉 → |xν2〉 → |0〉. For +K valley, the circularly polarized
input light σ− alone can make a second-order transition since
the virtual levels can be ν1,ν2 = [1(2),1]. Then, sequential
transitions involve the corresponding dipole moment g−

(1(2),1),
h−

(0,0)(1(2),1), h
−∗
(0,0)(1(2),1), g

−∗
(1(2),1), respectively, leaving the output
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FIG. 9. Numerically evaluated χ
(3)
T H,+;+−+(ωκ ∼ e0/3) based on

the higher order corrected gapped Dirac Hamiltonian. The real value
(blue solid), the imaginary value (red solid), and the absolute value
(green solid) of the total χ (3) (sum of resonant and nonresonant terms)
are shown. Also the separate contributions from the nonresonant terms
(blue and red dotted) are shown to be negligibly small.

photon in σ− polarization from +K valley. For −K valley, σ±
polarizations switch roles, accepting σ+ photons and leaving
the output in σ+.

This sequence of transition, however, is not the most
efficient two-photon transition: The transition dipole moment
for |0〉 ↔ |x(1(2),1)〉 is indeed small (see the Table I). When
we numerically evaluated, the maximum value of |χ (3)

T P (ωκ =
e0/2)| was only 1.6 × 10−21 m2/V2. Rather, involving an in-
termediate level whose dipole moment to and from the ground
state is large must be much more efficient. This is accomplished
if the upper state is |x(1,1)〉, through the the circularly polarized
input light σ+ in +K valley. As before, we ignore the virtual
channels involving the unbound exciton states. The following
two-photon transition is plausible: |0〉 → |x(s,0)〉 → |x(1,1)〉 →
|x(s ′,0)〉 → |0〉, where s,s ′ = 0,1,2, . . . . These transitions in-
volve the dipole moments g+

(s,0),h
+
(1,1)(s,0),h

+∗
(1,1)(s ′,0),g

+∗
(s ′,0), re-

spectively, where all the dipole moments are indeed substantial.
We also listed the value of h(1,1)(n,0) in Table II.

We then need to calculate the tensor elements of ρ(3) from

+K valley in the basis {|0〉,|x(s,0)〉,|x(1,1)〉}. The only nonzero
elements of ρ(3) are (see the derivation in Appendix C):

ρ
(3)+++
(s ′′,0)0

=
∑

s

h+∗
(1,1)(s ′′,0)h

+
(1,1)(s,0)g

+
(s,0)

h̄3

× |ε(κ)|2ε(κ)e−iωκ t

(es − ωκ − iε)(e1 − 2ωκ − iε′)(es ′′ + ωκ + iε′′)

(54)

and

ρ
(3)+++
(1,1)(s ′′,0)

= −
∑

s

g+∗
(s ′′,0)h

+
(1,1)(s,0)g

+
(s,0)

h̄3

× |ε(κ)|2ε(κ)e−iωκ t

(es − ωκ − iε)(e1 − 2ωκ − iε′)(e1 − es ′′ − ωκ − iε′′)
.

(55)

The two-photon induced current is J (3) = ∑
ν1

eNe

(v(s ′′,0)(1,1)ρ
(3)
(s ′′,0)(1,1) + ρ

(3)
(1,1)(s ′′,0)v(s ′′,0)(1,1) + v(s ′′,0)0ρ

(3)
(s ′′,0)0 +

ρ
(3)
0(s ′′,0)v(s ′′,0)0). We then need to resolve the following velocity

matrix element:

vν1(1,1) = 〈
xν1

∣∣ṙ|x(1,1)〉 = − i

h̄

〈
xν1

∣∣[r,H0]|x(1,1)〉
= −i(e1 − eν1 )

〈
xν1

∣∣r|x(1,1)〉. (56)

Hence, we obtain the component parallel to
ε̂+ as v(1,1)ν1 = −i(e1 − eν1 )〈xν1 |ε̂− · r|x(1,1)〉ε̂+ =
−i(e1 − eν1 )(h+∗

(1,1)ν1
/e)ε̂+. We then use J (3)

T P =
σ

(3)
T P |E(κ)|2ε̂+E(κ)e−iωκ t . We also use the fact that the

two-photon susceptibility is obtained through

∂

∂t
ε0χ

(3)
T P (ωκ∼eν)|E(κ)|2E(κ)e−iωκ t = σ

(3)
T P |E(κ)|2E(κ)e−iωκ t ,

(57)

which leads to χ
(3)
T P (ωκ ) = σ

(3)
T P /(−iε0ωκ ). From all these, we

finally obtain the two-photon susceptibility tensor element

χ
(3)
T P,B,+;+++(ωκ ∼ e1/2) =

∑
s,s ′

g+∗
(s ′,0)h

+∗
(s ′0)(1,1)h

+
(1,1)(s,0)g

+
(s,0)

ωκε0h̄
3deff

(−∑
p1=±1

(e1−es′ )
[es+p1(ωκ+iγB/2)][e1+p1(2ωκ+iγB/2)][e1−es′ +p1(ωκ+iγB/2)]

+∑
p2=±1

es′
[es+p2(ωκ+iγB/2)][e1+p2(2ωκ+iγB/2)][es′ −p2(ωκ+iγB/2)]

)
.

(58)

The above contains four terms: one resonant term with p1 =
−1 from the first sum and the other three nonresonant terms
(p1 = +1,p2 = ±1). Here, g+

ν = g+
ν /

√
A, which does not

depend on the sample area A (see the Table I). This is the
response from +K valley with both the input and the output
lights in σ+ polarization. As was before, we ignore the virtual
channels through the unbound excitons, and hence, we obtain
the two-photon response χ

(3)
T P = χ

(3)
T P,B . The response from

−K valley is identical to this since σ± polarizations switch

roles, and both the input and the output from −K valley are in
σ− polarization. All the tensor elements other than χ

(3)
T P,±;±±±

are negligible.
Figure 10 shows the calculated values of χ

(3)
T P (ωκ ∼ e1/2).

The imaginary value of the two-photon third-order suscepti-
bility is related to the actual two-photon absorption, implying
the loss of the incoming light in pairs. The real value of the
two-photon third order susceptibility is related to the Kerr non-
linearity where the refractive index varies proportionally to the
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FIG. 10. Calculated χ
(3)
T P,++++(ωκ ∼ e1/2) for the σ+ input light

polarization. We plot the ratio Re[χ (3)
T P ]/Im[χ (3)

T P ] (cyan dotted), as
well as the linear absorption (black dotted). Also shown are the
contribution only from the nonresonant term (red and blue dots).

incoming light intensity. This is best seen by the relation [46]:

χeff = χ (1) + 3χ
(3)
T P |E(ωκ )|2. (59)

The negative sign in Eq. (58) is physically substantial since it
produces a positive imaginary value for χ

(3)
T P implying real two-

photon absorption. The maximum of the real value χ
(3)
T P (ωκ ∼

e1/2) is 8.5 × 10−19 m2/V2 around e1/2 of A excitons. This
value is approximately six orders of magnitude larger than the
typical bulk material. The figure shows the influence of the
same transition for the B excitons on the blue side (spin-down
electrons). Additionally, it also shows the linear absorption,
which comes from the off-resonant contribution from the
nearest exciton states absorption |x(0,0)〉. The linear absorption
is only order of ∼10−5, which is sufficiently small.

The optical Kerr effect is a valuable resource for coher-
ent optical switching. Hence, avoiding the incoherent two-
photon absorption is important. We plotted the figure of
merit |Re[χ (3)

T P ]/Im[χ (3)
T P |] in Fig. 10. Let us compare the

two-photon process results of the monolayer MoS2 with those
of graphene [57]. The graphene exhibits χ

(3)
T P (e1/2) ∼ 4.8 ×

10−17 m2/V2, which is larger than the monolayer MoS2. The
ratio |Re[χ (3)

T P ]/Im[χ (3)
T P |] of graphene at the same frequency,

however, is only 0.06, whereas the monolayer MoS2 has quite
a favorable ratio, much larger than unity over broadband
at certain frequency regions. This is because MoS2 exciton
responses are narrowband resonances whereas that of the
graphene is broadband interband transitions. In addition, the
graphene also suffers from the broadband linear absorption of
2.3% for the pumping photon [57] while such linear absorption
is completely absent from the monolayer MoS2 thanks to the
band gap. This makes the monolayer MoS2 a superior material
for the coherent Kerr optical nonlinearity.

It is noteworthy that the contribution from the nonresonant
terms for the two-photon third-order susceptibility is much
larger than others (dotted lines in Fig. 10). The reason is as
follows: The biggest contribution comes from the term with
p2 = −1 from the second term in Eq. (58). The magni-
tude of the resonant denominators’ real values |es − ωκ | and

|e1 − 2ωκ | is relatively small since ωκ ∼ e1/2. Hence, the
contribution from the nonresonant terms in the two-photon
susceptibility is significantly larger than other cases. Never-
theless, it is fair to say that the major contribution still comes
from the resonant term.

IV. CONCLUSION AND DISCUSSION

We calculated the linear and nonlinear optical suscepti-
bilities of excitonic states in monolayer MoS2, based on the
second-order corrected Dirac Hamiltonian around ±K points
in the first Brillouin zone. We derived and utilized the second
quantized bound and unbound exciton operators and efficiently
calculated the perturbative solutions of the density matrix. This
connected to the induced current, the optical conductivity, and
eventually the optical susceptibilities in a perturbative order.
We showed that the simple higher order corrected Dirac gapped
Hamiltonian produced linear and second-order susceptibilities
that reasonably match experimental results. An alternative
route would be the detailed computationally heavy density
functional theory (DFT)-based calculation.

The reasonable agreement of our theoretical results with
experimental data may be somewhat surprising considering
that we have approximated the physical system as completely
two dimensional, whereas the detailed atomic positions are
indeed in three dimensions, and hence, the detailed electron
density distribution might have played an important role. How-
ever, the exciton is a collective excitation spanning the entire
sample area and atomic details may be blurred over the large
exciton size (several times the unit cell). It is thus plausible to
consider our physical system as being approximately circularly
symmetric, and the angular-momentum-based optical selection
rules of our bound exciton solution played a vital role. We
emphasize that such an averaging effect is indeed a nature of
the Wannier excitons with a large size.

The second-order harmonic process of the exciton states
from the monolayer MoS2, on the other hand, is well ex-
pected to be small since the exciton states are approximately
centrosymmetric where only a very minor centrosymmetry
breaking feature is provided through the weak threefold ro-
tational symmetry, connecting the Fermi sea and a couple
of the high-order excitons. We also note that we resolved
quantitatively the previously known opposite chirality rule for
the second-order harmonic generation in the monolayer TMDs
materials through directly calculating the dipole moments and
the susceptibilities.

The obtained third-order nonlinear optical susceptibility
of monolayer MoS2 merits further investigation for potential
photonics applications. The excitonic states of this material
are promising for device designs utilizing coherent nonlinear
optical processes, such as the coherent Kerr-type optical
operation in an extremely small strong cavity [8], since one
can avoid incoherent linear loss while strong optical response
is provided via collecting the broadband responses of the bands
into a narrowband exciton resonance.

It is worth mentioning that while the center frequency of
the lowest exciton state of our result is based on empirically
measured binding energy, those of higher exciton states may
need to be adjusted slightly according to either the more
accurate Keldysh-type binding energies of exciton states or the
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actual experimental results, although the difference is small,
as we mentioned above.
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APPENDIX A: ELECTRONIC BAND STRUCTURE OF MoS2

For the band structure of the monolayer MoS2, we as-
sume a gapped Dirac cone model that was adopted in
many of the theoretical works of the TMD material calcu-
lations [16,19,20,24,58–62]. This approach assumes the tight
binding approximation, where the Bloch wave is ψk,λ(r) =
eik·ruk,λ(r) with the band index λ = c,v for the conduction
and the valence bands, respectively. Here, k is a Bloch wave
vector, and the Bloch function is represented as uk,λ(r) =
(1/

√
N )

∑
m eik·(Rm−r)φk,λ(r − Rm), where N is the total

number of atoms in the sample, Rm is the lattice site position,
and φλ(r) is the atomic orbital. At the ±K points, it is
conventional [16,19,20,24,58–62] to approximate φτ K ,c(r) =
〈r|dz2〉 and φτ K ,v(r) = (1/

√
2)(〈r|dx2−y2〉 + iτ 〈r|dxy〉) where

|dz2〉, |dx2−y2〉, |dxy〉 are the 4d shell atomic orbitals of the Mo
atom. Here, τ = ±1 is the valley index corresponding to ±K
points, respectively. In fact, the conduction and the valence
bands at ±K points consist of both the d orbitals of Mo atoms
and the p orbitals of S atoms. The relative contributions of Mo
atom d orbitals are 92% in the conduction band and 84% in
the valence band [59].

Let us consider the Bloch waves around either of ±K points.
Adopting the basis {|u0,c〉,|u0,v〉} and considering only the
subspace of either up or down electron spin, the Hamiltonian
is given as [16]

H0 =
(

�/2 h̄v(τqx − iqy)
h̄v(τqx + iqy) −�/2

)
, (A1)

where � = Eg ± τEsoc/2 for up- or down-spin subspace,
respectively, with the energy band gap Eg and the spin-orbit
coupling energy Esoc. Here q = (qx,qy) = k − τ K . This is a
Hamiltonian for a gapped Dirac cone. The values we use are
the results of the detailed DFT calculations [58,59], namely,
h̄v = 3.82 eV Å (v = 5.8 × 105 m/s), Eg = 2.23 eV (DFT-
HSE06) (and experimentally measured [63] as 2.15 eV), and
Esoc = 146 meV. If we expand the solution up to the second
order with respect to q, we obtain an analytical formula for the
uncorrected band Hamiltonian H0:

Ec(q) = �

2
+ h̄2v2q2

�
, Ev(q) = −

(
�

2
+ h̄2v2q2

�

)
,

|uq,c〉 =
(

1 − h̄2v2q2

�2

)
|u0,c〉 + h̄vqτ

�
eiτφq |u0,v〉, (A2)

|uq,v〉 = − h̄vqτ

�
e−iτφq |u0,c〉 +

(
1 − h̄2v2q2

�2

)
|u0,v〉,

where φq = arccos(qx/q). The Dirac cone approximation in-
evitably produces the same effective mass for the conduction
band electron and the valence band hole. For a more accurate
calculation, one may adopt the higher order correction [19,20]
such that H = H0 + HC with

HC =
(

αq2 κq2e2iτφq − η

2 q3e−iτφq

κq2e−2iτφq − η

2 q3eiτφq βq2

)
,

(A3)

where the numerical values of the parameter based on the

DFT calculations are α = 1.72 eV Å
2
, β = −0.13 eV Å

2
, κ =

−1.02 eV Å
2
, and η = 8.52 eV Å

3
. The energy eigenvalues of

the band Hamiltonian H = H0 + HC are analytically solved
as follows:

Eλ = 1

2
(α + β)q2 + λ

1

2

√√√√√√√
4h̄2v2q2 + 2q2(α − β)�
+�2 − 4h̄vq4η + q6η2

+q4[(α − β)2 + 4κ2]
+4q3(2h̄v − q2η)κ cos(3φq)

,

(A4)

where λ = ±1 for the conduction and the valence band,
respectively. The higher order correction not only produces
different effective masses for the conduction and the valence
bands, but also gives rise to the well-known threefold rotational
symmetry through the dependence on cos(3φq). This threefold
rotational symmetry of the energy dispersion is common in
hexagonal 2D materials.

It is noteworthy that one extracts the effective masses
for the conduction and the valence band through the energy
dispersion [Eq. (A2)] and uses them to solve the Wannier
exciton equation in Eq. (1). Although the actual dispersion
is not completely parabolic, one often approximates the band
dispersion quadratically. This approximation is particularly
valid for the exciton where the superposing weight ψν(q) in
Eq. (8) is heavily concentrated in the valley bottoms. Figure 11
shows the quadratic fittings of the conduction and valence
bands. Also shown are the exciton wave functions which
become weights to construct an exciton state. We note that
the upper states have more concentrated wave functions to the
valley bottom. The quadratic fitting is reasonably good even
for the lowest exciton level within the exciton wave functions.
This concretely shows that the effective mass approach is valid
for the monolayer MoS2 excitons, which is also consistent with
literature [24,54,64–66].

APPENDIX B: EXCITON CREATION OPERATOR

We derive the creation operators for both the bound and the
unbound exciton states in terms of the band-state basis. We first
consider the bound exciton states, starting with the definition
B

†
ν, Q = |ν Q〉〈0|. The exciton state |ν Q〉 is a dual-particle state

where there is an electron-hole pair. Let us recall that the band
pair state is given by |q,−q ′〉 = α

†
qβ

†
−q ′ |0〉. This is a composite

state of an electron Bloch state in the conduction and a hole
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FIG. 11. Band structure of monolayer MoS2 near ±K points (i.e.,
q = 0). Only the lowest conduction and highest valence bands are
shown. The conduction band (red slid) and the valence band (blue
solid) are fitted with quadratic curves (dotted lines) for extracting
the effective masses at each band. Also shown are the exciton wave
functions for states |x(0,0)〉 (cyan) and |x(1,0)〉 (orange).

Bloch state in the valence band, having the momentum h̄q and
−h̄q ′, respectively. Any single-particle state lives in a Hilbert
space that is spanned by basis {|q,−q ′〉}. In this subspace,

the completeness relation is∑
q,q ′

|q,−q ′〉〈q,−q ′| = 1. (B1)

Then, we obtain

B
†
ν Q =

∑
q,q ′

|q,−q ′〉〈q,−q ′|ν Q〉〈0|

=
∑
q,q ′

〈q,−q ′|ν Q〉α†
qβ

†
−q ′ . (B2)

Following the treatment of Haug et al. [17], we then ap-
proximate the band Bloch states by free-particle states such
that 〈r,r ′|q,−q ′〉 ≈ (1/A)eiq·r+iq ′ ·r ′

. Then, we calculate the
following using the completeness

∫
d2rd2r ′|r,r ′〉〈r,r ′| = 1:

〈q,−q ′|ν Q〉

=
∫

A

d2rd2r ′〈q,−q ′|r,r ′〉〈r,r ′|ν Q〉

=
∫

d2rd2r ′ 1

A
e−iq·reiq ′ ·r ′

ψν(r − r ′)
1√
A

ei Q· r+r′
2 ,

(B3)

where ψν(r ′′) is the solution to the exciton Schrödinger
equation in Eq. (1). Then, we Fourier transform ψν(r ′′) to
obtain

〈q,−q ′|ν Q〉 = 1

A2

∑
q ′′

∫
d2rd2r ′ exp

[
i

(
Q · r + r ′

2
− q · r + q ′ · r ′ + q ′′ · (r − r ′)

)]
ψν(q ′′)

= 1

A2

∑
q ′′

∫
d2rd2r ′ exp

{
i

[
r ·

(
Q
2

− q + q ′′
)

+ r ′ ·
(

Q
2

+ q ′ − q ′′
)]}

ψν(q ′′)

=
∑

q ′′
ψν(q ′′)δ Q

2 ,q−q ′′δ Q
2 ,q ′′−q ′ , (B4)

where we used (1/A)
∫

d2rei(q−q ′)·r = δq,q ′ . This leads to

〈q,−q ′|ν Q〉 = δQ,(q−q ′)ψν

(
q + q ′

2

)
. (B5)

Hence, we finally obtain

B
†
ν Q =

∑
q,q ′

δQ,(q−q ′)ψν

(
q + q ′

2

)
α†

qβ
†
−q ′

=
∑

q

ψν

(
q − Q

2

)
α†

qβ
†
Q−q . (B6)

We also mention that this result matches other references
[19,20]. Approximating Q ≈ 0, the exciton creation operator
is B†

ν ≡ B
†
ν0.

Next, we consider the unbound exciton states. In the same
line of thought as the bound exciton, we seek the creation
operator for the unbound exciton to be a linear combination

from the band basis:

C
†
q̃ =

∑
q

φq̃(q)α†
qβ

†
−q, (B7)

where q̃ is the canonical conjugate momentum to the relative
coordinate r = re − rh. Here, φq̃(q) is the weight to be deter-
mined. We require the two condition: orthogonality with the
bound states 〈Cq̃ |xν〉 = 0 for all q̃ and ν where |Cq̃〉 = C

†
q̃ |0〉

and |xν〉 = B†
ν |0〉, and normalization 〈Cq̃ |Cq̃ ′ 〉 = δq̃−q̃ ′ where

q̃,q̃ ′ are continuous variables because |Cq̃〉 is an unbound state.
The energy eigenvalue of this unbound exciton state must be

Eq̃ = Eg + h̄2q̃2

2mr

. (B8)

We note that this is quite similar to the energy of a band-pair
state of an electron and a hole: Eq = Eg + h̄2q2

2mr
. Although q̃

is not directly related to the crystal momentum q, we suggest
the replacement q̃ → q and φq̃(q) = δq̃,q such that

C†
q = α†

qβ
†
−q . (B9)
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We then propose to approximate the unbound exciton state
|C(q)〉 with the band-pair state |q,−q〉 such that |C(q)〉 ≈
|q,−q〉.

The orthogonality from the bound state is then

〈Cq |xν〉 =
∑

q ′
ψν(q ′)〈0|αqβqα

†
q ′β

†
q ′ |0〉 = ψν(q), (B10)

where we used the usual anticommutation rule for αq and
βq , and the notation |Cq〉 = C

†
q |0〉, |xν〉 = B†

ν |0〉. We note that
ψν(q) ∼ a0/

√
A ∼ 1/

√
N where N is the number of the unit

cells in the sample. Hence, for a sufficiently large sample, we
obtain the approximate orthogonality 〈Cq |xν〉 ∼ 1/

√
N → 0.

The normalization is also easily obtained as

〈Cq |Cq ′ 〉 = 〈0|αqβqα
†
q ′β

†
q ′ |0〉 = δq,q ′ . (B11)

In addition, the energy is the same with the replacement q̃ → q.
Hence, we conclude that, for a sufficiently large sample size
A, the creation operator in Eq. (B9) is approximately correct.

The operator C
†
q excites the electron in the valence bands

to the conduction band. Hence, we can interpret as C
†
q =

(⊗q ′ �=qIq ′ ) ⊗ |cq〉〈vq |, where |cq〉,|vq〉 are the single-electron
Bloch states at the conduction and the valence band, respec-
tively, with a momentum h̄q, and Iq ′ = |cq ′ 〉〈cq ′ | + |vq ′ 〉〈vq ′ |.
Using this representation, the anticommutation rule for the
bound and the unbound exciton creation and annihilation
operators are easily obtained: {Cq,C

†
q ′ } = δq,q ′ , {Bν,B

†
ν ′ } =

δν,ν ′ , {C†
q,Bν} ∼ 1/

√
N → 0 while all other anticommutators

are zero. It is also noteworthy that the Hilbert subspace for
the single excitation is spanned by the bound and the unbound
exciton states {|xν〉,|Cq〉} with all possible ν and q, and thus,
the completeness in this single excitation subspace is∑

ν

|xν〉〈xν | +
∑

q

|Cq〉〈Cq | = 1. (B12)

APPENDIX C: DENSITY OPERATOR MATRIX ELEMENTS

In this section, we present derivations of density matrix
elements that are used in the main text.

1. Second-order harmonic generation

We resolve the matrix elements ρ
(2)
(s,1)0,ρ

(2)
(0,0)(s,1), and ρ

(2)
(0,0)0

with s = 1 or 2, with the polarization configuration of
σ+; σ−σ−, corresponding to the frequencies 2ωκ , ωκ , ωκ,

respectively. Recall that the interaction Hamiltonian is given
as HI + H′

I , where HI is given in Eq. (15) with an interaction
coefficient g−

(s,1) and H′
I is given in Eq. (40), respectively.

We first resolve ρ
(2)
(s,1)0 by considering

ρ̇
(2)
(s,1)0(t) = −ie(s,1)ρ

(2)
(s,1)0(t) − i

h̄
〈x(s,1)|[HI + H′

I ,ρ
(1)]|0〉.

(C1)

with the useful fact that the only nonzero matrix elements in
ρ(1) in this situation are

ρ
(1)
(s,1)0 = 〈x(s,1)|ρ(1)|0〉 = g−

(s,1)

h̄

ε(κ)e−iωκ t

(es − ωκ − iε)
(C2)

and its complex conjugate, where s = 1,2. Using this, we insert
the completeness relation and obtain

〈x(s,1)|[HI + H′
I ,ρ

(1)]|0〉
= 〈x(s,1)|HI + H′

I |x(s,1)〉〈x(s,1)|ρ(1)|0〉
− 〈x(s,1)|ρ(1)|0〉〈0|HI + H′

I |0〉. (C3)

Both terms are zero since the diagonal matrix elements for
HI and H′

I are zero. This implies that ρ
(2)
(s,1)0(t) = 0 since

ρ
(2)
(s,1)0(−∞) = 0.

Next, let us consider the matrix element ρ
(2)
(0,0)(s,1). To

calculate this, we evaluate the following commutator, using
again that the only nonzero matrix elements of ρ(1) are ρ

(1)
(s,1)0

and its conjugate:

〈x(0,0)|[HI + H′
I ,ρ

(1)]|x(s,1)〉
= 〈x(0,0)|HI + H′

I |0〉〈0|ρ(1)|x(s,1)〉
− 〈x(0,0)|ρ(1)(HI + H′

I )|x(s,1)〉. (C4)

The first term is zero since the only nonzero matrix elements
forHI are 〈x(s,1)|HI |0〉 and its complex conjugate, and the only
nonzero matrix elements for H′

I are 〈x(s,−1)|H′
I |x(0,0)〉 where

s = 1,2, . . . and its complex conjugate. The second term is
zero since the bra 〈x(0,0)| eliminates ρ(1). This implies that the
matrix element ρ

(2)
(0,0)(s,1) is zero.

Finally, we resolve the matrix element ρ
(2)
(0,0)0 by solving

ρ̇
(2)
(0,0)0(t) = −ie(0,0)ρ

(2)
(0,0)0(t)

− i

h̄
〈x(0,0)|[HI + H′

I ,ρ
(1)]|0〉. (C5)

We calculate the following:

〈x(0,0)|[HI + H′
I ,ρ

(1)]|0〉
= 〈x(0,0)|HI + H′

I |x(s,1)〉〈x(s,1)|ρ(1)|0〉
− 〈x(0,0)|ρ(1)(HI + H′

I )|0〉. (C6)

The second term is zero since the bra 〈x(0,0)| eliminates ρ(1).
We calculate the following:

〈x(0,0)|HI + H′
I |x(s,1)〉 = 〈x(0,0)|H′

I |x(s,1)〉
= −

∑
s ′=1,2

h−
(0,0)(s,1)ε(κ)e−iωκ tρ

(1)
(s,1)0.

(C7)

Integrating Eq. (C5) using above and Eq. (C2), we obtain the
final result in Eq. (41).

2. Third-order harmonic generation

We resolve the matrix elements of ρ(3) in the third-order har-
monic generation with degenerate fundamental frequencies,
but with polarization configuration of σ+; σ+σ−σ+, corre-
sponding to the frequencies 3ωκ,ωκ,ωκ,ωκ , respectively. The
relevant basis for the matrix elements is {|0〉,|(s,±1)〉,|(s ′,0)〉}
where s = 1,2, . . . and s ′ = 0,1, . . . . We will intensively use
the selection rules (dipole moments) given in Table I and
Eq. (20).
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We first resolve the matrix elements for ρ(1). For σ+
polarization, we find the only nonzero matrix element for ρ(1)

to be

ρ
(1)+
(s,0)0 = 〈x(s,0)|ρ(1)|0〉 = g+

(s,0)

h̄

ε(κ)e−iωκ t

(es − ωκ − iε)
, (C8)

where s = 0,1,2, . . . .
Next, we will resolve the matrix elements of ρ(2). For

σ−σ+ polarization sequence, the first-order process landed on
|x(s,0)〉. Then, the second driving from σ− light will bring the
state to |x(s ′,−1)〉 with s ′ = 1,2, . . . . Hence, the only nonzero
matrix element is ρ

(2)−+
(s ′,−1)0, which is obtained by calculating the

following commutator:

〈x(s ′,−1)|[H−
I + H′−

I ,ρ(1)+]|0〉
= 〈x(s ′,−1)|(H−

I + H′−
I )|x(s,0)〉〈x(s,0)|ρ(1)+|0〉

− 〈x(s ′,−1)|ρ(1)+(H−
I + H′+

I )|0〉
= 〈x(s ′,−1)|H′−

I |x(s,0)〉ρ(1)+
(s,0)0

= −h−
(s ′,−1)(s,0)ρ

(1)+
(s,0)0E(κ)e−iωκ t , (C9)

where the second term in the first equation is zero since
〈x(s ′,−1)| eliminates ρ(1)+. Here, we clarified that the interaction
Hamiltonian is due to σ− light. In the second equation, we
used the fact that H′+

I connects |x(s,0)〉 and 〈x(s ′,−1)|. Then,
after integration we obtain the matrix element

ρ
(2)−+
(s ′,−1)0 =h−

(s ′,−1)(s,0)g
+
(s,0)

h̄2

ε2(κ)e−2iωκ t

(es − ωκ − iε)(es ′ − 2ωκ − iε′)
.

(C10)

Next, we resolve the matrix elements for ρ(3)+−+. Because
we are solving for the third-order harmonic generation, we
look for the matrix elements proportional to e−i3ωκ t .

It is obvious to see that one nonzero matrix element for
ρ(3)+−+ is ρ

(3)+−+
(0,0)0 which is given by

ρ
(3)+−+
(0,0)0

=
∑
s ′,s

h+
(0,0)(s ′,−1)h

−
(s ′,−1)(s,0)g

+
(s,0)

h̄3

× ε3(κ)e−3iωκ t

(es − ωκ − iε)(es ′ − 2ωκ − iε′)(e0 − 3ωκ − iε′′)
.

(C11)

To calculate another nonzero matrix element, we consider the
light with frequency ω′

κ , which we will set later ω′
κ = −ωκ .

Consider the commutator for the matrix element ρ
(3)+−+
(s ′,−1)(0,0):

〈x(s,−1)|[H+
I + H′+

I ,ρ(2)−+]|x(0,0)〉
= 〈x(s,−1)|(H+

I + H′+
I )ρ(2)−+|x(0,0)〉

− 〈x(s,−1)|ρ(2)−+|0〉〈0|(H+
I + H′+

I )|x(0,0)〉
= −ρ

(2)−+
(s,−1)0〈0|H+

I |x(0,0)〉
= g+∗

(0,0)ρ
(2)−+
(s,−1)0E∗(κ ′)eiω′

κ t . (C12)

We first integrate the differential equation. Then, setting ω′
κ =

−ωκ , we obtain a result proportional to e−i3ωκ t :

ρ
(3)+−+
(s ′,−1)(0,0) = −

∑
s ′,s

g∗
(0,0)h

−
(s ′,−1)(s,0)g

+
(s,0)

h̄3

ε3(κ)e−3iωκ t

(es − ωκ − iε)(es ′ − 2ωκ − iε′)(es ′ − e0 + ωκ + iε′′)
. (C13)

We note that this is a nonresonant contribution due to the factor
e0 + ωκ + iε′′ in the denominator.

Finally, we calculate the matrix element ρ
(3)+−+
(s ′,−1)0 . For this,

we calculate the following commutator:

〈x(s,−1)|[H+
I + H′+

I ,ρ(2)−+]|0〉
= 〈x(s,−1)|(H+

I + H′+
I )|x(s,−1)〉〈x(s,−1)|ρ(2)−+|0〉

− 〈x(s,−1)|ρ(2)−+|0〉〈0|(H+
I + H′+

I )|0〉. (C14)

Both terms are zero since H+
I and H′+

I have nonzero elements
only on off diagonal. This implies that ρ

(3)+−+
(s ′,−1)0 (t) = 0.

3. Two-photon transition

We resolve the matrix elements of ρ(3) for the two-photon
transition with degenerate fundamental frequencies, with po-
larization configuration of σ+; σ+σ+σ+, corresponding to
2ωκ,ωκ,ωκ,−ωκ , respectively. We present the result for the
case where 2ωκ ∼ e(1,1). The relevant basis for the matrix
elements is {|0〉,|x(s,0)〉,|x(1,1)〉}, where s = 0,1,2, . . . .

The only nonzero matrix element for ρ(1) is given in
Eq. (C8). We now resolve the matrix elements of ρ(2). The first-

order process landed on the state |x(s,0)〉 with s = 0,1,2, . . . .
According to the selection rule, the second-order process with
the polarization sequence σ+σ+ needs to land on |x(s ′,1)〉 with
s ′ = 1,2, . . . via e−iωκ t term in H′

I , or on |0〉 via eiωκ t term in
HI . Let us consider ρ

(2)++
(s ′,1)0 first. For this, let us calculate the

commutator:

〈x(s ′,1)|[H+
I + H′+

I ,ρ(1)+]|0〉
= 〈x(s ′,1)|(H+

I + H′+
I )|x(s,0)〉〈x(s,0)|ρ(1)+|0〉

− 〈x(s ′,1)|ρ(1)+(H+
I + H′+

I )|0〉
= 〈x(s ′,1)|H′+

I |x(s,0)〉ρ(1)+
(s,0)0

= −h+
(s ′,1)(s,0)ρ

(1)+
(s,0)0E(κ)e−iωκ t . (C15)

From this, it easily follows that

ρ
(2)++
(1,1)0 = h+

(1,1)(s,0)g
+
(s,0)

h̄2

ε2(κ)e−2iωκ t

(es − ωκ − iε)(e1 − 2ωκ − iε′)
.

(C16)
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We then consider ρ
(2)
00 . For this, let us calculate the commutator:

〈0|[H+
I + H′+

I ,ρ(1)+]|0〉

= 〈0|(H+
I + H′+

I )|x(s,0)〉〈x(s,0)|ρ(1)+|0〉

− 〈0|ρ(1)+∣∣x(s,0)〉〈x(s,0)

∣∣(H+
I + H′+

I )|0〉

= 〈0|H′+
I |x(s,0)〉ρ(1)+

(s,0)0 − H.c.

= −g+∗
(s,0)ρ

(1)+
(s,0)0E∗(κ)eiωκ t − H.c. (C17)

These terms are time-independent static (DC) drives, which
is proportional to an infinitesimal constant ε, and hence, is
negligible mathematically. Hence, the only significant nonzero
elements of ρ(2) are ρ

(2)++
(1,1)0 and its complex conjugate.

Next, we resolve the matrix elements for ρ(3)+++. Our task
is to find the matrix elements proportional to e−iωκ t . The last
frequency is negative: −ωκ , i.e., moving downward in energy.
Since the second-order process landed on the state |x(1,1)〉, the
third-order process must land on a state |x(s ′′,0)〉. One nonzero
matrix element is thus given by

ρ
(3)+++
(s ′′,0)0 =

∑
s

h+∗
(1,1)(s ′′,0)h

+
(1,1)(s,0)g

+
(s,0)

h̄3

|ε(κ)|2ε(κ)e−iωκ t

(es − ωκ − iε)(e1 − 2ωκ − iε′)(es ′′ + ωκ + iε′′)
. (C18)

This is a nonresonant term, due to the last factor in the denominator.
We can find another nonzero matrix element ρ

(3)+++
(1,1)(s ′′,0) as follows. Let us consider the commutator:

〈x(1,1)|[H+
I + H′+

I ,ρ(2)++]|x(s ′′,0)〉 = 〈x(1,1)|(H+
I + H′+

I )ρ(2)−+|x(s ′′,0)〉 − 〈x(1,1)|ρ(2)++|0〉〈0|(H+
I + H′+

I )|x(s ′′,0)〉
= −ρ

(2)++
(1,1)0 〈0|H+

I |x(s ′′,0)〉
= g+∗

(s ′′,0)ρ
(2)++
(1,1)0 E∗(κ)eiωκ t . (C19)

After integrating the differential equation, we obtain

ρ
(3)+++
(1,1)(s ′′,0) = −

∑
s

g+∗
(s ′′,0)h

+
(1,1)(s,0)g

+
(s,0)

h̄3

|ε(κ)|2ε(κ)e−iωκ t

(es − ωκ − iε)(e1 − 2ωκ − iε′)(e1 − es ′′ − ωκ − iε′′)
. (C20)

This is a resonant term.

Finally, let us consider the matrix element ρ
(3)+++
(1,1)0 . Let us

consider the commutator

〈x(1,1)|[H+
I + H′+

I ,ρ(2)++]|0〉
= 〈x(1,1)|(H+

I + H′+
I )|x(1,1)〉〈x(1,1)|ρ(2)−+|0〉

− 〈x(1,1)|ρ(2)++|0〉〈0|(H+
I + H′+

I )|0〉. (C21)

Both terms are zero since H+
I and H′+

I have nonzero elements
only on off diagonal. This implies that ρ

(3)+++
(1,1)0 (t) = 0.

APPENDIX D: CALCULATION OF THE DIPOLE MOMENT
f ±
ν (q) = e〈xν|r · ε̂±|Cq〉

Let us calculate the dipole moment f +
ν (q) using the Blount

formula in Eq. (17) and the analytical solution in Eq. (A2):

f +
ν (q) = −ε̂+ · ie

∑
q ′

ψ∗
ν (q ′)∇q〈cq ′ |cq〉

− ie
∑

q

ψ∗
ν (q)(1 + τ )

h̄2v2

√
2�2

qeiτφq . (D1)

The contribution coming from the second term on the right-
hand side is negligible due to the angular integral, if ν =
(n,0). We then calculate the contribution from the first term.
To evaluate this, let us use the following integration by

parts: ∫
A

d2q
∑

q ′
(r(q ′)∇q〈ψq ′,λ|ψq,λ〉)s(q)

=
∫

∂A

dnr(q)s(q) −
∫

A

d2qr(q)∇qs(q). (D2)

The first term is the boundary line integral. The contribution
from the second term above vanishes due to the angular integral
over φq . This leads to

χ
(2)
U (ωκ ∼ e0/2)

= −ε̂+ ·
∫

∂FBZ
dn

⎛
⎝ψ∗

ν (q)ie eνd
+
cv (q)g∗

ν

8π2ωκε0 h̄
2deff

× 1
[ωq−ωκ−i(γU /2)][eν−2ωκ−i(γB/2)]

⎞
⎠.

(D3)

Performing the boundary line integral involves multiplying
the factor eiφq since ε̂+ · n̂ = eiφq . Recall that the threefold
rotational symmetry is perturbatively treated. The zeroth order
that does not have the threefold rotational symmetry integrates
to zero over φq . The higher order perturbative terms involving
the threefold rotational symmetry also vanishes as follows.
Recall that the energy h̄ωq also has the threefold rotational
symmetry. Hence, the higher order terms in the integrand have
a threefold rotational symmetry. We note that∫ 2π

0
dφe±iφf [cos(3φ)] = 0, (D4)
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where f is any analytical function. It is easily seen by consider-
ing cos(3φ) = (1/2)(ei3φ + e−i3φ), and the Taylor series term
cosn(3φ) involves e±i3mφ with an integer m that the integral
of f [cos(3φ)] over φ after multiplying with e±iφ vanishes.
This leads to a conclusion that, regardless of the polariza-
tion, this boundary integral term must be zero. Therefore,
χ

(2)
U (ωκ ∼ e0/2) vanishes.

For σ− input polarization, the second term in Eq. (D1)
vanishes, and the boundary line integral is the same result;
hence, the contribution from the unbound exciton also vanishes
for σ− light. Overall, we conclude that the unbound exciton
does not efficiently couple back to the bound exciton states.
This allows us to ignore any channel of the unbound exciton
virtual states to land on a bound exciton state.
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